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Abstract. — The Hecke algebras of type A,, admit faithful representations by sym-
metrization operators acting on polynomial rings.These operators are related to the geome-
try of flag manifolds and in particular to a generalized Euler-Poincaré characteristic defined
by Hirzebruch. They provide g-idempotents, together with a simple way to describe the iree-
ducible representations of the Hecke algebra. The link with Kazhdan-Lusztig representations
is discussed. We specially detail the case of hook representations, and as an application, we

investigate the hamiltonian of a quantum spin chain with U,(su(1/1)) symmetry.
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1. Introduction. —

The Iwahori-Hecke algebra H,, associated to the symmetric group &,
admits a faithful representation as an algebra of operators on the ring of
polynomials K[A], A = {ay,...,a,} [LS 82-87].

As a matter of fact, such operators have already been used to describe
flag manifolds : Hirzebruch [Hil] has defined a “y,- characteristic” which
coincide with the operators that we use in the case of maximal permu-
tations of a Young subgroup, when extended to the case of a relative
flag variety. In particular, for simple transpositions the operators corre-
spond to the characteristic of a projective line bundle. However, the simple
operators do not satisfy Moore-Coxeter relations, but Yang-Baxter ones
(section 3). We give in theorem 3.1 several expressions of the operators
corresponding to a maximal permutation.

Restricting the action of the Hecke algebra to weight spaces, we recover
one of the usual description of its representations (section 4).

We also obtain g-idempotents in section 5, and deduce from them a g-
analog of Specht representation, as an orbit of a product of g-Vandermonde
functions. We moreover show that the decomposition of general elements
into a standard basis can be obtained from a g-analog of a triangular
matrix due to Rutherford (proposition 5.3).

Different constructions of the irreducible representations are exhibited
in the case corresponding to hook partitions. We show that these repre-
sentations are essentially described in terms of certain graphs, which turn
out to be identical with those of Kazhdan-Lusztig (section 7).

This interpretation is then applied to the diagonalization of the
hamiltonian of a quantum spin chain having the quantum superalgebra
Uy(su(1/1)) as symmetry algebra.

2. Symmetrizing operators. —

Our fundamental tool will be Newton’s divided differences and defor-
mations of them called “symmetrizing operators”. All operators act on
their left .

Denote by g;, 1 <1 < n — 1, the simple transposition exchanging «a;
and a;41. The Newton divided difference associated to the pair a;, a;41 is
the operator on K [A]

Oi: f— (f=f7)/(ai —ait1)

The 0; satisty the relations



8i0j = a]az if |i —J| > 2
0;0i+10; = 0410041 (Moore — Coxeter relations)

together with
9 =0.

2

More general operators are :

_ (A (a=Da)f — (p+ (g = Dai1)f”

Ay — A4

Di(p7Q7r) : f

+rfo

which satisfy Coxeter relations and

(2.1) DZ2 =(¢—1)D;+r(¢g+r—1)

In [LS87] one finds more general five-parameters symmetrizing opera-
tors having similar properties.

Coxeter relations imply that for any ¢ € &,,, there exists a well defined
operator D, which is equal to the product of the simple operators D;
corresponding to any reduced decomposition of p. In particular, one has
for any permutation p a corresponding divided difference 9, [B-G-GJ,
[Dem].

One notices that the operators T; := D;(0, ¢, 1) satisfy the usual Hecke
relation

(Ti+ 1)(Ti—q) =0,
and thus that the T; generate a representation of H,,. The T), = D,(0,¢,1)
constitute a linear basis of H,,.

This representation is faithful, so that we can characterize elements of
H,, by considering their explicit action on KA.

Since the operators D; admit symmetric functions as scalars, we can
use the structure of K[A] as a free Gym(A) module of rank n! (where
Sym(A) denotes the ring of symmetric polynomials of K[A]).

It is therefore sufficient to restrict the action to an appropriate basis.
For example, relation (2.1) requires to be checked on Kla;, a;+1], which is
a free &ym(a;, a;41 )-module with basis {1, a;}. Now, D, sends 1 to g—1+r
and a; to p+ (¢ — 1)(a; + ai+1) + raiy1, and thus one has relation (2.1).

Given a complex compact manifold M, and any analytic vector bundle
V on it, Hirzebruch [Hil] defined the y,-characteristic of V' to be

xy(V) = Zyj(—l)idimﬂi(f\/l,v 2 Q') ,
i,J



where €/ is the j-th exterior power of the cotangent bundle Q! of M.

The three special cases y = 0, 1 or -1 are of particular importance in
geometry, when V' is the trivial line bundle ( denoted 1 ) : x_1(1) is the
ordinary Euler-Poincaré characteristic. If M is a compact Kahler manifold,
then x1(1) is the signature of M and xo(1) is its arithmetic genus (see
[Hi2]).

As shown by Grothendieck, one should work with relative varieties
M L B and their associated Grothendieck rings Ko(M) by Ky(B) of
classes of vector bundles.

The x,-characteristic becomes now the following morphism (called
relative x,-characteristic, cf. [Las]):

EKo(M) 3 [V] = xy(V Z Y (—D)"Rpu(V ® ¥y ) € Ko(B) .

We shall detail the case of flag manifolds. Let B be a complex manifold,
V' a vector bundle of rank n on it, F(V') the associated flag bundle. Let
Ly,...,L, be the tautological line bundles on F(V') and ay,...,a, their
respective classes in Ko(F(V)). The Grothendieck ring of F(V) is the
quotient of the ring Ko(B)[a1,...,a,] by the ideal T generated by the
graded relation [[(1 + a;) = Y [A'V].

The associated morphism py is

f= > I/ ] —ai/an)"

nes, >

where ¢g# denotes the image of a function of aq, ..., a, under a permu-
tation pu.
The class of the relative cotangent bundle Q! is equal to En>j>i>1 a;/a;

and thus A_q /,(Q') := Y (—q)7" /\Z Q! is equal to A_, Q! = H1<i<j<n(1_
405 /as).

Finally, in the case of a relative flag manifold, the y,-characteristic, for
y = 1/q, is the morphism

Ko(B)la1,...,an]/T > f — Z [ij>i(CLi f_aj/.Q)]

rES,

In the particular case n = 2 (case of a relative projective line)
Hirzebruch’s characteristic is equal to the operator f — (a3 — a2/q)0;.
Let us rather use the operators (acting on their left)

= (ga; —ai4+1)0; =T; + 1



We shall see in the sequel that [ (2 — ﬁ)[ll is also equal to

Hirzebruch’s characteristic for a flag variety with n = 3, i.e. that one
has

O (02 — 1qTq)D1 = (qa1 — az)(qay — az)(qaz — az)0321 .

Symmetrically, one also has operators
Vii=0i(qait1 —ai) =T; — ¢
as well as a dual characteristic

Vw = aw H (qai—I—l - ai) .

1<:i<j<n
The operators 0; and V; satisfy the relations
O =(+ 1o Vi=—(¢+ 1V,

which will be used to construct g-idempotents (see section 6).
However, these operators do not satisfy Moore-Coxeter relations, but
Yang-Baxter ones :

q q
0k (i1 — 7 ) =1 Ui — 57— )Uit1
( +1 1+q) +1( 1+q) +1
q q
VitVigr + —)Vi= Vi1 (Vi+ —— ) Vi .
( +1 1_|_q) +1( 1_|_q) +1

These relations are better understood when extending them to the case
of any reduced decomposition, instead of only o;0;410;.

3. Yang-Baxter equation. —

Let 0,004 -0 be a reduced decomposition of the permutation p.

This reduced decomposition gives rise to the sequence of transpositions
=0, 7%= (0i)oj (o), = (oioj)on (0j04) ... .

The total set of transpositions, which corresponds to the set of inver-
sions of u, does not depend on the choice of the reduced decomposition of
[

A function f from the set of transpositions to any commutative ring
will be called a solution of Yang-Bazter equation if it is such that, for any
permutation p and for any reduced decomposition of u, the products

(Vi+ (7)) (Vj + F(72) (Vi + F(7%)) -



(O = F(7) (@ = F(7) (©n = f(7°)) -

are operators independent of the choice of the reduced decomposition

of p.
A solution, implicit in [Ro] and used by Cherednik [Chel-2] is, taking
an extra set of variables {zy,...,z,} :

F(rij) = (qui — 25)/(xi — x;)
for the transposition 7;; of ¢, j.
[FK] and [K] explicit the links between the usual form of Yang-Baxter
equation and the operators 0; and a;0;, and their associated polynomials

(Schubert polynomials, Grothendieck polynomials).
We shall need only the special case where {x1,z2,...,2,} = {1,¢,¢%,...,¢" '}
In that case, f(r;;) = q[][ - ] ) , writing [r] for the ¢- mtegel (1—¢")/(1—q).

For any permutation yu, let us denote V,, O, the operators given by

this solution of Yang-Baxter equation.

For example, 02030102 is a reduced decomposition of p = (3412).
The associated sequence of transpositions is o2 = (32), 020302 = (42),
0203010302 = (31), 03030102010303 = (41). The two operators are

V3412 —V2<V3‘|——)<V1‘|‘—>< 2‘|‘i)
1+g 144 lL+q+q®’

L3412 =[R2 <E|3 - %)(Dl - Lq)(lzlz - %) .

We are now in position to recover Euler-Poincaré characteristic.

THEOREM 3.1. — Let w be the mazimal permutation of &, . Then

9 Vu=i (et aghv ) (a4 alwa ol )

e
[n—1]

Mo
=, [[(qaj —ai) = ) (=¢)7"“MT,

1<y HeSG,,

i) O, =00 <([|2 - q%)[ﬁ) ((I:l:; - q%)(DQ - q%)D1>
. ((Eln_l - q[n[;]l])...([b - qﬁ)m)

=[[(qai —aj)0. = > T,

1 <g neS,

<=
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Proof. — Take the basis X,, p € &, of Schubert polynomials (cf.
[LS82]). If there exists some ¢ such that o; leaves invariant X, then X,
is annihilated by 0; and thus by 9, as well as V,, because there exists at
least one reduced decomposition of w beginning by ;. The same reasoning
is valid for the sum Z(—q)_f(“)Tu, from which one can extract a left factor
T;—q = 0i(qait1—a;). Therefore, one has only to compute the action of the
three operators on the only totally non symmetrical Schubert polynomial,
which is X, = a’f_la’;_z ++ap—1, and this can be done by induction on
n. Left /right symmetry gives ) from i). []

Remarks. 1) Let I € N* and &(I) = &(i1) x &(iz) x ... x &(ix) be
the Young subgroup corresponding to I. The preceding theorem extends
to the case of the maximal permutation w; of &(I). For example, for

N , /123 45
6(3,2)—6(3)xG(Z),onehasz—<3 5 1 5 4> and

. q
V32154 = V2 (Vi + T+a n q)V2V4

= 032154 ((qaz — a1)(qaz — a1)(qaz — az)) (qas — ay)

— Z (—q)4_£(’“‘)Tu

neEG(3,2)

2) Geometry provides a fibration of the flag manifold into projective
spaces ([Hi2] p.49), and this induces the following factorization, with
w=(n-1,---,1,n):

O = Oy < H (qai—an)> Op_1---01 .

1<i<n
One has also the factorisation
Lo = O (1 + Tn—l + Tn—lTn—Z + ... Tn—l e Tl) 5

but the two operators [[, ., ,(qai — an)0p—1---01 and 1 + T,y +
Th1\Tho+ ... Ty T are not equal.

3) The operator O, sends any monomial onto a Hall-Littlewood poly-
nomial (cf. [Med]). For example with A = {ay, az, a3}, one has aja3za; =

¢°Pya(A,1/q).



4. Weight spaces. —

Let A = {ay,...,a,} be an alphabet of cardinal n. For every J =

(j1,J2,---,Jn) € N* one denotes by e’ the monomial
eJ . a{i agz . a{ln

and V(J) the weight space of all monomials {e/* : u € &(A)}, i.e. the
space generated by the action of the symmetric group &(A) on e’, Ju
being the vector (ju,,---,7pu,) -

A weakly decreasing J is called a partition and the corresponding
monomial e/, a dominant monomial. A weakly increasing J is called a
French partition. The so-called natural order on partitions [JK] induces an
order on weight spaces of the same degree |J| :=j; + -+ + jp.

The operators T, O, V do not preserve weight spaces. Indeed, let T
correspond to the pair of letters a,b and let h < k be positive integral
numbers. Then one has

T .
" bk (1—q)<ah+lbk_1—}—---—{—ak_lbh+1)—{—akbh, (h<k—1)

T

ah bh—l—l ah—l—l bh
T
a'bh ——  ga""

T
Gkbh qahbk + (q . 1)<ah+lbk_1 NS Clk_lbh+1) 4+ (q . 1)akbh
Modulo the weight spaces V(ij): h <i <j < k,i+j = h+k, spaces
which are smaller with respect to the order induced from the order on
partitions, the action of T is

T T
a"oF ——a*oh | aFbt——qa"b* + (¢ — 1)a*D"
T
ah bt ——qa’ bt

Notice that the action modulo the smaller weight spaces does not
depend on the value of h and k, but only on the fact that h < k, h = k or
h > k.

Let ps denote the projection from the space of polynomials onto the
space V(J) (i.e. sending to 0 all monomials which do not belong to V(.J)).
Writing [I] instead of ¢!, what we said just above can be formalized in :



ProposiTION 4.1. — ) Let [ = (t1,...,1,) be any integral vector in N”,
AL, ..., Ap rational functions in g, and V(J) is a weight space. Then

pr(Ti + M) (T, + M)ps = (ps(Ty +X0)ps) - (ps(Ts, + A )ps)
i) The operators :

[ hk -] — [ kR -]
[+ hh -] —q [+ hh -]
[ kh -] —>q [+ hk -] +(g= D[+ k he-]

operating on the r and r + 1 component, with h < k, generate a represen-
tation of the Hecke algebra which preserves each weight space.

If one prefers, one can write the second point of the proposition :

wi) For any French partition J, the weight space is a representation of
the Hecke algebra, with the generators p;Tip s defined by :

(e”MpyTipg = e’ if U(Tpoi) < €(Jp)

(e’MpsTips = qe’* if Jpoi = Jp

(7" Tip s = qe"% + (¢ — )e’# if 6(Jpoy) > U(J poy).

When J has all its components ji,..., 7, different, the weight space
V(J) is the regular representation.

Notice that restricting the action of the Iwahori/Hecke algebra, we have
lost the fact that symmetric functions in A are scalars for the operators.

Interpreting the 2-component symbols [k, k| as tensor products e, ® ey
of the basis vectors e; of some n-dimensional vector space V', we recover
from ) a familiar solution of the (quantum) Yang-Baxter equation

R = Z Evn@FEnrk+q Z Enn®@ERp+q Z Enk@Egp+(g—1) Z Evr@En
h<k h h<k h<k

where E;; is the matrix with coeflicients (E;; )i = 6;x0;.

5. q-Specht representations. —

In the case of the symmetric group, one has many ways to define
irreducible representations. The original method of Young was to associate
an idempotent to any Young tableau. The idempotents corresponding to
all the tableaux of a given shape are all conjugate, so that Young defined
essentially only one idempotent for each shape. Because conjugation is
more tricky in a Hecke algebra, one has more g-idempotents corresponding
to a given shape. Let us just define one of them.

Let I be a decreasing partition, J be the conjugate partition, this time
increasing, and let w' and w the maximal permutations of the two Young

subgroups &(I) and &(J). Then (cf. Martin [Ma2])
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LEMMA 5.1. — The space V  HOyr 18 1-dimensional.

Proof: The space V. H is linearly generated by the {V, l(pn) =
Uw") + l(w'p)}. But these permutations p are exactly the permutations
having the decreasing subwords of w’. Now given such a p and a simple
transposition o; such that ((uo;) > €(p), then V,,,00w” is proportional
to VO if (2 + 1) is a subword of w” (equivalently if V,0,» = 0.
There is only one permutation g having the decreasing subwords of '
and having no descent p; > p;41 at the same place as a descent of w”.
This permutation is the row reading of the Young tableau whose column
reading is w'.  []

For example, if I = 331, then J = 223, w' =321 654 7, w” = 21 43 765.
The only permutation g having subwords 321, 654, 7 and such that

H1 P p2, M3 P pa, ps P ope, pe F pr 1s 3625147. This permutation is
the row-reading of the Young tableau

— N W
> Ot Oy

7

Similarly, the space O, H V is 1-dimensional and equal to Coy71365 V3216547
This time, one recognizes into the new permutation the row-reading of the
contretableau

2 4
1 3

ot Oy

The preceding Lemma enables one to construct primitive idempotents
of H,,. More precisely we have

THEOREM 5.2. — Let I be a partition, w' and w' the mazimal elements
of the corresponding Young subgroups, u' and p'" the row readings of the
associated tableau and contretableau. Then Vv Oy and Oy Ve are two
idempotents, up to a scalar, and their images are irreducible representa-
tions of the Hecke algebra corresponding to the partition I.

In the preceeding example, the claim is that V3go5147 471365 and
(471365 V3625147 are two g-idempotents, up to a factor.

Using now our interpretation of H, as an algebra of operators on the
ring of polynomials, we can realize its irreducible representations by letting
it act on an appropriate subspace of K[A].

Let I € N” be an integral vector of weight n, &(I) be the corresponding
Young subgroup of &,,, and wy its maximal element, d the length of wy.
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Let o = 0,751 =41, j2 =t1+122, ..., Jr =11 +...+1,. The g¢-Vandermonde
of index [ is by definition

Ag = 1:[ H (qa¢ — a) .

Then, {5 :=0,V, = 0,0, A7 is the idempotent corresponding to I.

Since the operator [, 0, decreases degrees by d, then it sends the space
K[A]* of polynomials of degree d to K because it is not identically null on
that space. Therefore the space K[A]%¢; is 1-dimensional of basis A; and
the space AH,, = K[A]“¢/H,,, which is equal to H, £ H,, is, according to
theorem 5.2, a model of an irreducible representation of H,,, corresponding
to the shape conjugate to the reordering of I into a partition.

We shall explicit this representation when I is weakly increasing, i.e. is
a partition.

Let t be the contretableau which, as a word, coincide with wy. Consider
the set of permutations

Perm(I) = {w;'w | w =t}

for all w plactically congruent (=) to t.
For example, with I = 122, w; = 13254,

1 3 5
b= 9 4

the plactic class of ¢ is the set {13254,31254, 13524, 31524, 35124} and
Perm(I) = {12345, 21345, 12435, 21435, 24135} .

Instead of the class of ¢, one can use Yamanouchi symbols (cf. [Ham])
(called lattice permutations by MacMahon (see [Mcd]): one starts with the
code of wy, i.e. with the vector [1y —1,...,1,0,4 —1,...,1,0, ..., ¢, —
1,...,1,0] ; its plactic class is the set Yam(I) of Yamanouchi symbols
corresponding to shape I. For example, the code of w2 = 13254 is
[0,1,0,1,0] and its class Yam(122) is

{[07 1707 1’0]7 [1707 07 170]7 [0’ 17 1707 0]7 [170’ 1707 0]’ [17 170’07 0]}

which coincide with the orbit of the code of wjg9 under the set of
permutations Perm(122).

It is easy to characterize the set of all Yamanouchi symbols : they are
exactly the vectors v such that for any cut into two pieces : v = v'v", then
the right vector v is such that

|’U”|0 > |'U”|1 > |’U”|2 > ...

?
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where |v|; denotes the number of components of a vector v equal to .

In the preceeding case, we have enumerated the vectors permuted from
[0,1,0,1,0] which have more 0 than 1 in any of their right part, ex-
cluding the five vectors {[0,0,0,1,1],[0,0,1,0,1],[0,1,0,0,1,], [1,0,0,0, 1],
[0,0,1,1,0]}. Yamanouchi symbols are another way of coding standard
Young tableaux

We now claim that Yamanouchi symbols are the exponents of the lead-
ing (for the lexicographic order) monomials of the polynomials {A;T), :
p € Perm(I)}. The case I = 122 will be sufficient to illustrate this prop-
erty. The polynomial

AI — e01010 - q€00110 - 601001 + 2600011

q q

has only one monomial whose exponent satisfies the Yamanouchi condi-
tion, that is 1919 The successive images of this monomial under the T,
are the polynomials 10010 01100 (10100 711000 '3 o the monomial having
a Yamanouchi exponent, and the other monomials in the expansions of
AT, are lexicographicaly smaller than e?1910T,.

Therefore, the polynomials A;T), are linearly independent, and consti-
tute a basis because their number is equal to the number of Young tableaux
of shape I. Moreover, the projection of A;H,, on the free module of basis
{e¥,y € (Yam(I)} is an isomorphism.

Let M be the matrix whose columns are the coefficients of the Ya-
manouchi monomials of the polynomials A;T,. Then M is a triangular
matrix with unit diagonal. For ¢ = 1, this matrix, which has only 0, +1
entries, has been defined by Rutheford to describe the so-called Young
natural representation. It is interpreted in [CLL] as a matrix of scalar
products and used to produce a turbo-straightening for decompositions
into standard bases.

JFrom what precedes, the matrix M also gives decompositions into stan-
dard bases in the case of Hecke algebras. Let h belong to the irreducible
subspace {1Hy,. To decompose it into the basis {77, one must compute
the image of the leading monomial in Ay (which is the only one having a
Yamanouchi symbol as exponent) under h, restrict it to its Yamanouchi
terms, and take the image under the inverse of the matrix M.

In other words, one has the following proposition.

ProposiTiON 5.3. — Given a partition I of n, AyH,, s an irreducible
representation of the Hecke algebra H,,, with basis {A;T,, pn € Perm(I)}.
The projection on the space generated by the {e¥, y € Yam(I)} induces an
isomorphism of vector spaces between ArH, and {e¥, y € Yam(I)}. The
matriz expressing the tmages of the basis {A;T,} us triangular with unit
diagonal.
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For example, in the above case I = 122, the base of polynomials
{A[Ty, p € Perm(I)} is

Ajz2 = [01000] — ¢[00110] — ¢[01001] + ¢*[00101]

A129Ty = [10010] — ¢[10001] — ¢2[00110] + ¢3[00101]

A199T3 = [01100] — ¢#[01001] — ¢%[00110] + (¢* — ¢2)[00101] + ¢*[00011]

A199T, Ts = [10100] —¢2[10001] —¢3[00110] + (¢* — ¢*)[00101] + ¢*[00011]

A2 Ty T3T, = [11000] — ¢*[10001] — ¢®[01010] + (¢* — ¢*)[01001] +
q°[00011]

Therefore, the projection of this basis onto the space {e¥,y €
Yam(122)} is represented by the matrix

1000 ¢
01 00 0
0010 0
0001 0
0000 1

6. Hook representations. —

Hook representations could be easily described in the framework of
the preceding section and the next theorem could be directly checked on
the explicit matrices of representation obtained in the preceding sections.
There is, however, an alternative approach involving a g-analog of an
interesting property of hook representations of the symmetric group.

Let V= Czy & --- & Czx,, be the vector space of polynomials of degree
1, and let g; be the restriction of the operator 7; to V', so that

0z, (G #ii+1)
xigi = § (¢ — D)ai + qriqy (j=1)
F (j=i+1)

A basis of the space /\k V is given by the x;, A~ Axy, (11 < ... <1ig),
and one can code such an element by a vector in {0,1}", the components
equal to 1 being the 2q,...,2x-th ones.

The action of /\k gr on these vectors is, writing only the r and r + 1-th

components
[--00--] — qk[...()()...]
[--01--] — qk—l[...l()...]

(6.1) [--10--] — qk—l(q—1)[---10---]+qk[---01---]
[--11--] — —qk_l[---ll---]
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It is immediate to check on relations (5.1) that the operators g(k) =

(3
gtk /\k g; satisfy the Hecke relations, so that ny : T3 —— ggk) defines a
representation of H,, in /\k V.

The irreducible content of this representation can be identified by a
standard specialization argument, which can be conveniently formulated
as follows. To any representation p of the Hecke algebra, it is possible to
associate a symmetric function F' = F(p) which depends only of the traces
of the representation matrices of certain elements. The result (¢f. [KW],
[Ram]) is that this symmetric function is independent of ¢ and is equal
to the Frobenius characteristic of the representation of the symmetric
group obtained by setting ¢ = 1. We shall also call F(p) the Frobenius
characteristic of p.

In the case of ng, the specialization ¢ = 1 yields the k-th exterior power
of the representation of &,, by permutation matrices, whose Frobenius
characteristic is well known to be equal to AgS,—i [Ait], where Ay is
the k-th elementary symmetric function, and S, _; a complete symmetric
function (defined by 3~ 2185(X) =Tl ex(1 —za)™h).

Moreover, the same specialization argument shows that V splits into
two irreducible components as an H,-module

V= ptn-1) gy

where V' affords an irreducible representation indexed by the partition I.
Let (uy,...,uy) be a basis of V formed by taking a basis (uy,...,un—1)
of V(=1 and a basis (tun) of yin),

Then, the restrictions of the ggk) to the subspace
Wi =vect{u;y N ANug,, | 1< <ig<...<ip<n-—1}

define a representation 7} of H,, which for ¢ = 1 reduces to the k-th
exterior power of the fundamental representation (1,n — 1) of &,,. This
exterior power is known to have as Frobenius characteristic the hook Schur
function Syx ,,_, whence the following result, obtained by Jones ([Jo], p.

354).

ProPOSITION 6.1. — Let V=1 be the fundamental representation
of dimension n — 1 of the Hecke algebra H,, and My, My, ..., M,
be the matrices representing the generators of H,. Then, the matrices
gtk /\k M; generate an irreducible representation of H,, corresponding

to the hook (1%, n — k).

Taking into account the generating function of the values of the hook
characters [KW],[Ram|, we arrive at the following identity: denoting
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by p the fundamental representation indexed by the hook (1,n — 1),
the characteristic polynomial of an element 7, of connectivity class
corresponding to the partition I = (1™12™2...n"Mn) (see [KW]) is given
by

k

qffu) P(Tu)> =(1—z)4D-1 ﬁ (q’“;zynk

— Z
k=1 q

(6.2). ¢"M det (Id—

In particular, this implies that the eigenvalues of the T, in the funda-
mental representation, and then also in all hook representations, are roots
of unity multiplied by powers of gq.

7. Kazhdan—Lusztig representations. —

Kazhdan and Lusztig have defined a linear basis {c,,u € &,} of the
Hecke algebra H,,, by some optimal properties [KL]. Subsets of these bases
give representations of ‘H,,, irreducible representations arising as factors of
these representations. Instead of taking quotient representations, K & L
describe for each partition I a graph, from which one can read the matrices
representing the generators 77, ..., 7,1 in the irreducible representation
of index I.

The vertices of this graph are as usual all the standard Young tableaux
of shape I (left cell) or the elements of a plactic class (right cell).
Unfortunately, the edges are not easy to obtain in general, being related
to the expansion of the ¢, into the basis {T,}. More precisely, there
is an edge or not whether or not the coefficients in this expansion
(Kazhdan-Lusztig Polynomials ) are of maximal degree. However, since it
is difficult to compute these polynomials, the Kazhdan-Lusztig description
of representations is difficult to put into concrete use.

Let us recall how Kazhdan and Lusztig code the representation matrices
of the generators of H, by a graph. To a set of permutations {v,v’,...}
one associates a labelled graph. The set of vertices is {v,v’,...}; there is
an edge v——v' iff v and v’ differ by a simple transposition. Each vertex v
is endowed with a set of integral labels £(v) defined as follows : put label
¢ iff the vertex has a subword (¢ +1¢). Then the matrix M; has a non-zero
entry ( = qf(vl)_f(”) ) corresponding to the pair v, v’ v # ', iff v’ has label
1 and v has not. The entry v,v is equal to —1 or ¢ whether v has label @
or not.

In the case of a hook partition, however, one has explicit graphs. Indeed,
fix k,n and let w be the permutationw =(1...,n —k—1,n,...,n —k),
and let u be any element in the plactic class of w. One uses the following
criterium of "non-singularity” :
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TureoreM 7.1 [Lak-Sal. — Let p be a permutation. Then the following
conditions are equivalent

i) the Schubert variety of index p in the flag manifold is non singular

i) the Kazhdan-Lusztig element ¢, us equal to Ey<u(—q)f(’“‘)_£(”)T,,,
the order on permutations being the Ehresmann/Bruhat order.

wi) p, considered as a word, does not contain subwords of the type hkij
or kjht, for1 < j < h<k.

Now it is clear from the description that we gave of the class of w
that any g in this class satisfy [Lak-Sa] third condition. Therefore, all
associated Kazhdan-Lusztig polynomials are trivial, which implies that
for a hook, there is an edge connecting two elements iff they differ by a
simple transposition.

For example, for the hook (114), one has the graph

123654

126534 — 126‘354

165234 — 162534 — 162‘354

651234 — 615234 — 612534 — 612‘354

It is in fact possible to write explicitely the Kazhdan-Lusztig element
¢, for any non-singular p : it is a product of simple factors of the type

(Vi + q%) (the ¢, do not coincide with the V,, though they both

factorize).
For example, for the hook 112, one has

{01243 = V37 C1423 = V3V27 C4123 = V3V2V1} s

but
{Vi243 = V3, Vig3 = V3(Va + 1 ),
14+4¢
q q+q
Vv =V3(Vo+ —)(Vi + —)}.
4123 3(Vs 1—|—q)( 1 1—|—q—|—q2)}

Now one can compute the ¢, T}, but if one sticks to the Kazhdan-Lusztig
approach, one has to take the quotient modulo the components of other
types. It is simpler, instead of taking quotients, to use the interpretation of
the elements of H,, as operators and restrict their action to an appropriate
subspace of polynomials so that the extra components vanish.
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In fact, one can avoid new computations and interpret the results of
the preceding sections in terms of a graph, in which we shall recognize a
Kazhdan-Lusztig graph. Let us first consider the case of the hook (1,n—1).
The underlying space is the space of polynomials of degree 1 modulo the
ideal generated by symmetric polynomials without constant term, with
basis the Schubert polynomials. In other words, we take the space V; of
polynomials of degree 1, with basis {a; + -+ an—1, ...,a; + a2, a;} and
relation ay + -+ a, = 0.

Each T; acts trivially (i.e. by multiplication by ¢) on Schubert polyno-
mials (because they are symmetrical in a;,a;41, except for a3 + -+ + a;.
The representing matrix of T; coincide with ¢ x identity, except for its
(n-1)-th column which is

[0,...,0,¢,—1,1,0,...,0] ,

the -1 being on the diagonal.

These are the same matrices as the Kazhdan-Lusztig ones. Section 6
shows that one can take any exterior power of this representation and
finally one obtains:

ProposITION 7.2. — Given two integers h < k, the labelled graph with
vertices the elements the plactic class of (1,2,....n—k—1,n,...,n—k),
and with edges corresponding to each pair of vertices differing by a simple
transposition, codes an irreducible representation, corresponding to the

hook (1%, n — k).

8. Application to a quantum spin chain model. —

As shown by Deguchi and Akutsu [DA], the exact solution of a whole
class of quantum spin chain models can be reduced to the diagonalization
of the images of the following element of the Hecke algebra

n—1 n—1
EDICEVIE 3

under some set of irreducible representations, depending on the symmetry
algebra of the chain (the Hamiltonian being the image of H under some
representation of H,, ).

For example, the model having the quantum superalgebra U, (su(1/1))
as symmetry algebra leads to the family of hook representations (see
e.g. [MR] and references therein). In this case, the hamiltonian can be
diagonalized by means of a Jordan-Wigner transformation [HR]. However,
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the results of the preceding two sections lead to an alternative approach,
which is perhaps more illuminating.

Using as in section 7 the basis of Schubert polynomials e,—; = a; +
az+ -+ a; (1 <¢<n-—1)in the space of linear polynomials modulo
a1+ - -+ay, we see that the matrix of the image of H in the representation
(1,n — 1) can be written

Pian—1)(H)=An1(q) — (1 +q) 1

where I,,_1 is the identity matrix and

0 ¢ 0 0 0
1 0 ¢ 0 0
An_1(q) = 0 1 0 ¢ 0 0
0000 -+ 1020

Set ¢ = t* and let P,(z,t) be the characteristic polynomial of A4,(q).
Then, Py(z,t) = 2? — t? and one has the recurrence relation

(8.1) Poyi(x,t) = —aPp(a,t) — tan_l(:l:,t)

which shows by induction that P, is homogeneous of degree n in x and
t. Moreover, (8.1) also shows that for t = 1, P,(z,1) = U,(x/2), where
U, 1s the Chebyschev polynomial of the second kind. The characteristic
polynomial of 4,,_1(¢) is thus

q(n—l)/ZUn_l (%)

so that its eigenvalues are

Ag = 2\/6(:08(%) )

The components ’UES) of an eigenvector v(®) associated to A, satisfy the

difference equation

/\S'UES) = 'Uz(i)l + qu(j—)l
with the boundary conditions vés) = v,(f) = 0, so that one can take

¢ /% sin(sm/n)
q~3/% sin(2s7/n)

¢~ 2 sin((n — 1)s7/n)
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Remark. The transition matrix from the basis (e;) to the basis
(‘U(]')) can be written B,_1(q) = G,-1(¢)Cn-1 where G,_1(q) =
diag (¢7'/%,¢73/% ..., ¢~ "=1/2)and C,,_; = B,_1(1). One easily checks
that C2_, = (n/2)I, so that the inverse of B, _; is also explicitely known.

The diagonalization of H in any hook representation can now be de-
duced from the above considerations by means of the following observation.
Given a vector space V' and an endomorphism f of V, denote by Dy the
unique derivation of the exterior algebra A(V') which coincides with f on
V. Taking for V the space of linear polynomials and f = g¢; the restriction
of T; to V as in section 6, we obtain by a direct and easy computation:

LEmMmA 8.1. — Let ng) be the restriction of D; = Dy, to /\k V. Then,

D =g *F kg (k- 1)I . []

Now, let h be the restriction of H to V, i.e.

h:Z (i —ql) = Zgl—n—l I.

We have Dyyy = Dy 4+ Dy and D§) = k- idpry = kI Hence,

n—1
D =3"D —k(n—1)q-1

zg{ql_k/\kgi—qf} —(k=1)(n—1)q¢ I

=ne(H)—(k—=1)(n—-1)¢ I

where 7 is the representation of Frobenius characterisic A;S,,— consid-
ered in section 6. And as we saw in section 6, the irreducible representation
corresponding to the hook (1%, n — k) can be realized as a subrepresenta-
tion 1} of ni: taking any basis (uq,...,u,) of V such that wy,...,up—1
generate the irreducible component V=1, being a basis of V(") we
have

ytn=k) - vect{uy N ANug, | t1,...,0 <n—1}.

Then, piis n—p)(H) = n(H) is equal to the restriction to V(A5 =k of the

operator D(k) +(k—1)(n—1)q I. The eigenvalues of the restriction of D(hlf)
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to V5 n—k) = /\k Vn=1) are clearly the sums k by k of the eigenvalues
of the restriction of & to V1"~V These eigenvalues are s = Ay — (1 + ¢)
so that we get the complete spectrum of px ,_x)(H):

THEOREM 8.2. — The eigenvalues of the hook hamiltonian piix ,_ ) (H)
are exactly

Mg+ A, + -+ A F(E=1)(n—-1)—k)g—Fk

and the eigenvectors are explicitely given by the above construction.

Remark. Using the same kind of method, one can also obtain all the
spectral parameters of Hy = 11 + 15 + ... + 15,41 or equivalently of any
sum of k£ commuting generators of the Hecke algebra. Indeed it can be
shown that the eigenvalues of Hy are exactly

k
Ae = Z q €
=1

for every € = (€1,¢€2,...,€ex) € {—1,1}*, the multiplicity of \. being the
number of different ways it can be obtained in such a sum. The eigenvectors
ve of Hy may also be explicitely described in a similar way as above.

Denoting by P(k|z) the characteristic polynomial of pik ,_g)(H), it
follows from the last theorem that we have

P(klz) = ¢"= P (473 (2 — (k= 1)(n — 1) — k)g — k))

where we set

520 PO = [ (XY 2eos(X2T))

1< <g2<- g <n—1

Since P,E’“) is obtained by means of an integer translation from the
characteristic polynomial of a graph, it lies in Z[X]. We shall now describe
its factorization in this ring.

The field K,, = Q[e%] is a spliting field for every P¥. The Galois
group Gal(K,|Q) is isomorphic to the group U of units of Z/2nZ, the
correspondence being k € U — oy, € Gal(K,,|Q) where, for every k € U,
o1, denotes the Q-automorphism of K,, that maps e® onto ¢ . We now
construct an action of U on the parameters (j1, j2, ..., i) involved in (8.2).
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For every 1 <l < m < k, let W, Wl+m and W, be the sets of k-uples
(J1,J2, -5 Jk) in (Z/2nZ)* that are respectively defined by the equations
71=0, 7514+ 3m =0 and j; — 7, = 0. Let then

R=z/2z)* — |J wi - U Wi, - U W
1<I<k 1<i<m<k 1<i<m<k
The set R is invariant under the action of U defined by
u. (jla.j?a T 7.]/6) = (u.jlvuj27 T 7u.]k’)
for u € U and (j1,J2,...,J%) € R. It is also invariant under the action of
the hyperoctahedral group By defined by
(€,0).(J1,2, - Jk) = (€1 Jo(1)s €2 Jo(2)s " " » €k Jor(k))
for (e,0) € By and (j1,52,...,Jk) € Rwhere e = (€1, €2,...,6x) € {—1,1}%
and o € 6. It is straightforward to check that the simplex
Aglk) ={(J1,J2,- - Jk) € (Z/an)k| 1<in<jge<---gp<n}

1s a fundamental domain for this last action and that this action commutes
with that of U. Let us consider the set €2 of orbits in AS{“) for the action
defined by pulling back the action of U on the quotient space R/Bj. We

can now use Aﬁfi’ as a labelleing for the roots of P,(lk) with

k .
. : ; JmT
3(]17]27”']/6): E ZCOS( T:L )
m=1

Galois theory tells us then that, for every w € €2 the polynomial

PRLX) = ] (X =)

lEw

lies in Q[X] and that it is a primary polynomial (!} on Q[X]. But one has

(8.3) P = T P
wenN

Thus, since P s unitary, the factorization (8.3) lies in fact in Z[X]. This

explains the numerous factors of P,S’“) that are experimentally observed.

(1) More precisely P,S{Z), = Q™ for some irreducible polynomial () and m =
|S_1(S(Z))| for any [ € w.
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Ezamples. Let us describe an example factorization for P,S’“) that may

be constructed by the previous method. Consider for instance the shape

1114 and the polynomial P7(3). The elements of U are here the units of
Z /147 and hence are equal to {1,3,5,9,11,13}. Since 3 is a primitive
element of U, we can describe the orbits of 2 under the action of U by

only looking on the iterated action of 3 on the elements of Ags). Hence the
orbit of (1,2, 3) under the previous action is given by

(1,2,3) — 3.(1,2,3) = (3,6,9) = (3,6, —5) = (3,5,6) [Bs] € A" |

(3,5,6) — 3.(3,5,6) = (9,15,18) = (=5,1,4) = (1,4,5) [Bs] € A®) |

(1,4,5) —> 3.(1,4,5) = (3,12,15) = (3,-2,1) = (1,2,3) [Bs] € A .

Thus the desired orbit of (1,2,3) is w = {(1,2,3),(1,4,5),(3,5,6) } and
the corresponding factor P7(i3 of P7(3') is then equal to

(X =+ + @+ +ECHMNX -+ +E+ 0+ +87))

(X =@+ +C+E+E+) =X -X?-0X +1 ,

where we set ¢ = ¢F. More generally the following tables give some

complete list of orbits of 2 with the corresponding factors of P,S’“).
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