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The equality problem for rational series
with multiplicities in the tropical semiring
is undecidable

Daniel KROB

LACIM and CNRS(Institut Blaise Pascal; LITP) *

0 Introduction

The tropical semiring is the semiring denoted by M which has support NU{+oc} and
operations a®b = min{a, b} and a®b = a+b. It was first introduced in the context of cost
minimization in Operations Research. However it appeared that M plays in fact a central
role in several decision problems concerning rational languages (see [15] for a survey of
the tropical semiring theory and of its applications). For instance, I. Simon showed that
the finite power property for recognizable languages can be reduced to the limitedness
problem for the tropical semiring (cf [15]). In the same way, series with multiplicities in
the tropical semiring can also be used in order to analyse the non-deterministic behaviour
of finite usual automata (cf [17]).

One of the main open questions in the theory of the tropical semiring was to see if it
is possible to decide whether two given M-rational series are equal or not (cf [15, 16]).
We offer here an answer to this problem since we show in this paper that the equality
problem for M-rational series over an alphabet with at least two letters is undecidable.
One should notice that most people thought that a decision procedure existed (cf [15] for
instance) and our result is indeed based on a rather surprising encoding of a 10th Hilbert
problem.

It is also interesting to precise the structure of the proof of our undecidability result.
Indeed it appears that we use as a main tool the tropical “ring” Z = (ZU {400}, min, +)
which is just the extension of M to arbitrary integers. The importance of Z comes
from the equivalence with respect to decidability of the equality problems for M and
Z. According to this result, we can reduce our problem to showing that the equality
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problem for Z-rational series over an alphabet with at least two letters is undecidable. To
prove this last result, we show in fact that the decidability of the equality problem for Z is
equivalent to the decidability of the local inequality problem for Z. Using this equivalence
and a reduction to a 10th Hilbert problem, we prove then the undecidability of the equality
problem for Z-rational series over an alphabet with at least two letters. Hence this allows
us to obtain the undecidability of the same problem for M-rational series. Moreover
our methods give us also immediately other decidability and undecidability results for
connected problems. In particular, we solve also another open question (cf[16]) by showing
that the equality problem for rational series over an alphabet with at least two letters
and with multiplicities in the semiring V' = (N U {—oc}, max, +) is undecidable. In the
same way, we obtained also as an immediate byproduct of our results, a new proof of a

difficult undecidability result of Ibarra (cf [9]).

Let us finally add that a first version of our result appeared in [11]. Unfortunately
there was a large technical gap in the corresponding proof. This explains the purpose of
this new paper where we give a correct proof, based however on the same idea than in

1],

1 Preliminaries

The tropical “ring” is the commutative semiring denoted by Z which has ZU {+oc} as
support, whose addition & is defined by a & b = min{a, b} and whose product ® is given
by a @ b = a+ b. The operations of Z are extended to Z in the usual natural way and the
units for & and ® are respectively +o0c and 0. The tropical semiring is the subsemiring
of Z denoted by M which has N U {400} as support. Let us also introduce the “dual”
semiring N of M which is the semiring whose support is N U {—oc}, whose addition & is
given by a ©b = max{a, b} and whose product @ is defined by a @ b = a+b. Finally let us
consider the subsemiring Z~ of Z whose support is Z~ U {4+00}. Note that Z~ is clearly
isomorphic to N, an effective isomorphism beeing obtained by the mapping z — —z from

Z~ into V.

We refer to [2] for all generalities concerning series and rational series with multipli-
cities in an arbitrary semiring K. We will denote here by K << A >> the K-algebra of
series over A with multiplicities in K and by K'Rat(A) the K-algebra of K-rational series.
Let us also recall that a K-representation of order n of a free monoid A* is just a monoid
morphism from A* into the monoid of square matrices of order n with entries in K. Then
a K-automaton of order n is a triple (I, p, T') where p is a K-representation of order n of
A* and where I and T' are respectively a row and a column vector of order n with entries
in K (see [2] for more details). It should also be noted that we will use the equivalence
between recognizable and rational series with multiplicities in a semiring throughout all
this paper without mentioning it explicitely.

Let us now precise some notions concerning K -rational series that we will use in the
sequel. First we will denote by L the characteristic series of any language L. C A* which
is the series of K << A>> defined by

) g fwel
YV w e A*, (L|w)={ (); ifwé¢l



Note that L is always a K-rational series when L is a rational language (cf [2]). We also
denote here as usually by S @ T the Hadamard product of two series S,T" which is the
series defined by (S @ T'|w) = (S|w)(T'|w) for every w € A*. We recall that S© T is a
K-rational series when S and 7" are K-rational series (see [2] for more details). Finally
the constant K -rational series whose every coefficient is equal to k, will be always denoted

by k.

Let us also give some denotations concerning words. Thus let w be a word over an
alphabet A and let a be a letter of A. Then |w| will denote the length of w and |w|, will
denote the number of a that occur in w.

Let us now recall the following result which is folklore (it is in fact a general property
of positive semirings).
PROPOSITION 1.1 : Let S be a rational series of ZRat(A). Then the set
{we A, (Slw)=+oo}
is a constructible rational language of Rat(A).
Proof : Let 7 be the morphism of semirings from Z into the boolean semiring B defined

by m(+00) = 0 and 7(z) = 1 for every z € Z—{+o0}. We also denote by 7 its natural
extension as an algebra morphism from Z << A >> into B << A>>. Then we have

[we A, (Slw) = +o0 } = { we 4%, (7(S)|w) =0 } = 4" — x(S)
where we identified the B-rational series 7(.5) with its support which is clearly a rational

language. Our result follows now since 7(.5) is obviously constructible. g

Note : It follows also from proposition 1.1 that it is decidable whether a recognizable
series of ZRat(A) is equal to +00 or whether it has a coefficient equal to +oc.

Finally let us recall the following result of Adler (cf [1, 5]) :

THEOREM 1.2 : Every diophantine equation is equivalent to an equation of the form
P(zy,...,2,) =1

where P is an homogeneous polynomial of degree 4 of some Z-algebra Z[zy, ..., x,].

It is easy to deduce from Adler’s theorem the following undecidability result :

COROLLARY 1.3 : It is undecidable to decide whether there exists a n-uple of strictly
positive integers (z1,...,x,) in (N—{0})" such that P(x1,...,2,) = 1 where P is an ho-
mogeneous polynomial of degree 4 of Z[zy,. .., z,].

Proof : It follows clearly from the undecidability of Hilbert’s 10th problem (cf [5])
and from theorem 1.2 that it is undecidable to decide whether there exists a n-uple
(z1,...,2,) of non-negative integers in N such that P(xy,...,2,) = 1 when P is an
homogeneous polynomial of degree 4 of Z[zy,...,x,]. Hence the problem of deciding
whether there exists a n-uple (z1,...,,) of integers in Z such that P(xq,...,2,) =1is
also undecidable under the same hypotheses.
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Let now P be an homogeneous polynomial of degree 4 in Z[z1,...,z,]. Let us then
introduce new variables (y;1,yi2)i=1,, and let us consider the polynomial () defined by
Q(y1,1, Y1,2,-+ 3 Yn 1, ‘yn,z) = P(yl,l_y1,27 - 7’yn,1—‘!/n,2) .

Q) is clearly an homogeneous polynomial of degree 4. Moreover it is easy to see that
every integer x € Z can be written as the difference y — z of two strictly positive integers.
It follows immediately from this observation that the equation P(z1,...,2,) = | has a
solution in Z" if and only if the equation Q(y1,1,...,¥n2) = 1 has a solution in strictly
positive integers.

Our corollary follows now immediately from this result and from above remarks. g

2 Some relations between decidability problems
Let K be a totally ordered semiring. We can extend the order of K to the K-algebra
K << A>> of series with multiplicities in K by defining
P<Q it Vuwed, (Plw)< (Qlw)
for every series P, () € K << A >>. Let us then consider the four problems of equality,
inequality, local inequality and local equality for K-rational series over A :
P,Q € KRat(4), P=Q ? (Eq)
P,Q € KRat(A), P<Q 7 (Ineq)
P,Q € KRat(A), Jwe A", (Plw) < (Qw) 7 (Locallneq)
P,Q € KRat(A), Jwe A", (Plw) =(Qlw) ? (LocalEq)
In general, these problems are not connected. ? However it appears that the three

first above problems are equivalent with respect to decidability when K is the tropical
“ring” or semiring equiped with the total order induced by the usual order of Z. 3

PROPOSITION 2.1 : Let K = Z or K = M. Then the three following assertions

that deal with decidability problems for K-rational series, are equivalent :
1. The equality problem (Eq) is decidable.

2. The inequality problem (Ineq) is decidable.
3. The local inequality problem (Locallneq) is decidable.

Proof : The fact that assertion 2 implies assertion 1 is immediate since we have

P<Q
Q<P

The fact that assertion 1 implies assertion 2 follows also immediately from the relation

P:Q@{

2 For instance, when K = N, the equality problem is decidable and the inequality problem is undeci-
dable (see [6]).

3 Note that N or Z can also be equiped with the opposite total order which corresponds to the natural
order in the sense of the theory of ordered semigroups. We will not use this natural order here since it is
clearly equivalent to the previous one in our context of decidability questions.



P<@Q < P=PaQ=min(P,Q)

Let us now show that assertion 3 implies assertion 2. Hence let P, () be two K-rational
series where K = M or K = Z. Then the set [ = { w € A*, (Q|w) = 400 } is rational
and constructible according to proposition 1.1. Let us now consider the series P defined
by

- . _ 0 ifwel

which is clearly K-rational. We can define in the same way the series (). Then we have

P<Q <= P<Q
= VYuwe A, (Plu) < Q)
— Ywe A", (F|w) < (@|w) +1

this last equivalence coming from the fact that () has no value equal to +o00. It follows
immediately from these relations that we have

P<Q = -(uwed, (Plu)> (@ 1w)
Hence it follows clearly from this last equivalence that assertion 3 implies assertion 2.
Let us now show that assertion 2 implies assertion 3. Thus let P, () be two K-rational
series. According to proposition 1.1, the set [ = { w € A*, (Q|w) = 400 } is an effective
rational language. Hence we can decide whether [ is empty or not. If [ is non-empty, the

local inequality problem has obviously a positive answer since every word w € [ satisfies
to (Locallneq). On the other hand, if I is empty, we have

(Locallneq) <— —(Ywe A", (Plw) > (Qw))
= ~(Vwe A, (Plo) > (Qlw) + 1)
— S(P>Q01)

Note that the second above equivalence follows from the fact that 7 = (). Hence it follows
immediately from these last equivalences that assertion 2 implies assertion 3. This ends
the proof of our proposition. g

PROPOSITION 2.2 : Let K = Z or K = M. Then the decidability of the local
equality problem (LocalEq) for K-rational series implies the decidability of the local
inequality problem (Locallneq) for K-rational series.

Proof : It is immediate since we clearly have
Jwe A", (Plw) < (Qlw) <= Fwe A", (Plw)= (P& Qw)=min((Plw),(Qw))

Hence our proposition is proved. -

3 Undecidability of the equality problem for Z

This section is devoted to the proof of the undecidability of the equality problem for
Z-rational series over alphabets with at least two letters. This result implies in fact the
undecidability of the same problem for M-rational series as we will see later.
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THEOREM 3.1 : Let A be any alphabet with at least 2 letters. Then the equality

problem is undecidable for Z-rational series over A.

Proof : We should first notice that the decidability of the equality problem for K-
rational series on an arbitrary semiring K and over a k-letter alphabet Aj is equivalent
to the decidability of the same problem for a [-letter alphabet A; when k,1 > 2.

Indeed, it suffices to use an adapted encoding of A} over Aj in order to prove this
result. For instance, let a, b be two distinct letters of A; and let o be the monoid morphism
from A} into A} defined by o(a;) = a‘b for every a; € Ay = {ay,...,a;}. Then we can also
denote by o its extension as a K-algebra morphism from K << Ay >> into K << A; >>.
It is easy to see that o is injective and preserves rationality. Hence deciding whether two
K-rational series I, F' of K << Ap >> are equal, is equivalent to deciding whether the two
K-rational series o(E),o(F) of K << A;>> are equal. This proves our claim.

Our undecidability proof is based on a reduction to Adler’s restriction of Hilbert’s
10th problem (see theorem 1.2 and corollary 1.3). * Let now P(z) be an homogeneous
polynomial of degree 4 in several indeterminates of Z[z]| >. By distinguishing all variables,
it is easily seen that the equation P(z) = 1 where the variables involved in z belong to
N—{0}, can be transformed in an equivalent way as a system of the form

p . . . .
S a0
=1

¥ (i,5. k1) €V, o) =2

where V' is some subset of [1, p|x[1, p|x[1,4]x[1,4], where (p;);=1,..., is a family of integers
of Z and where all the variables J}EZ) take their values in N—{0}. Moreover, introducing new

(@) @) ()

variables (y;,y3", y3  )i=1, in order to encode partial products, it is easy to transform the
previous system into the equivalent one
Viellpl ) =al)z}

szy?) = . ; 0 G
Viell,p], g8 = 2zl

N (iu]akal) € V7 x;«:) = $§]) Y2 € [1,]9], y;(;) = yy)yél)

where all considered variables have values in N—{0}. But this last system can also be
clearly transformed into the single equation

P . p . . . p . . .
— | Z piyd =1 = 3 1 =P = 37yl — el
; =1 =1
Z |y3 !/1 !/2 | - Z |5’7§j)_$§j)| =0 (HD)
(6,5, k) EV

where all considered variables belong always to N—{0}. Hence, according to corollary 1.3,
it follows from our reduction process that it is undecidable to see whether an equation of
the form (H D) has a solution in strictly positive integers.

4 Note that the use of Adler’s reduction of the 10th Hilbert problem is not essential in our proof. In
fact, we introduced it here only for reducing the complexity of our encoding.
5 Here x denotes of course a vector of variables z = (z1,...,z,).
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Let now A = {a,b,c,d} be a four-letter alphabet. According to proposition 2.1 and
to our first remark, it suffices to show that the local inequality problem for Z-rational
series over A is undecidable in order to prove our theorem. We will show this fact by a
suitable encoding of equation (HD) in terms of Z-rational series. But let us now give
some lemmas that will allow us to construct this encoding.

LEMMA 3.2 : Let e € {—1,+1}. Then the series Varl(e) defined by
[ eny when w=ab"c...ab%c € (abtec)t
(Varl(e)jw) = { 0 when w ¢ (abtc)*t

is a Z-rational series of ZRat(a, b, c).

Proof : Let us consider the Z-representation p of {a, b, c}* which is defined by

_ 0 +o00 _ € +o00 [ 4o 0
p@=( o0 ) em =L ) md wo= (T2 ),
A simple computation allows us to see that we have

plab™cab™ec ... ab™c) = ( too m )

+oo 0

for every non-empty vector (n;)ien g € N*. Let us now denote by S1 the Z-rational
series defined by (S1|w) = p12(w) for every w € {a,b,c}*. It is then easy to see that
Varl(e) = (S1® L) @ {a,b,c}* — L where L denotes the rational language (ab*c)*. Our

lemma follows now immediately from this last formula. g

LEMMA 3.3 : Let e € {—1,4+1}. Then the series VarA(e) defined by
clwl, =€k when w=ab"c...ab"™c € (abtec)t

(VarAfe)jw) = { 0 when w ¢ (abtc)*

is a Z-rational series of ZRat(a, b, c).

Proof : Using the Z-representation p of order 1 of {a,b,c}* defined by

p(a) = (¢) and u(b) = p(e) = (0).
it is not difficult to see that the series S,(€) defined by (S,(¢)|w) = €|lw|, for every w €
{a,b,c}* is Z-rational. But it is easily shown that VarA(e) = (S.(¢) © L) & {a,b,c}* — L

where L denotes the rational language (ab*c)™. The lemma follows now clearly. g

LEMMA 3.4 : Let e € {—1,4+1}. Then the series VarB(e) defined by
k

clwly=¢( >, n;) when w=ab"c...ab"c € (abtc)*
=1

0 when w ¢ (abtc)*

(VarB(e)|w) =

is a Z-rational series of ZRat(a, b, c).

Proof : Let us consider the Z-representation u of {a, b, c}* defined by
p@)=ple) = (0)  and  a(b) = (e).

Using this representation, it is easy to show that the series
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Si(e) = E €lwly w

we{a,b,ch*
is Z-rational. But it is easily seen that VarB(e) = (L © Si(¢)) & {a,b,c}* — L where L

denotes the rational language (ab*c)t. Our lemma follows now immediately from this
last formula. -

LEMMA 3.5 : Let k € Z. Then the series VarY (a) defined by

an when w=a" € at

(VarY(a)jw) = { 0 when w ¢ at

is a Z-rational series of ZRat(a, b, c).

Proof : Using the Z-representation p of order 1 of {a,b,c}* defined by
p@)=(a) and  u(b)=p(e) = (0),

it can easily be shown that the series

Sola)= > alwl,w

we{a,b,ch*
is Z-rational. Let now consider the one-letter rational language L = a*. An immediate
computation shows then that VarY(a) = (L ©® S,(«)) @ {a,b,c}*— L which is hence a
Z-rational series. -

LEMMA 3.6 : Let e € {—1,+1}. Then the series defined by

. oo f min(en)iepr when w=ab"c ... ab™c € (abtc)t
(MinMaz(e)|w) = { 0 when w ¢ (abTc)t

is a Z-rational series of ZRat(a, b, c).
Proof : Let us consider the Z-representation u of {a, b, c}* defined by
0 0 +o0 0 40 +4o
pla)=| 400 400 +oo |, pb)=| 4+ € 400
+o00 4o 0 +oo 4o 0

0 +o0 400
ple) = 400 4o 0 )

+o0 4o 0

and by

An easy computation allows to show that we have

0 +oo & en;
plab™cab™e ... ab™c) =] +oo +o0 +00
+o0 4o 0

for every non-empty family (n;);eqi 5 of positive integers. Let us now denote by S, the
Z-rational series which is equal to



p1,3(w) for every w € {a,b,c}*. It is then easy to see that MinMax(e) = (S. ® L) &
{a,b,c}* — L where L denotes the rational language (ab™c)™. Our lemma follows now
immediately. g

LEMMA 3.7 : Let M be a square matrix of order n and let p € N—{0}. Let us then
denote by F, , and N'(M,p) the square matrices of order np defined by

n{4+oo ... +oo [Id, nf{ M 4o ... +o0

Id, ... + + + Id, ... +
Bup= 1 |0 00 T T ad vy = | T T
n\4+oo ... Id, oo n\4+oo “4oo ... Id,

Let now (V;)i=1,.., be a family of square matrices of order n. Then we have

n{ N 4oo ... +©
n|+oo Ny ... 4+
N(th)En,pN(Nz,p)En,p N(NNap)En,p = . : : .. :
n\+oo +oo ... N,
Proof : It is an easy verification that we leave to the reader. g

Let us now consider an equation of the form (H D). Note first that we will use in the
sequel of this proof all the notations used in the definition of this equation. Let us then
introduce the rational language C over the alphabet A = {a, b, ¢, d} defined by

P
C = ((abte)td(abte)t d(abte)tdatd ) =] ( (abte)T d(abe)t d(abte)T datd)
=1
In the sequel, a generic word of C' will be denoted by

w=wP(n(1,1)) dw’(n(1,2)) dw’(n(1,3))da*’ d ...
()

- wP(n(p,1)) dwl (n(p,2)) dw (n(p,3))da®” d

where we have for every ¢ € [1, p] and every j € {1,2,3}

wﬁl)(n(z,J)) = b cab™ize | ab™ bk

with n(i,7) = (n(i,5))iepy € (N—{0})*. We will also especially be interested in the
words of C' which have the form

w(ﬂ) = (abzgl)c)ﬁgl) d(abﬁgl)c)wgl) d(abygl)c)ygl) daygl) d ...

‘ (abm(lp)c) d (abzgp)c)mip) (») (»)

m(217)

d(ab” )% 4o d
where zy denotes the vector (xgi), :E(Qi), .rg), ;Uii), yy), ygi), y;(gi))isz of (N—{0})™, since this
will be our basic encoding of the variables involved in equation (H D).

Let now (J, g, ') be a Z-automaton of order n that recognizes the series Varl(—1) of
lemma 3.2. We can then define a Z-representation v of A* of order np as follows

9



Vae{abc}, via)=N(pla),p) and v(d) = E,,

where we took the notations of lemma 3.7. Then according to lemma 3.2 and to lemma
3.7, it is easy to see that we have

Il —|—;>o -
—n(7,3 when w=w € C
( +oo J +oo )V(w) oL ={ (0 . when w ¢ C

4+ o0

for every i € [1, p], where each symbol +oo denotes in fact a block of order n and where we
set [ = (¢ —1)p+ 3. Hence it follows that the series SumPl(fl) defined by (SumP1(21)|w) =0
when w ¢ C and by (SumP1(21)|w) = —n(¢,3); when w = w € C is a Z-rational series for
every ¢ € [1,p]. Arguing as above but using now lemma 3.4, it is also easy to see that the

series SumPl(ZQ) defined by (SumP1(22)|w) = 0 when w ¢ C and by
(SumP{3lw) = [’ (a(i, )|

when w = w € C is a Z-rational series for every ¢ € [1,p]. It follows that the series
SumPl(Z) = SumPl(fl) ® SumPl(g is a Z-rational series for every ¢ € [1,p] and we clearly
have 0
’ @,y _ |w;” (n(i,1))|s — n(4,3)1 when w=weC

(SumPy"w) = { 0 when w ¢ C

Using the same method, we can also construct for every ¢ € [1,p] a Z-rational series

Sule(i) such that

(4) . .
, O ) — lwy” (n(2,1))]s + n(,3)1 whenw=weC
(SumN;"w) = { 0 when w ¢ C

It follows that the series Sumgi) = Sule(i) &) SumPl(i) is Z-rational for every ¢ € [1,p]
and we clearly have

(), o
W)~ | |wi’(n(i,1))]e — n(4,3)1 | whenw=weC
(Sumy”|w) = { 0 when w ¢ C
Therefore the series Sum; = Sumgl) ® ... Sumgp) is Z-rational and we have

(Sumafe) = — 3 | ol (i, D)l — (i, ) |

when w =w € C and (Sum;|w) =0 when w ¢ C.

Using now lemmas 3.3, 3.4, 3.5 and 3.7, the same method allows us to show that the
series Sumy and Sums defined respectively by

(Sumate) = = 3 | [0 (5,2 ~ 0 (3D |

and
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(Sums|w) = Z||w n(i,3))]s — y3 |

when w =w € C and by (Sumz|w) = (Sums|w) = 0 when w ¢ C are Z-rational series.
Arguing in the same way, it can also be shown that there exists a Z-rational series

Sumy such that (Sumg4|w) =0 when w ¢ C and

(Sumaw) == 3 [x7 - X7 |
(4,4,k,1)EV

(1)

when w =w € C, where X}’ is equal to

Xlgl) = n(kal)l ) - | g
X = n(k,2) X;i = |wd ><n<k,z>

according to the case considered. Using now lemmas 3.5 and 3.7, the above method allows
also to construct a Z-rational series Sums such that (Sums|w) = 0 when w ¢ C and

p )
(Sumslw) = —| 3 piys’ —1
when w=w € C.

Using finally lemmas 3.6 and 3.7 and the previous method, we can easily construct a
Z-rational series Sumg such that (Sume|w) = —1 when w ¢ C and such that

(Sumg|w) = zp: Z min(n(z, j)g)r — max(n(z, j)i )k )

=1 j=1
when w =w € C.

Let us now consider the Z-rational series HD defined by
HD = Sumq ® Sumq ® Sums © Sumyg © Sums © Sumg
We clearly have (HD|w) = —1 when w ¢ C. On the other hand, (HD|w) is obviously

a sum of negative integers when w € C. Hence the general term of the series HD is
always negative or equal to zero. It follows immediately that (H D|w) > 0 if and only if
(HD|w) = 0 and this last condition is satisfied if and only if w € C' and (Sumg|w) = 0
for every k € [1,6]. Note now that the condition w € C and (Sumg|w) = 0 is clearly
equivalent to the fact that w = w(zy) for some vector zy € (N—{0})". Hence (HD|w)
can be equal to zero only if w has this form. But we clearly have

4 . p . . . p . . .
D) = 1S paf) 11— 35 10— a0 5 1480 a1
=1 =1 =1
p . N . .
=3 s =y = X ) = e
i=1 (id k1) EV

for every zy € (—{0}). Tt follows now immediately from our study that the diophantine
equation (H D) has a solution in positive integers if and only if there exists a word w € A*
such that (HD|w) > 0. Hence it follows from a previous remark that the local inequality
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problem for Z-rational series over A is undecidable. Thus, according to our reduction
work, this ends our proof. -

Notes : 1) Using the same kind of ideas than in the above proof, it can be shown that
any diophantine equation of degree k can be directly encoded as a local inequality problem
for Z-rational series over an alphabet with 4 letters.

2) The above proof shows that there exists a Z-rational series HD which has a non-
recursive O-support. ® This is completely different from the situation that occurs in M

since m-supports of M-rational series are always rational languages (see [12] for more
details).

3) In the above proof, we often used rational series S in ZRat(A) such that —S remains
also in ZRat(A). It should be noticed that this property does not hold in general (see [10]
or [12]). In fact, it can be shown that the equality problem is decidable when restricted
to Z-rational series S such that —S is also Z-rational (see [12]).

As an immediate corollary of the previous theorem, we obtain according to propositions
2.1 and 2.2 :

COROLLARY 3.8 : Let A be an alphabet with at least 2 letters. Then the equality,
inequality, local equality and local inequality problems are all undecidable questions for
Z-rational series over A.

Note : The proof of theorem 3.1 shows in fact than an inequality problem in ZRat(A)
of the form S < —1 is already undecidable when |A| > 2.

4 Undecidability of the equality problem for M

4.1 Reduction of decidability problems

In this section, we show that the decidability for M (resp. A') of any problem consi-
dered in section 2 is equivalent to the decidability of the same problem for Z. Let us now
first prove this equivalence for M and Z.

6 For every element m € Z, the m-support of a series S € Z << A>> is the language that consists in
the words w such that (S|w) = m.
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THEOREM 4.1 : Let A be an arbitrary alphabet. Then the equality problem, the
inequality problem, the local equality problem or the local inequality problem for M-
rational series over A is decidable if and only if the same problem is decidable for Z-
rational series over A.

Proof : Since all the proofs are the same, we shall only show here the equivalence
between the decidability of the equality problems for M and Z. Clearly we just have
then to prove that the decidability of the equality problem in M implies the decidability
of the same problem in Z.

Let then R and S be two Z-rational series over the alphabet A. According to the
Kleene-Schitzenberger theorem, R and S are Z-recognizable series. Let us now consider
two Z-automata (I, pu,T) and (J, v, F') of order m and n recognizing respectively R and
S. Let us then consider for every k € Z the new vectors I(k), J(k), T(k), F(k) and the
new Z-representations uj and vy, of A* defined by

Vae A, pla)=(pla)i;+khcijom » vila) = (v(a)i; + K )icij<n
Ik)=(Li+k)iz1,.m, J(k)=(Ji+ k)iz1,.n
Tk)=(Ti+k)izt,.m , F(k)=(Fi+Fk)i=1,.n

It is easy to see that we have
I(k) pe(w) T(k) =
J(k) vi(w) F(k)

p(w) T + 2k + k|w|
Jv(w) F + 2k + k|w|

for every word w € A*. Let now Rj and S; be the two series recognized respectively by
the automata (I(k), ug, T'(k)) and (J(k), vk, F'(k)). It follows immediately from the above
computations that we have S = T iff S, = T}, for any fixed £ € Z. But it is easy to see
that T} and S; are M-recognizable series when k is greater than

—H.li.n ( M(a)id'a V(a)iJ?]ia JHTHFZ ) SIS {_OO}
7

Hence we showed that the equality of two Z-recognizable series is equivalent to the equality
of two M-recognizable series. This ends proving that the decidability of the equality
problem for M-rational series implies the decidability of the same problem for Z-rational
series. Our theorem is then proved. g

Using the same method as in the previous theorem, we can also get the following result
that shows our equivalence result for Z and V.

THEOREM 4.2 : Let A be an arbitrary alphabet. Then the equality problem, the
inequality problem, the local equality problem or the local inequality problem

for N -rational series over A is decidable if and only if the same problem is decidable
for Z-rational series over A.

Proof : Since all the proofs are similar, we shall also only show here the equivalence
between the equality problems for ' and Z. It suffices then clearly to prove that the
decidability of the equality problem for N implies the decidability of the same problem

13



for Z. But since N is effectively isomorphic to Z~ (cf section 1), we have just to prove
that the decidability of the equality problem for Z~ implies the decidability of the same
problem for Z.

Let us now take the same notations that in the proof of theorem 4.1. It is easy to see
that S, and Ry are Z~-recognizable series when £ is less than

M = —max ( pla)i,v(a)i;, 1 Ji, Ti, Fy ) €2

27]

where the above maximum is only taken over the values which are not equal to +oc
(when every value involved in the above maximum is equal to 400, we set M = +0o0).
Hence, arguing as in the proof of the previous theorem, it follows that the equality of
two Z-rational series is equivalent to the equality of two Z~-rational series. This ends
therefore the proof of our theorem. g

4.2 Undecidability of the equality problem for M and N

As immediate corollaries of the previous results, we get the following undecidability
results. Observe that they solve in particular the open problems we speak of in our
introduction.

COROLLARY 4.3 : Let A be an alphabet with at least two letters. Then the equa-
lity problem, the inequality problem, the local equality problem and the local inequality
problem are all undecidable problems for M or A -rational series over A.

Notes : 1) Our undecidability result implies in particular that no “equality theorem”
in the sense of Eilenberg (cf [6] th. VI.8.1) can hold in M. However it is interesting to
notice that this can also be directly proved. Indeed, if we consider the following family of

matrices |
n
m=( )

which is indexed by n € N, it is easy to prove that we have

4o n 400
S, = Z (Mn)]fl a® = Z ka* + Z (n+ 1)ak
k=0 k=0 k=n+1

It follows from this computation that the two distinct series S,, and S, 11 (both associated
to a M-representation of order 2) coincide up to the order n. Hence we obtain effectively
that no “equality theorem” (cf [6] th. VI.8.1) is possible for the tropical semiring, even

in fact with one-letter series. 7

2) (Simon, [18]) I. Simon introduced in [17] a hierarchy, denoted (H;(A));en, of M-
rational series which is strict when |A| > 2. The series of Hyo(A) are exactly the limited
series and it is easy to prove that the equality problem for such series is decidable. On
the other hand, using the same argument than in the proof of theorem 4.1, we can easily
show that the equality problem in MRat(A) and in H;(A) are equivalent with respect to

7 1. Simon ([18]) asked whether it is possible to construct the same kind of counterexample with both
bounded coefficients and bounded number of states. Such an example is in fact impossible to find as we
will see in section 4.3.
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decidability. It follows therefore that the equality problem for M-rational series in Hy(A)
is undecidable when |A| > 2. Hence the limit between decidability and undecidability for
the equality problem for M occurs when one passes from 0 to 1 in Simon’s hierarchy.

3) It is also interesting to observe that all the results and methods obtained and
developped before, gave us that the problem

P,Q € MRat(A), P < Q, Jw e A%, (Plw) = (Qlw)

is undecidable when A has at least two letters. This result should be put in parallel
with the same result for N-rational series (see [6]) which is comparatively much more
easier to obtain. Note also that the proof of this last result is based on an encoding
of the Post correspondance problem, which is possible since M, (N) contains non-trivial
free submonoids when n > 2. This is not the case neither for M, (M), nor for M, (Z)
by an easy growth argument. Hence it seems difficult to adapt for M-rational series
the undecidability proof of the above result that works for N-rational series. It was this
situation that suggested to several authors (see [15] for instance) that the equality problem

for M was decidable.

Moreover we can also obtain as an application of our methods the following decida-
bility results which make complete our study of the decidability of the four problems
considered in section 2 for Z, M and V.

COROLLARY 4.4 : The equality problem, the inequality problem, the local equality
problem and the local inequality problem are decidable for M, A or Z-rational series
over a one-letter alphabet A = {a}.

Proof : According to theorems 4.1, 4.2 and to propositions 2.1 and 2.2, it suffices to
show that the local equality problem is decidable for M-rational series over a one-letter
alphabet in order to prove our corollary. Using now a classical embedding due to C.
Choffrut of M into the semiring Rat(b*) of rational languages over a one-letter alphabet
{b} (cf [3] or [4]), this last problem appears in fact as an intersection problem for special
kinds of rational languages of Rat(a* x b*). The decidability of our result follows now
from the decidability of the intersection problem for Rat(a* x b*) (see [7] for instance).
This ends our proof. m

Note : Using a fine study of the iterated power of a square matrix with entries in Z or a
study of one-letter Z-rational expressions, it can also be shown directly that the equality
problem for one-letter Z-rational series is decidable.

4.3 M-automata with constrained entries

We devote this section to the study of the equality problem for M-automata whose
entries are supposed to belong to some fixed set. Let us therefore give the following
definition.

DEFINITION 4.1 : Let S be a subset of Z. A Z-automaton A = ([, u,T) is then said
to be a S-automaton iff every non-infinite entry of 7, (p(a))sea and 1" belongs to S.



Note first that the equality problem is decidable for S-automata when |S| = 1 as
claims the following result.

PROPOSITION 4.5 : Let S = {k} be a one-element subset of Z. Then the equality

problem for S-automata is decidable.

Proof : Using the same method than in the proof of theorem 4.1, it can be easily
seen that the equality problem for {k}-automata is equivalent to the same problem for
{0}-automata. But {0,+occ} is a subsemiring of M which is isomorphic to the boolean
semiring. Hence it follows from these results that the equality problem for {k}-automata
is equivalent to the equality problem for usual boolean automata. Our proposition follows
then immediately. g

On the other hand, the proof of theorem 3.1 shows that the equality problem is
undecidable for {—1,0,1}-automata. Using the same kind of method than in the proof
of theorem 4.1, it follows easily that the equality problem is undecidable for {0, 1,2}-
automata. Therefore the question remains to see where is the limit between undecidability
and decidability when we constraint the entries of a M-automaton to belong to some given
set.

In this direction, let us now have a look on the class of {0, 1}-automata for which we
shall also prove that the equality problem is undecidable. In fact, we will show that every
M-automaton can be simulated in a “rational way” by a {0, 1}-automaton. This last
result will allow us to reduce the equality problem for general M-automata to the same
problem for {0, 1}-automata. However let us first introduce a useful denotation.

Notation : Let A be an alphabet, let ¢t be a letter that does not belong to A, let n be
some integer and let o, be the substitution of A* that maps every letter a € A onto a™.
Then we will denote by 7'(n) the rational language over AU {t} defined by

T(n)=o,(A")t"

PROPOSITION 4.6 : Let A be an alphabet, let A = (I, x,T) be a M-automaton
over A and let N be the maximal value of the non-infinite elements involved in the entries
of I, (p(a))eea and T'. Then, for every n > N, there exists a {0, 1 }-automaton A,(0,1)
over AU {t} such that

v (Alu) when w=o0,(u)t" € T(n) with ue A*
(An(0, Dw) = { +oo  when w ¢ T'(n)

Proof : According to a classical result (see theorem 7.2 of [13] for instance), one can
always suppose that the initial vector I of A is equal to I = (0 400 ... +00). Let us now
consider some integer n > N where N is the maximal value of the non-infinite entries of
I, (u(a))eea and T. We can then construct the {0, 1}-automaton A4, (0, 1) obtained from
A as follows :

e for every pair (¢, ¢') of states in A and for every letter a € A such that u(a),,, # +oo,

we replace the edge of A going from ¢ to ¢’ and labeled by a by n new edges (creating
therefore the new n — 1 necessary states) all labeled by a and equiped with the
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following costs : the first g(a), , new edges have cost 1 and the last n — p(a),, new

A

edges have cost 0.

A1) i l]a : la O 0|a Q 0|a .

1 edges n—1t edges

The previous picture explains the operation that we make on every edge of A in
order to obtain the automaton A, (0, 1). Note that all the infinite costs on the edges
of A do not change in A4,(0,1).

e the value of the entries of the initial and final vectors of A, (0, 1) corresponding to
any new created state in the previous operation is set to +oc.

e the values of the entries of the initial vector of A4,(0,1) corresponding to the states
of A are not changed.

o for every state ¢ of A such that 7, # +oo, the new value of the final vector of
A, (0,1) on ¢ is set to +00. Then n — 1 new states and n corresponding new edges
all labelled with the extra letter ¢ are created, the first new edge beeing issued from
g. These new edges are equiped with the following costs : the T, first new edges
have cost 1 and the n — T, last new edges have cost 0. Moreover the entry of the
final vector of A,(0,1) corresponding to the last of these new created states is set

to 0.
A ()

A:(0.1) 1)t 1t~ ot Q ot~ 0

¢ edges n—1 edges

The previous picture explains the operation that we make on every final state of A
in order to obtain the automaton 4,(0,1). Note that every state whose final vector
entry is +00 in A has the same final infinite value in A,(0,1).
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e the entries of the initial and final vectors of A, (0, 1) corresponding to a new created
state which is not the last one in the previous operation, is set to +oc.

It follows now easily from our construction that

v f (Alu) if w=o,(u)t" for some u € A*
(An(0.Dlw) = { 0 e

This ends therefore the proof of our proposition. -

Note : Observe that the automaton A4,(0,1) constructed in the proof of the previous
proposition is in fact a distance automaton (cf [8] or [19]), i.e. a {0, 1}-automaton such
that all entries of the initial and final vectors consist only of 0 or +oc.

As an immediate consequence of the previous proposition, we get :

COROLLARY 4.7 : Let A be an alphabet with at least two letters. Then the equality

problem for {0, 1}-automata over A is undecidable.

Proof : Let A and B be two M-automata. Let then N be some integer in N such that
every non-infinite element involved in the entries of the initial vector, the final vector or
the transition matrices of A and B is less than N. Then, if Ax(0,1) and By(0, 1) denote
the {0, 1}-automata associated to A and B by proposition 4.6, the equivalence of A and
B is clearly equivalent to the equivalence of Ax(0,1) and of By(0,1). Our result follows
now immediately from corollary 4.3. g

Note : It follows immediately from the note following proposition 4.6 and from the

proof of the previous corollary that the equality problem for distance automata is also
undecidable.

Using the previous result, we can easily deduce that the equality problem for S-
automata is undecidable when |S| =2 :

COROLLARY 4.8 : Let A be an alphabet with at least two letters and let &,[ be
two different integers in Z. Then the equality problem for {k,[}-automata over A is
undecidable.

Proof : We can always suppose that k& < [. Note first that using the same trick than the
one involved in the proof of theorem 4.1, the equality problem for {k,[}-automata can
be easily reduced to an equality problem for {0,/ — k}-automata. Hence we can suppose
that £ = 0 and argue only with {0, /}-automata in order to prove our corollary.

Therefore let now A and B be two {0,/}-automata. Let then A(0,1) and B(0,1) be
the two {0, 1 }-automata obtained respectively from A and B by replacing by 1 every entry
equal to [ in the initial vector, the final vector and the transition matrices of A and B.
An easy computation shows then that we have

(Alw) =1(A(0,1)|w) and (Blw) =1(B(0,1)|w)

for every w € A*. It follows immediately that the equivalence of A and B is clearly
equivalent to the equivalence of the two {0, 1 }-automata A(0, 1) and B(0,1). Our corollary
follows now from the previous corollary 4.7. g
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Note : This last result solves our initial problem : the equality problem is decidable for
S-automata when |S| = 1, but becomes undecidable when |S| > 2.

4.4 Other connected undecidability results

Let us denote by Rat(b) the subsemiring of rational subsets over the one-letter alphabet
{b} equiped with union and intersection as sum and product. Let us also denote by Fin(b)
the subsemiring of Rat(b) whose support is the family of finite subsets of {b}*.

Then M can be identified with the subsemiring of Fin(b) that consists in the sets
of the form (1 4 b)™ together with empty set. ® It follows now immediately from this
embedding and from corollary 4.3 that the following result (due originally to Ibarra (cf

[9]) and also obtained with another method by Lisovik (cf [14])) holds :

COROLLARY 4.9 : Let A be an alphabet with at least two letters. Then the equality

problem is an undecidable problem for Rat(b) or Fin(b)-rational series over A.

Note : The original proof of Ibarra that corresponded to the undecidability of the
equality problem from Fin(b) was very technical and used directly an encoding of a
Turing machine halting problem.
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