
HAL Id: hal-00017258
https://hal.science/hal-00017258

Submitted on 18 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The complexity of the Pk partition problem and related
problems in bipartite graphs

Jérôme Monnot, Sophie Toulouse

To cite this version:
Jérôme Monnot, Sophie Toulouse. The complexity of the Pk partition problem and related problems
in bipartite graphs. 2005. �hal-00017258�

https://hal.science/hal-00017258
https://hal.archives-ouvertes.fr

The complexity of the Pk partition problem and

related problems in bipartite graphs

Jérôme Monnot1, Sophie Toulouse2

1 Université Paris Dauphine, LAMSADE, CNRS UMR 7024, 75016 Paris, France
monnot@lamsade.dauphine.fr

2 Université Paris 13, LIPN, CNRS UMR 7030, 93430 Villetaneuse, France,
sophie.toulouse@lipn.univ-paris13.fr

Abstract. In this paper, we continue the investigation made in [11]
about the approximability of Pk partition problems, but focusing here
on their complexity. Precisely, we aim at designing the frontier between
polynomial and NP-complete versions of the Pk partition problem in
bipartite graphs, according to both the constant k and the maximum
degree of the input graph. We actually extend the obtained results to
more general classes of problems, namely, the minimum k-path partition
problem and the maximum Pk packing problem. Moreover, we propose
some simple approximation algorithms for those problems.

Keywords: Pk-partition; maximum (weighted) Pk-packing; minimum k-path
partition; bipartite graphs; NP-completeness; approximation algorithms.

1 Introduction

The Pk partitioning problem (PkPartition in short) consists, given a simple
graph G = (V, E) on k × n vertices, in deciding whether there exists or not a
partition of V into vertex-disjoint Pk, where a Pk is a path on k vertices (or,
equivalently, a path of length k − 1). This problem has been proven to be NP-
complete [7] for any k ≥ 3, polynomial otherwise. PkPartition has been widely
studied in the literature, mainly because its NP-completeness also implies the
NP-completeness of two famous problems, namely: the minimum k-path parti-
tion problem (Mink-PathPartition) and the maximum Pk packing problem
(MaxPkPacking). This former consists in computing the smallest number q of
vertex-disjoint paths of length at most k − 1 that form a partition of V ; this
number is usually denoted by ρk−1(G) for a given constant k, by ρ(G) when no
constraint occurs on the path length. This problem has been extensively stud-
ied in the literature, [13, 12, 16], because of its applications, as broadcasting in
communication networks: if a communication network verifies q = ρk−1(G), or,
in other words, if it admits a partition of its vertices into q paths of length at
most k−1, then a message may be broadcasted throughout the network within k
units of time, using q message originators. The latter problem, MaxPkPacking,

2 LATEX style file for Lecture Notes in Computer Science – documentation

consists in finding a maximum number of vertex-disjoint Pk. In its weighted ver-
sion, MaxWPkPacking, the input graph G = (V, E) is given together with a
weight function w : E → N on its edges; the aim is thus to compute a collection
P = {P1, . . . , Pq} of vertex-disjoint Pk that is of maximum weight, where the
weight w(P) of a solution is given by the sum of the weights of the edges that
takes part to the solution. Finally, the special case where the graph is complete
on k×n vertices is denoted by MaxWPkPartition (note that the minimization
version may also be considered); some approximation results concerning this lat-
ter may be found in [8, 9, 11]. Note that both problems MaxWPkPacking and
MinWPkPartition have some relationship with the vehicle routing problem,
[16, 3].

Here, we study the complexity of PkPartition in the case of bipartite
graphs; mainly, we aim at deciding whether the restriction of PkPartition

to bipartite graphs belongs to P or is NP-complete, according to the maximum
degree of the graph. We first show that PkPartition is NP-complete for any
k ≥ 3 in graphs with maximum degree 3, and this even if the graph is planar
when k = 3. We immediately derive the result to Mink-PathPartition and
MaxPkPacking. On the opposite, both PkPartition, Mink-PathPartition

and MaxPkPacking trivially become polynomial-time computable in graphs
with maximum degree 2, and we prove that this fact also holds for MaxWPkPacking.
Finally, we propose some approximation results for these problems; although
these latter may seem quite simple and thus, are likely to be improved soon,
they are, to our knowledge, the first published ones.

This paper is organized as follows: in the next section, we will briefly present
previous related work about the hardness of solving bounded-size-path packing
problems; then, the third part is dedicated to complexity results concerning
PkPartition when restricting to bipartite graphs; finally, some approximation
results concerning MaxWP3Packing and Min3-PathPartition are proposed
in a fourth section.

The notations that will be used by the following are the usual ones accord-
ing to graph theory. When dealing with approximation matters, opt(I) (resp.,
apx(I)) will represent the value of an optimal (resp., an approximate) solu-
tion. An algorithm A will thus be said to be ε-approximate with ε ≥ 1 for a
minimization problem (resp., with 0 < ε ≤ 1 for a maximization problem) if
apx(I) ≤ ε × opt(I) (resp., apx(I) ≥ ε × opt(I)) for any instance I (for more
details, see for instance [2]).

2 Previous related work

From a complexity point of view and because of its natural applications, the min-
imum k-path partition problem may be the most intensively studied path pack-
ing problem. It is obviously NP-hard in general graphs, and remains intractable
on some special graph classes: recently, it has been proven that its restriction to
comparability graphs is also NP-hard, [13], as well as its restriction to cographs,
[12] and to bipartite chordal graphs, [13], when k is part of the input. Note that

LATEX style file for Lecture Notes in Computer Science – documentation 3

most of the proofs of NP-hardness actually establish the NP-completeness of
PkPartition. Nevertheless, the problem turns to be polynomial-time solvable
for some particular graph topologies, such as trees, [16], cographs when k is
fixed, [12] or bipartite permutation graphs, [13]. Note that one can also find in
the literature several results about partitioning the graph into disjoints paths of
length at least 2, [15, 10].

Concerning the approximability of related problems, Hassin and Rubinstein,
[8] proposed a generic algorithm to approximate MaxP4Partition that guar-
antees an approximation ratio of 3/4 for general distance function. More recently
in [11], it has been proven that this algorithm also is a 9/10-approximation for
the 1, 2-instances and, if we consider the minimization case, that it provides re-
spectively a 3/2- and a 7/6-approximation for the metric and the 1, 2-instances.
In [9], the authors established, by the means of a randomized algorithm, a
35/67 − ε approximation for MaxP3Partition. Observe that these results do
not hold if we consider MaxWPkPacking, since the graph is no longer nec-
essarily complete. To our knowledge, there is no specific approximation results
for MaxWPkPacking. However, using approximation results for the maximum
weighted k-packing problem (mainly based on some local search techniques, [1]),
we can obtain a (1

k−1 − ε)-approximation for MaxWPkPacking. Finally, there
is, to our knowledge, no approximation result for Mink-PathPartition. Nev-
ertheless, if we consider as objective function the total number of edges used by
the paths and if the goal is to maximize, then we can find some approximation
results, in [14] for the general case, in [4] for dense graphs.

3 Complexity results

Theorem 1. PkPartition is NP-complete in bipartite graphs with maximum
degree 3, for any k ≥ 3.

Proof. The proof is based on a reduction from the k-dimensional matching prob-
lem, denoted by kDM, which is known to be NP-complete, [7]. An instance of
kDM consists of a subset C = {c1, . . . , cm} ⊆ X1 × . . . × Xk of k-tuples, where
X1, . . . , Xk are k pairwise disjoint sets of size n. A matching is then a subset
M ⊆ C such that no elements in M agree in any coordinate, and the purpose
of kDM is to answer the question: does there exist a perfect matching M on C,
that is, a matching of size n?

Given an instance I = (C, X1 × . . . × Xk) of kDM, we build an instance
G = (V, E) of PkPartition, where G is a bipartite graph of maximum degree
3, as follows:

case 1: k is odd.
• To each k-tuple ci ∈ C, we associate a gadget H(ci) that consists of a col-
lection {P i,1, . . . , P i,k} of k vertex-disjoint Pk with P i,q = {ai,q

1 , . . . , ai,q
k } for

q = 1, . . . , k. We also put into H(ci) the edges [ai,q
1 , ai,q+1

1] for q = 1 to k − 1,

in order to form a (k + 1)-th Pk {ai,1
1 , . . . , ai,k

1 } (see Figure 1 for an illustration
when k = 3).

4 LATEX style file for Lecture Notes in Computer Science – documentation

a
i,1
3 a

i,1
2 a

i,2
3 a

i,2
2 a

i,3
3 a

i,3
2

a
i,1
1 a

i,2
1 a

i,3
1

Fig. 1. The gadget H(ci) when ci is a 3-uplet.

l
j
1 = v

j
1

v
j

Nj+1

l
j
2 = v

j
7

Fig. 2. The gadget H(ej) for k = 3 and d
j = 2.

• For each element ej ∈ X1 ∪ . . . ∪ Xk, let dj denotes the number of k-
tuples ci ∈ C that contain ej ; the gadget H(ej) is then defined as a cycle

{vj
1, . . . , v

j

Nj+1, v
j
1} on N j + 1 vertices, where N j = k(2dj − 1). Furthermore,

we denote by ljp for p = 1 to dj the vertex of index 2k(p − 1) + 1 (see Figure 2

for an illustration of H(ej) when k = 3 and dj = 2).

• Finally, for any couple (ej , ci) such that ej is the value of ci on q-th coor-
dinate, the two gadgets H(ci) and H(ej) are connected by the means of an edge

[ai,q
2 , ljpi

]. The indexes pi of the vertices ljpi
that will be linked to a given gadget

H(ci) must be chosen in such a way that each vertex ljp from any H(ej) gadget
will be connected to exactly one gadget H(ci) (what is possible since each H(ej)
contains exactly dj vertices ljp).

This construction obviously leads to a graph G of maximum degree 3, on
3k2m + (1 − k)kn vertices: consider, on the one hand, that each gadget H(ci)

is a graph on k2 vertices and, on the other hand, that
∑kn

j=1 dj = km (we may
assume, wlog., that each element ej appears at least once in C). Thus, it requires
a polynomial amount of time in the input size. Finally, one can weasily see that
G is bipartite.

We claim that there exists a perfect matching M ⊆ C iff there exists a
partition P∗ of V (G) into Pk. The main argument lies in the following two
properties:

Property 1.
(i) In any Pk-partition P of V (G), and for any i = 1, . . . , m, P contains either
P i or Qi, where P i and Qi are defined as (see Figure 3 for an illustration from
3DM):

∀i = 1, . . . , m,∀q = 1, . . . , k, P i,q = {ai,q
k , . . . , ai,q

2 , li,q}, Qi,q = {ai,q
k , . . . , ai,q

2 , ai,q
1 }

∀i = 1, . . . , m, P i = ∪k
q=1P

i,q ∪ {ai,1
1 , ai,2

1 , . . . , ai,k
1 }, Qi = ∪k

q=1Q
i,q

where li,q denotes the vertex from some H(ej) to which ai,q
2 is connected.

(ii) In any Pk-partition P of V (G), and for any j = 1, . . . , kn, P contains
one of the collections {Pj

p}p=1,...,dj , where Pj
p is defined as (see Figure 4 for an

LATEX style file for Lecture Notes in Computer Science – documentation 5
a

i,1
1

a
i,2
1

a
i,3
1

a
i,1
1

a
i,2
1

a
i,3
1

a
i,1
3

a
i,1
2

a
i,2
3

a
i,2
2

a
i,3
3

a
i,3
2

a
i,1
3

a
i,1
2

a
i,2
3

a
i,2
2

a
i,3
3

a
i,3
2

li,1 li,2 li,3 li,1 li,2 li,3

Pi Qi

Fig. 3. Two possible vertex partitions of H(ci) into 2-length paths.

P
j
1

l
j
1

= v
j
1

v
j

Nj+1

Fig. 4. One of the d
j possible vertex partitions P

j
p of H(ej) into 2-length paths.

illustration):

∀j = 1, . . . , kn,∀p = 1, . . . , dj , Pj
p = P j

p ∪ Qj
p

where P j
p denotes the path P i,q from some H(ci) to which ljp belongs and Qj

p is

the unique possible Pk-partition of V (H(ej)) \ {l
j
p}.

For (i): mainly, given a vertex ai,q
k from some H(ci) gadget, consider that

there exist only two Pk, namely P i,q and Qi,q, passing by ai,q
k . For (ii): since

H(ei) contains a number N j = k(2dj − 1) + 1 of vertices that is not a multiple
of k, at least one vertex lj has to be covered by the means of some path that
involves external vertices, that is, vertices from some H(ci) gadget; hence, from
item (i), this path must be some P i,q path. Now, on the one hand, if exactly one
lp vertex from a gadget H(ej) is covered by the means of some P i,q path, then
the N j = k(2dj − 1) vertices that remain uncovered may easily be covered using
a sequence of (2dj − 1) Pk; on the other hand, if two consecutive vertices lp and
lp′ , p′ > p are both covered using some P i,q path, then the subchain of H(ej)
between lp and lp′ contains 2k(p′ − p) − 1 vertices, which is not a multiple of k.

Let M be a perfect matching on C; we build a packing P applying the follow-
ing rule: if a given element ci belongs to M , then use P i to cover H(ci), use Qi

otherwise. At this stage, because M is a perfect matching, exactly one vertex lp
per gadget H(ej) is already covered by the means of some P i,q path and thus,
one may use the corresponding partition Pj

p in order to partition V (H(ej)).

Conversely, let P∗ = {P1, . . . , Pr} be a partition of V (G) into Pk. From the
first item of Property 1, we know that every H(ci) gadget is covered either by
collection P i, or by collection Qi. Furthermore, item (ii) implies that, in order
to cover the vertices of a given H(ej), P

∗ uses a single P i,q path and we deduce
that the H(ci) gadget that is concerned with this P i,q path is covered by P i.
Hence, by setting M = {ci | P

i ⊆ P∗}, we define a perfect matching, and the
proof is complete.

case 2: k is even.

6 LATEX style file for Lecture Notes in Computer Science – documentation

l
j
1 = v

j
1

v
j

Nj+1
v

j

Nj

l
j
2 = v

j
9

Fig. 5. The gadget H(ej) for k = 4 and d
j = 2.

The proof is quite identical, except the construction of the H(ej) gadgets:

H(ej) is no longer a cycle on N j + 1 vertices, but a cycle {vj
1, . . . , v

j

Nj , v
j
1} on

N j vertices, plus an additional edge [vj

Nj , v
j

Nj+1] (see Figure 5 for an illustration

when k and dj are respectively worth 4 and 2). The special vertices ljp are defined

as well as the odd case as ljp = vj

2k(p−1)+1 for p = 1 to dj (note that lj
dj never

matches vj

Nj). We can easily see that H(ej) still is bipartite (consider that now
k is even, so is N j). Furthermore, as the same as the odd case, the only valid Pk

packings of V (H(ej)) are the collections P ′j
p where P ′j

p contains the P i,q path

P j
p , plus the unique possible Pk partition Q′j

p of the two chains {vj
1, . . . , v

j

2k(p−1)}

and {vj

2k(p−1)+2, . . . , v
j

Nj , v
j

Nj+1}.

Corollary 1. MaxPkPacking and Mink-PathPartition both are NP-complete
in bipartite graphs with maximum degree 3, for any k ≥ 3.

If we decrease the maximum degree of the graph down to 2, we can eas-
ily prove that MaxPkPartition, MaxPkPacking and Mink-PathPartition

are polynomial-time computable. The same fact holds for MaxWPkPacking,
although its establishment is a little bit complicated.

Proposition 1. MaxWPkPacking is polynomial in graphs with maximum de-
gree 2, for any k ≥ 3.

Proof. We reduce the problem of computing an optimum solution of MaxWPkPacking

in graphs with maximum degree 2 to the problem of computing a maximum
weight independent set (MaxWIS) in a chordal graph, which is known to be
polynomial [6]. Let I = (G, w) be such an instance of MaxWPkPacking, we
may suppose wlog., that G is a path. Actually, a graph of maximum degree 2 is
a collection of disjoint paths, cycles and isolated edges; thus, on the one hand,
each connected component may be solved separately and, on the other hand,
a cycle C = {e1, . . . , e`} may be optimally solved by picking the best solution
among k optimum packing computed on the paths Pj = C \ {ej}, j = 1, . . . , k
(consider that an optimum solution may not incorporate the whole k-length path
{e1, . . . , ek}!). Thus, let G = {v1, . . . , vn} be such a path; we build the instance
(H, w) of MaxWIS where the vertex set of H represents the Pk of G, precisely:
a vertex v′i for i = 1, . . . , n− (k−1) corresponds to the path Pi = {vi, . . . , vi+k},
its weight it settled to w(v′i) = w(Pi), and two vertices v′i 6= v′j are linked in

LATEX style file for Lecture Notes in Computer Science – documentation 7

H iff the corresponding paths Pi and Pj share at least one common vertex in
the initial graph. We deduce that the set of independent sets in H corresponds
to the set of Pk-packings in G. Let us now prove that H is chordal, or, equiv-
alently, that H is recursively simplicial. Starting from v′1, we observe that it is
simplicial in H (v′1 is connected to the set {v′2, . . . , v

′

k} that forms a clique), we
then observe that v2 is simplicial in the subgraph induced by {v2, . . . , vn−(k−1)}
and so on, which concludes the proof.

On the other hand, even when k is worth 3, the previous proof of NP-
completeness extends to some restrictions of the problem. Precisely, thanks to
the topology of the graph that enabled to establish Theorem 1, we may deduce
from that latter the following stronger result when k = 3.

Theorem 2. P3Partition is NP-complete in planar bipartite graphs with max-
imum degree 3.

Proof. We apply the previous proof, except that we start from a restriction of the
3-dimensional matching problem, which is denoted by Planar 3DM-3. With
respect to this restriction, on the one hand, each element ej ∈ X1 ∪ X2 ∪ X3

appears in at most three distinct 3-tuples ci ∈ C and, on the other hand, the
characterization bipartite graph G(C) of the instance is planar. The left-hand-
side and the right-hand-side vertex sets of G(C) respectively represent the 3-
tuples from C and the elements from X1 ∪X2 ∪X3; thus, a left vertex li will be
linked to a right one rj iff the corresponding 3-tuple ci contains the corresponding
element ej . It is well known that this restriction of 3DM is still NP-complete, [5].
In order to apply the previous construction properly, we have to link the H(ci)
gadgets to the H(ej) gadgets in such a way that the final graph G is planar,
namely: for any couple (H(ci), H(ej)) such that ej ∈ ci, the choice of the vertex
ljp from H(ej) that will be linked to H(ci) is no longer free, but depends on the
characteristic graph G(C) of the input instance.

Corollary 2. MaxP3Packing and Min3-PathPartition are NP-complete
in planar bipartite graphs with maximum degree 3.

An interesting question concerns the status of PkPartition for k ≥ 4 in planar
bipartite graphs with maximum degree 3.

4 Approximation results

We present some approximation results for MaxWP3Packing and Min3-PathPartition,
which are mainly based on matching heuristics.

4.1 MaxWP3Packing in bipartite graphs

For this problem, the best approximate algorithm known so far provides a ratio
of (1

2 −ε); this algorithm is deduced from the one proposed in [1] to approximate

8 LATEX style file for Lecture Notes in Computer Science – documentation

the weighted packing problem with sets of size 3. We slightly improve this ratio
up to 1

2 for bipartite graphs with maximum degree 3; we then show that, in the
unweighted case, this result holds without any constraint on the graph maximum
degree.

From a bipartite graph G = (L ∪ R, E) of maximum degree 3, we build two
weighted graphs (GL, dL) and (GR, dR) where GL = (L, EL) and GR = (R, ER).
Two vertices x 6= y from L are linked in GL iff there exists in G a 2-length path
Px,y from x to y, rigorously: [x, y] ∈ EL iff ∃z ∈ R s.t. [x, z], [z, y] ∈ E. The
distance dL(x, y) of the edge [x, y] is settled to the weight of a maximum weight
2-length path from x to y. (GR, dR) is defined as the same (just reverse L and
R). If G is of maximum degree 3, then the following fact holds:

Lemma 1. From any matching M on GL (resp., on GR), one can deduce a P3

packing PM of weight w(PM) = dL(M) (resp., w(PM) = dR(M)), when G is of
degree at most 3.

Proof. Consider two edges e1 = [x1, y1] 6= e2 = [x2, y2] from a given matching
M on GL and let respectively Pe1

= {x1, z1, y1} and Pe2
= {x2, z2, y2} be

the corresponding P3 in the initial graph G. If Pe1
and Pe2

share a common
vertex, then this vertex necessarily is the central vertex z1 = z2 (or M is not a
matching!), which would contradict the fact that G is of maximum degree 3.

Weighted P3-Packing

1 Build the weighted graphs (GL, dL) and (GR, dR);
2 Compute a maximum weight matching M∗

L (resp., M∗

R) on (GL, dL) (resp.,
on (GR, dR));

3 Deduce from M∗

L (resp., M∗

R) a P3 packing PL (resp., PR) according to
Lemma 1;

4 Output the best packing P among PL and PR.

Theorem 3. Weighted P3-Packing provides a 1/2-approximation for MaxWP3Packing

in bipartite graphs with maximum degree 3 and this ratio is tight. In the un-
weighted case, this results holds without any constraint on the degree of the graph.

Proof. Let P∗ be an optimum P3-packing on I = (G, w), we partition P∗ into
P∗

L and P∗

R according to the membership (to L or to R) of the endpoints of the
paths. To P∗

L (resp., to P∗

R), there corresponds in GL (resp., in GR) a matching
ML (resp., MR) of value at least w(P∗

L) (resp., w(P∗

R)). From M∗

L and M∗

R

optimality, and using Lemma 1, we deduce:

w(PL) ≥ w(P∗

L), w(PR) ≥ w(P∗

R) (1)

Now, the solution outputted by the algorithm verifies w(P) ≥ 1/2(w(PL) +
w(PR)), which concludes the proof. The instance I = (G, w) that provides the

LATEX style file for Lecture Notes in Computer Science – documentation 9

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n n n n n n n n

1

Fig. 6. The graph G that reaches the approximation ratio.

tightness is depicted in Figure 6; it consists of a graph on 12n vertices on which
we can easily see that, on the one hand, w(PL) = w(PR) = 2n(n + 2) and, on
the other hand, w(P∗) = 2n(2n + 2).

Concerning the unweighted case, we may obtain the same performance ratio
without any restriction on graph maximum degree. The only difference with
the previous algorithm lies on the construction of the graphs GL and GR. This
former is defined as follows: starting from G, we duplicate each vertex ri ∈ R
by the means of a new vertex r′i; we then affect to r′i the same neighborhood as
ri and finally, add the edge [ri, r

′

i]. If RL denotes the vertex set {ri, r
′

i|ri ∈ R},
then the following lemma holds:

Lemma 2. From any matching M on GL, one can build a matching M ′ on GL

that saturates RL, and of which cardinality verifies |M ′| ≥ |M |.

Let M be a matching on GL. If none of the two vertices ri and r′i for some
i are saturated by M , then set M ′ = M ∪ {[ri, r

′

i]}. If exactly one of them is
saturated by a given edge e from M , then set M ′ = (M \ {e}) ∪ {[ri, r

′

i]}. In
any case, M ′ still is a matching of size at least |M |. Thus, the expected result is
obtained by applying this process to each vertex from RL.

Thus, consider a matching M on GL and assume that M saturates RL. Hence,
if d denotes the number of edges [ri, r

′

i] within M , we have |M | = |RL| − d =
2|R| − d. We deduce from M a P3 packing PM on G, of which weight verifies:
w(PM) = |M | − d = 2(|M | − |R|). Conversely, any P3 packing PL of V (G) such
that every P3 it contains has its two endpoints in L may be converted into a
matching M on GL of size |M | = w(PL) + (|R| − w(PL)/2) = w(PL)/2 + |R|.
Thus, from a maximum matching M∗ on GL that verifies Lemma 2, we build a
P3 packing PM∗ on G that verifies w(PM∗) = 2(|M∗|− |R|) ≥ P∗

L and the proof
is complete.

4.2 Min3-PathPartition in general graphs

To our knowledge, neither the approximation status of Mink-PathPartition,
nor the one of MinPathPartition, have been studied so far. Here, we propose
a 3/2-approximation for Min3-PathPartition, by the means of a quite simple
algorithm. Note that, concerning MinPathPartition (that is, the approxima-
tion of ρ(G)), we can trivially see that it is not (2 − ε)-approximable, from the
fact that deciding whether ρ(G) = 1 or ρ(G) ≥ 2 is NP-complete. Actually,

10 LATEX style file for Lecture Notes in Computer Science – documentation

we can more generally establish that ρ(G) is not in APX: otherwise, we could
obtain a PTAS for the traveling salesman problem with weights 1 and 2 when
opt(I) = n, which is not possible, unless P=NP.

Minimum 3-PathPartition

1 Compute a maximum matching M1 on G;
2 Build a bipartite graph G2 = (L, R; E2) where L is isomorphic to M1, R

is isomorphic to V \ V (M1), and [le, rv] ∈ E2 iff the corresponding isolated
vertex v /∈ V (M1) is adjacent in G to the edge e ∈ M1;

3 Compute a maximum matching M2 on G2;
4 Output P the 3-paths partition deduced from M1, M2 and V \V (M1 ∪M2).

Theorem 4. Min3-PathPartition is 3/2-approximable in general graphs and
this ratio is tight.

Proof. Let P∗ = (P∗

2,P
∗

1,P
∗

0) and P = (P2,P1,P0) respectively be an optimal
solution and the approximate 3-Paths partition on G, where P∗

i and Pi denote
for i = 0, 1, 2 the subset of i-length paths from the considered partition. Let
V1 = V \V (M1) and V2 = V1\P

∗

0; we consider G′

2 the subgraph of G2 induced by
P∗. According to these notations (consider |P2| = |M2| and |P1| = |M1|−|M2|),
we have:

apx(I) =
2∑

i=0

|Pi| = |M1| + |P0| (2)

Because M1 is a maximum matching on G and by construction of V2, we
deduce, on the one hand, that dG′

2
(rv) ≥ 1 for any v ∈ V2 and, on the other hand,

that dG′
2
(le) ≤ 2 for any e ∈ M1; hence, we get: |M1| ≥ |V2|/2. Furthermore, from

the fact that P∗ is a 3-Paths partition, we deduce that G′

2 contains a matching
of size at least one-half |V2| and thus, |M2| ≥ |V2|/2. Hence, the approximate
and the optimal solution respectively verify:

|P0| ≤
|V | + |P∗

0|

2
− |M∗

1 | (3)

opt(I) ≥
|V | + |P∗

0|

3
(4)

Using inequalities (2), (3) and (4), we obtain the expected result. The proof
of the tightness is omitted.

References

1. E. Arkin, R. Hassin. On local search for weighted packing problems. Mathematics

of Operations Research, 23: 640-648, 1998.
2. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and M.

Protasi. Complexity and Approximation (Combinatorial Optimization Problems
and Their Approximability Properties). Springer, Berlin, 1999.

LATEX style file for Lecture Notes in Computer Science – documentation 11

3. C. Bazgan, R. Hassin, and J. Monnot. Approximation algorithms for some routing
problems. Discrete Applied Mathematics, 146: 3-26, 2005.

4. B. Csaba, M. Karpinski, P. Krysta. Approximability of dense and sparse instances
of minimum 2-connectivity, TSP and path problems. SODA, 74-83, 2002.

5. M. Dyer, A. Frieze. Planar 3DM is NP-complete. J. Algorithms, 7:174-184, 1986.
6. A. Frank. Some Polynomial Time Algorithms for Certain Graphs and Hypergraphs.

Proceedings of the 5th British Combinatorial Conference, Congressus Numerantium

XV, Utilitas Mathematicae, Winnipeg, 211-226, 1976.
7. M. R. Garey, D. S. Johnson. Computers and intractability. A guide to the theory

of NP-completeness. CA, Freeman, 1979.
8. R. Hassin, S. Rubinstein. An Approximation Algorithm for Maximum Packing of

3-Edge Paths. Inf. Process. Lett., 63: 63-67, 1997.
9. R. Hassin, S. Rubinstein. An Approximation Algorithm for Maximum Triangle

Packing. ESA , LNCS 3221: 403-413, 2004.
10. A. Kaneko. A necessary and sufficient condition for the existence of a path factor

every component of which is a path of length at least two. Journal of Combinatorial

Theory, Series B, 88: 195-218, 2003.
11. J. Monnot, S. Toulouse. Approximation results for the weighted P4 partition

problem. The symposia on Fundamentals of Computation Theory, F.C.T.’2005,
LNCS 3623, 377-385, 2005.

12. G. Steiner. On the k-Path partition problem in cographs. Cong. Numer., 147:89-96,
2000.

13. G. Steiner. k-Path partitions in trees. Theor. Comput. Sci., 290:2147-2155, 2003.
14. S. Vishwanathan. An Approximation Algorithm for the Asymmetric Travelling

Salesman Problem with Distances One and Two. Information Processing Letter,
44(6): 297-302, 1992.

15. H. Wang. Path factors of bipartite graphs. Journal of Graph Theory, 18: 161-167,
1994.

16. J-H Yan, G. J. Chang, S. M. Hedetniemi, S.T. Hedetniemi. On the k-path partition
of graphs. Discrete Applied Mathematics, 78:227-233, 1997.

