Skip to Main content Skip to Navigation
Other publications

Dévissage de la forme de Seifert entière des germes de courbe plane à deux branches

Abstract : A devissage method for the Seifert form of a plane curve germ is proposed. Assuming certain technical hypotheses, it is explained how one can find the topological type(s) of germs associated with the Seifert form of a given plane curve germ with two branches. Conversely, two plane curve germs with two branches, which are "isomeric", are shown to have isomorphic integral Seifert forms. The weight filtration on the integral homology of the Milnor fiber is the key ingredient of the proof.
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00016857
Contributor : Secrétariat Math. Angers <>
Submitted on : Monday, January 30, 2006 - 2:24:10 PM
Last modification on : Monday, March 9, 2020 - 6:15:53 PM
Document(s) archivé(s) le : Saturday, April 3, 2010 - 7:31:30 PM

Identifiers

  • HAL Id : hal-00016857, version 1

Collections

Citation

Philippe Du Bois, Emmanuel Robin. Dévissage de la forme de Seifert entière des germes de courbe plane à deux branches. 2005. ⟨hal-00016857⟩

Share

Metrics

Record views

113

Files downloads

101