B. Andreianov, F. Boyer, and F. Hubert, Discrete duality finite volume schemes for Leray???Lions???type elliptic problems on general 2D meshes, Numerical Methods for Partial Differential Equations, vol.152, issue.1, 2005.
DOI : 10.1002/num.20170

URL : https://hal.archives-ouvertes.fr/hal-00005779

P. Colli-franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro-and macroscopic level, editor, Evolution equations, Semigroups and Functional Analysis, pp.49-78, 2002.

P. Colli-franzone, M. Pennacchio, and L. Guerri, ACCURATE COMPUTATION OF ELECTROGRAMS IN THE LEFT VENTRICULAR WALL, Mathematical Models and Methods in Applied Sciences, vol.10, issue.04, pp.507-538, 2000.
DOI : 10.1142/S0218202500000288

K. Domelevo and P. Omnes, A finite volume method for the Laplace operator on almost arbitrary two-dimensional grids. M2AN, to appear, 2005.

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of numerical analysis, vol.7, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

G. Faber and Y. Rudy, Action Potential and Contractility Changes in [Na+]i Overloaded Cardiac Myocytes: A Simulation Study, Biophysical Journal, vol.78, issue.5, pp.2392-2404, 2000.
DOI : 10.1016/S0006-3495(00)76783-X

R. Fitzhugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophysical Journal, vol.1, issue.6, pp.445-465, 1961.
DOI : 10.1016/S0006-3495(61)86902-6

C. S. Henriquez, Simulating the electrical behaviour of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Engr, vol.21, pp.1-77, 1993.

F. Hermeline, A Finite Volume Method for the Approximation of Diffusion Operators on Distorted Meshes, Journal of Computational Physics, vol.160, issue.2, pp.481-499, 2000.
DOI : 10.1006/jcph.2000.6466

F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Computer Methods in Applied Mechanics and Engineering, vol.192, issue.16-18, pp.16-181939, 2003.
DOI : 10.1016/S0045-7825(02)00644-8

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

J. P. Keener and J. Sneyd, Mathematical Physiology, 1998.
DOI : 10.1007/978-0-387-75847-3

W. Krassowska and J. C. Neu, Homogenization of syncytial tissues, CRC Crit. Rev. Biomed. Eng, vol.21, issue.2, pp.137-199, 1993.

W. Krassowska and J. C. Neu, Effective boundary conditions for syncytial tissues, IEEE Transactions on Biomedical Engineering, vol.41, issue.2, pp.143-150, 1994.
DOI : 10.1109/10.284925

G. L. Lines, Simulating the Electrical Activity in the Heart -A Bidomain Model of the Ventrciles Embedded in a Torso, 1999.

G. T. Lines, P. Grottum, A. J. Pullan, J. Sundes, and A. Tveito, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Computing and Visualization in Science, vol.5, issue.4, pp.215-239, 2003.
DOI : 10.1007/s00791-003-0101-4

G. T. Lines, P. Grottum, and A. Tveito, Modeling the electrical activity of the heart: A Bidomain Model of the ventricles embedded in a torso, Computing and Visualization in Science, vol.5, issue.4, pp.195-213, 2003.
DOI : 10.1007/s00791-003-0100-5

C. H. Luo and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circulation Research, vol.68, issue.6, pp.1501-1526, 1991.
DOI : 10.1161/01.RES.68.6.1501

C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation, Circulation Research, vol.74, issue.6, pp.1097-1113, 1994.
DOI : 10.1161/01.RES.74.6.1097

C. H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circulation Research, vol.74, issue.6, pp.1071-1096, 1994.
DOI : 10.1161/01.RES.74.6.1071

M. Nash, Mechanics and Material Properties of the Heart using Anatomically Accurate Mathematical Model, 1998.

E. Page, Cat Heart Muscle in Vitro: III. The extracellular space, The Journal of General Physiology, vol.46, issue.2, pp.201-213, 1962.
DOI : 10.1085/jgp.46.2.201

A. V. Panfilov and R. Aliev, A simple two-variable model of cardiac excitation, Chaos Solitons and Fractals, vol.7, issue.3, pp.293-301, 1996.

M. Sermesant, Y. Coudì-ere, H. Delingette, N. Ayache, and J. A. Désidéri, An Electro-mechanical Model of the Heart for Cardiac Image Analysis, Medical Image Computed and Computer- Assisted Intervention, number 2208 in LNCS, pp.224-231, 2001.
DOI : 10.1007/3-540-45468-3_27

URL : https://hal.archives-ouvertes.fr/inria-00615917

R. M. Shaw and Y. Rudy, Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration, Cardiovascular Research, vol.35, issue.2, pp.256-272, 1997.
DOI : 10.1016/S0008-6363(97)00093-X

K. H. Ten-tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue, AJP: Heart and Circulatory Physiology, vol.286, issue.4, 2004.
DOI : 10.1152/ajpheart.00794.2003

M. Trew and I. L. Grice, A Finite Volume Method for Modeling Discontinuous Electrical Activation in Cardiac Tissue, Annals of Biomedical Engineering, vol.192, issue.2, pp.590-602, 2005.
DOI : 10.1007/s10439-005-1434-6

A. D. Waller, A Demonstration on Man of Electromotive Changes accompanying the Heart's Beat, The Journal of Physiology, vol.8, issue.5, pp.229-234, 1887.
DOI : 10.1113/jphysiol.1887.sp000257

J. Zeng, K. R. Laurita, D. S. Rosenbaum, and Y. Rudy, Two Components of the Delayed Rectifier K+ Current in Ventricular Myocytes of the Guinea Pig Type : Theoretical Formulation and Their Role in Repolarization, Circulation Research, vol.77, issue.1, pp.140-152, 1995.
DOI : 10.1161/01.RES.77.1.140