P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Physical Review A, vol.38, issue.1, pp.364-374, 1988.
DOI : 10.1103/PhysRevA.38.364

N. L. Biggs, Chip-firing and the critical group of a graph, Journal of Algebraic Combinatorics, vol.9, issue.1, pp.25-45, 1999.
DOI : 10.1023/A:1018611014097

N. Biggs, Chip firing on distance-regular graphs, CDAM Research Report Series, 1996.

A. Björner, L. Lovász, and P. W. Shor, Chip-firing Games on Graphs, European Journal of Combinatorics, vol.12, issue.4, pp.283-291, 1991.
DOI : 10.1016/S0195-6698(13)80111-4

R. Cori and D. Rossin, On the Sandpile Group of Dual Graphs, European Journal of Combinatorics, vol.21, issue.4, pp.447-459, 2000.
DOI : 10.1006/eujc.1999.0366

URL : https://hal.archives-ouvertes.fr/hal-00016380

D. Cox, J. Little, and D. O. Shea, Ideals, varieties, and algorithms An introduction to computational algebraic geometry and commutative algebra, 1997.

M. Creutz and . Abelian-sandpile, Abelian sandpiles, Computers in Physics, vol.5, issue.2, pp.198-203, 1991.
DOI : 10.1063/1.168408

D. Dhar, P. Ruelle, S. Sen, and D. Verma, Algebraic aspects of Abelian sandpile models, Journal of Physics A: Mathematical and General, vol.28, issue.4, pp.805-831, 1995.
DOI : 10.1088/0305-4470/28/4/009

D. Dhar, Self-organized critical state of sandpile automaton models, Physical Review Letters, vol.64, issue.14, pp.1613-1616, 1990.
DOI : 10.1103/PhysRevLett.64.1613

D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Mathematical Journal, vol.84, issue.1, pp.1-45, 1996.
DOI : 10.1215/S0012-7094-96-08401-X

W. Ernst, A. R. Mayr, and . Meyer, The complexity of the word problems for commutative semigroups and polynomial ideals, Advances in Mathematics, vol.46, issue.3, pp.305-329, 1982.

C. Moore and M. Nilsson, The computational complexity of sandpiles, Journal of Statistical Physics, vol.96, issue.1/2, pp.205-224, 1999.
DOI : 10.1023/A:1004524500416