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Abstract

Let Ω be a smooth bounded domain in R
N , N > 1 and let n ∈ N

∗. We prove
here the existence of nonnegative solutions un in BV (Ω), to the problem

(Pn)











−divσ + 2n
(∫

Ω u − 1
)

sign+ (u) = 0 in Ω,

σ · ∇u = |∇u| in Ω,

u is not identically zero,−σ · −→n u = u on ∂Ω,

where −→n denotes the unit outer normal to ∂Ω, and sign+(u) denotes some
L∞(Ω) function defined as:

sign+ (u).u = u+, 0 ≤ sign+(u) ≤ 1.

Moreover, we prove the tight convergence of un towards one of the first eingen-
functions for the first 1−Laplacian Operator −∆1 on Ω when n goes to +∞.
Key words and phrases: BV functions, 1-Laplacian Operator.

Résumé

Soit Ω un domaine borné et lisse dans R
N , N > 1 et soit n ∈ N

∗. On montre
dans ce papier l’existence de solutions positives un dans BV (Ω), au probléme

(Pn)











−divσ + 2n
(∫

Ω u − 1
)

sign+ (u) = 0 in Ω,

σ · ∇u = |∇u| in Ω,

u is not identically zero,−σ · −→n u = u on ∂Ω,

où −→n est le vecteur normal sortant de ∂Ω, et sign+(u) est une fonction dans
L∞(Ω) definie par:

sign+ (u).u = u+, 0 ≤ sign+(u) ≤ 1.
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De plus, on montre la convergence de un vers une des valeurs premiéres de
l’opérateur 1−Laplacian −∆1 sur Ω quand n tend vers +∞.
Mots clés: Fonctions BV, 1-Laplacien.

1 Introduction

Recent works about the operator 1-Laplacian revealed the existence of a least
eigenvalue for this operator on a bounded smooth set. More precisally this first
eigenvalue is well defined as the infimum of

inf
u∈W

1,1

0 (Ω),
∫

Ω
|u|=1

∫

Ω

|∇u|.

This value denoted as λ1 is positive by Poincaré ’s inequality. Unfortunately,
since W 1,1(Ω) is not a reflexif space, it is not possible to prove the existence
of solutions in W

1,1
0 (Ω). The convenient space in which one must look for a

minimizer is the space BV (Ω) which is the weak closure of W 1,1(Ω). Moreover,
since the trace map which is well defined on BV (Ω) is not weakly continuous,
one is lead to replace the problem by the relaxed following form

inf
u∈BV (Ω),

∫

Ω
|u|=1

∫

|∇u| +

∫

∂Ω

|u|.

This problem has an infimum equal to λ1. Classical arguments in the theory of
BV functions allow then to prove the existence of a minimizer. Moreover using
either the fact that there exist non negative solutions and duality in convex
analysis, or using an approximation with the more regular problem

inf
u∈W

1,1+ε

0 (Ω),
∫

|u|=1

∫

Ω

|∇u|1+ε,

one can obtain that the solution u satisfies the singular PDE

−div(
∇u

|∇u|
) = λ1,

in a sense which must of course be precised, and is detailed in the present paper.
Let us note that it is proved in [9] that there are caracteristic functions of sets
which are solutions, they are consequently called eigensets. Another approach
is used in [1] [2], where the authors use the concept of Cheeger sets. In these
papers, the authors present a remarquable construction of eigenset in the case
N = 2 and for convex sets Ω. Among their results there is the uniqueness of
eigen sets in this case. Our aim in the present paper is to propose an approach
of the first eigenvalue and first eigenfunction, using a penalization method. This
method has an obvious numerical advantage : The constraint

∫

Ω |u| = 1 has a
higher coast than the introduction of the penalization term n(

∫

Ω |u| − 1)2. In
the same time one gets a new proof of the existence of nonnegative function.
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2 Preliminaries

Let Ω be a smooth bounded domain in R
N , N > 1, whose boundary is piecewise

C1, and let us define for all n ∈ N
∗, the following functional

In,0(u) =

∫

Ω

|∇u| + n

(
∫

Ω

|u| − 1

)2

.

It is clear, using Poincaré’s inequality, that there exists some constant c > 0,
such that for all u ∈ W

1,1
0 (Ω) and for all n ∈ N

∗,

∫

Ω

|∇u| + n

(
∫

Ω

|u| − 1

)2

≥ c ‖u‖W 1,1(Ω). (2.1)

We look for u ∈ W
1,1
0 (Ω), nonnegative which satisfies:



















−divσ + 2n
(∫

Ω u − 1
)

sign+ (u) = 0 in Ω,

σ ∈ L∞(Ω, Rn),

σ · ∇u = |∇u| in Ω,

u is not identically zero, u = 0 on ∂Ω,

(2.2)

In order to find solutions to (2.2) one can consider the following minimisation
problem

inf
u∈W

1,1

0 (Ω)

{

∫

Ω

|∇u| + n

(
∫

Ω

|u| − 1

)2
}

, (2.3)

We denote by λn(Ω) the value of this infimum. In the following, we shall prove
that, if un ∈ W

1,1
0 (Ω) realizes the minimum defined in (2.3), it is a non trivial

solution of (2.2).
Since classical methods in the calculus of variations cannot be applied to solve
(2.3), we approximate it by the following formulation: for ε > 0, we define

λn,ε(Ω) = inf
u∈W

1,1+ε

0 (Ω)

{

∫

Ω

|∇u|1+ε + n

(
∫

Ω

|u|1+ε − 1

)2
}

.

Note that a non trivial, nonnegative minimizer un,ε for this problem solves the
following partial differential equation:

{

−div(|∇un,ε|
ε−1∇un,ε) + 2n

(∫

Ω
u1+ε

n,ε − 1
)

uε
n,ε = 0 in Ω,

un,ε ∈ W
1,1+ε
0 (Ω).

A solution of (2.2) will be obtained, letting ε tend to 0. Let us observe that,
in particular, regularity and other properties of un can be derived from a priori
estimates on un,ε. Of course, passing to the limit when ε → 0 will lead us to
consider BV (Ω) in place of W 1,1(Ω), and to give sense to some expressions as
σn.∇un when ∇un is only a measure, and σn ∈ L∞(Ω), divσn ∈ LN(Ω).

3



As the “limit” will be obtained by weak convergence in BV (Ω), we shall be
led to overcome the lack of continuity of the trace map of this space for weak
topology. This can be done by introducing the concept of “relaxed problem”:
these problems are used in the theory of minimal surfaces and plasticity, and
with a slightly different meaning, in the theory of weakly harmonic functions.
Here the relaxed problem is defined as:

inf
u∈BV (Ω)

{

∫

Ω

|∇u| +

∫

∂Ω

|u| + n

(
∫

Ω

|u| − 1

)2
}

. (2.4)

We shall prove in the sequel that (2.4) has the same infimum as (2.3) and that it
possesses a solution u in BV (Ω) which satisfies an equation as (2.2), extended
to BV -functions, as it is done in [12]. Of course, to prove this, and as we
pointed out before, one must give sense to the product ′′σ.∇u′′ when ∇u is only
a measure.

Proposition 1. Let σ be in L∞(Ω) and divσ ∈ LN (Ω), and define the distri-

bution σ.∇u by the formula : For ϕ ∈ D(Ω), u ∈ BV (Ω),

〈σ · ∇u, ϕ〉 = −

∫

Ω

divσ u ϕ −

∫

Ω

σ · ∇ϕ u. (2.5)

Then

|〈σ · ∇u, ϕ〉| ≤ |σ|∞〈|∇u|, |ϕ|〉.

In particular, σ · ∇u is a bounded measure on Ω which is absolutely continuous

with respect to |∇u|. In addition, if ϕ ∈ C(Ω) ∩ C1(Ω), the following Green’s

Formula holds

〈σ · ∇u, ϕ〉 = −

∫

Ω

divσ u ϕ −

∫

Ω

σ · ∇ϕ u +

∫

∂Ω

σ · −→n u ϕ. (2.6)

Suppose that U ∈ BV (RN − Ω), and define for u ∈ BV (Ω) the functional ũ as:

ũ =

{

u in Ω,

U in R
N − Ω,

then ũ ∈ BV (RN ) and

∇ũ = ∇uχΩ + ∇Uχ(RN−Ω) + (U − u)|Ω δ∂Ω,

where U|Ω and u|Ω denote the trace of U and u on ∂Ω, δ∂Ω denotes the uniform

Dirac measure on ∂Ω and −→n is the unit outer normal to ∂Ω. Finally, we

introduce the measure σ · ∇ũ on Ω by the formula

(σ · ∇ũ) = (σ · ∇u)χΩ + σ · −→n (U − u) δ∂Ω.

Then σ · ∇ũ is absolutely continuous with respect to |∇ũ|, with the inequality

|σ · ∇ũ| ≤ |σ|∞|∇ũ|.

For a proof the reader can consult ([8],[17],[19]).
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3 Existence’s Theorem

Theorem 1. Let Ω be a bounded domain in R
N , N > 1, which is a piece-

wise C1set. Let λn be defined as in (2.3). There exists a nonnegative solution

un ∈ BV (Ω) to the problem (2.2)which realizes the following partial differential

equation:



















−divσn + 2n
(∫

Ω
un − 1

)

sign+(un) = 0 in Ω,

σn ∈ L∞(Ω, RN ), |σn|∞ ≤ 1,

σn · ∇un = |∇un| in Ω,

u is not identically zero,−σn · −→n (un) = un on ∂Ω,

(3.1)

−→n denotes the unit outer normal to ∂Ω, and σn · ∇un is the measure defined in

proposition 1.

Remark 1. From proposition 1 (with U = 0) the conditions:

σn · ∇un = |∇un| in Ω , −σn · −→n (un) = un on ∂Ω

are equivalent to
σ · ∇ũ = |∇ũ| on Ω

Remark 2. Eq (3.1) can be written:

divσn = −2n

(
∫

Ω

un − 1

)

sign+ (un)

and since the right-hand side is an element of L∞(Ω), σn · ∇un is well-defined.

Proof of Theorem 1. We split the proof of Theorem 1 into several steps:
Step 1:
We begin by approximating (2.4) with the following minimization problem

λn,ε(Ω) = inf
u∈W

1,1+ε

0 (Ω)

{

∫

Ω

|∇u|1+ε + n

(
∫

Ω

|u|1+ε − 1

)2
}

, (3.2)

where ε is some positive parameter. This problem can be solved by classi-
cal methods in the calculus of variations, since the compact embedding of
W

1,1+ε
0 (Ω) into Lq(Ω) holds for all q < (1 + ε)∗. Furthermore, there exists

a nonnegative solution to the problem (3.2), since if un,ε ∈ W
1,1+ε
0 (Ω), so is

|un,ε| and

|∇|un,ε|| = |∇un,ε|.

By regularity results, as developped by Guedda-Veron [16], (see also Tolksdorf
[20]), one gets that un,ε ∈ C1,α(Ω), α ∈ (0, 1) and by Vazquez’ Strict Maximum
Principle [21], one gets that un,ε > 0 in Ω. Let un,ε be a solution of (3.2) which is
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positive, then σn,ε = |∇un,ε|
ε−1∇un,ε satisfies the following partial differential

equations:











−divσn,ε + 2n
(∫

Ω
u1+ε

n,ε − 1
)

uε
n,ε = 0 in Ω,

σn,ε.∇un,ε = |∇un,ε|
1+ε in Ω,

un,ε > 0, un,ε = 0 on ∂Ω,

(3.3)

Remark 3. The solution un,ε is unique.
Indeed, let u and v two positive solutions of (3.3), then we have:

−divσε(u) + 2n

(
∫

Ω

u1+ε − 1

)

uε = 0. (3.4)

−divσε(v) + 2n

(
∫

Ω

v1+ε − 1

)

vε = 0. (3.5)

Let us note:

α(u) =

∫

Ω

u1+ε − 1.

Substracting (3.5) from (3.4), one gets:

−div (σε(u) − σε(v)) + 2n (α(u) − α(v)) uε + 2n α(v) (uε − vε) = 0. (3.6)

Case 1: ‖u‖1+ε
1+ε = ‖v‖1+ε

1+ε.

Let us multiply (3.6) by (u − v) then integrate, we get that:

∫

Ω

(σε(u) − σε(v)) · ∇(u − v) + 2n α(v)

∫

Ω

(uε − vε) (u − v) = 0.

We know that

∫

Ω

(σε(u) − σε(v)) · ∇(u − v) ≥ 0. (3.7)

On the other hand it is clear that

∫

Ω

(uε − vε) (u − v) ≥ 0. (3.8)

So, we can conclude that
∫

Ω (uε − vε) (u − v) = 0,and this implies that u = v

a.e.

Case 2: ‖u‖1+ε
1+ε ≥ ‖v‖1+ε

1+ε.

Let us multiply (3.6) by (u − v)+ then integrate. It is clear that

2n (α(u) − α(v))

∫

Ω

uε(u − v)+ ≥ 0.

6



So we get that:

∫

Ω

(σε(u) − σε(v)) · ∇(u − v)+ + 2n α(v)

∫

Ω

(uε − vε) (u − v)+ ≤ 0. (3.9)

By (3.7) and (3.8), we have that:

∫

Ω

(σε(u) − σε(v)) · ∇(u − v)+ + 2n α(v)

∫

Ω

(uε − vε) (u − v)+ ≥ 0. (3.10)

So from (3.9) and (3.10), we obtain that

∫

Ω

(σε(u) − σε(v)) · ∇(u − v)+ + 2n α(v)

∫

Ω

(uε − vε) (u − v)+ = 0.

Then we can conclude that
∫

Ω
(uε − vε) (u − v)+ = 0, and this implies that

(u − v)+ = 0, which gives us that u ≤ v.
Recall that ‖u‖1+ε

1+ε ≥ ‖v‖1+ε
1+ε, hence u = v a.e.

Case 3: ‖u‖1+ε
1+ε ≤ ‖v‖1+ε

1+ε.
We use the same arguments then the Case 2, replacing (u − v)+ by (v − u)+.

Step 2:

Proposition 2.
lim
ε→0

λn,ε(Ω) ≤ λn(Ω).

Proof. Let In,ε(ϕ) =
∫

Ω |∇ϕ|1+ε + n
(∫

Ω |ϕ|1+ε − 1
)2

, and δ > 0 be given and
ϕ ∈ D(Ω) such that

∫

Ω

|∇ϕ| + n

(
∫

Ω

|ϕ| − 1

)2

≤ λn + δ,

For ε close to 0, |In,ε(ϕ) − In,0(ϕ)| < δ, hence

lim
ε→0

λn,ε ≤ λn + δ,

δ being arbitrary, we get limε→0λn,ε ≤ λn.

Let now un,ε be a positive solution of (3.3). Then, it is bounded in W
1,1+ε
0 (Ω).

Using Hölder’s inequality, we get

∫

Ω

un,εdx ≤

(
∫

Ω

u1+ε
n,ε dx

)
1

1+ε

|Ω|
ε

1+ε , (3.11)

and thus (un,ε)ε>0 is bounded in L1(Ω). By the same arguments we prove that
(|∇un,ε|)ε>0 is also bounded in L1(Ω). Hence, (un,ε)ε>0 is bounded in BV (Ω).
Therefore, we may extract from it a subsequence, still denoted (un,ε), such that
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un,ε → un in Lk(Ω), ∀k < 1∗,

∇un,ε ⇀ ∇un in M1(Ω) weakly,

We need now to recall a result of concentration compactness, which is a
consequence of the concentration compactness theory of P.L.Lions [18].

Lemma 1. Suppose that Ω is an open bounded set in R
N , N > 1, and that un,ε

is bounded in W
1,1+ε
0 (Ω), then if un,ε ⇀ un ∈ BV (Ω) weakly, there exists some

nonnegative bounded measure µ on Ω, a numerable set {xi}i∈N ∈ Ω, and some

numbers µi ≥ 0 such that

|∇un,ε| ⇀ µ ≥ |∇un| +
∑

i

µiδxi
in M1(Ω) weakly, (3.12)

where δxi
denotes the Dirac mass on xi.

Step 3:

we obtain σn =′′ ∇un

|∇un|

′′
as the weak limit of σn,ε = |∇un,ε|

ε−1∇un,ε.

Let σn,ε = |∇un,ε|
ε−1∇un,ε. Then σn,ε belongs to L

1+ε
ε (Ω). By passing to

the limit when ε goes to 0, one obtains that σn,ε tends to σn weakly in Lq(Ω),
for all q < ∞. We need to prove that |σn|∞ ≤ 1.
For that aim, let η be in D(Ω, RN ). Then

∣

∣

∣

∣

∫

Ω

σn.η

∣

∣

∣

∣

≤ limε→0

∣

∣

∣

∣

∫

Ω

σn,ε.η

∣

∣

∣

∣

≤ limε→0

∫

Ω

|∇un,ε|
ε|η|

≤ limε→0

(
∫

Ω

|∇un,ε|
1+ε

)
ε

1+ε
(
∫

Ω

|η|1+ε

)
1

1+ε

≤ limε→0 (C)
ε

1+ε

(
∫

Ω

|η|1+ε

)
1

1+ε

≤

∫

Ω

|η|.

On the other hand, we prove that uε
n converges weakly to some α in L∞(Ω), α ∈

[0, 1]. Indeed, for η ∈ D(Ω),

∣

∣

∣

∣

∫

Ω

uε
n.η

∣

∣

∣

∣

≤

(
∫

Ω

|uε
n|

1+ε
ε

)
ε

1+ε
(
∫

Ω

|η|1+ε

)
1

1+ε

≤ limε→0 (C)
ε

1+ε

(
∫

Ω

|η|1+ε

)
1

1+ε

≤

∫

Ω

|η|.
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This implies that |σn|∞ ≤ 1. On the other hand by passing to the limit in (3.3),
one gets:

−divσn + 2n

(
∫

Ω

un − 1

)

α = 0. (3.13)

Step 4:
Extension of un,ε outside Ω and convergence towards a solution of
(3.3).
We shall need in this part the Proposition 1 and a classical result in the theory
of BV −functions:

Lemma 2. Assume that Ω is an open bounded set in R
N , N > 1, and that

u ∈ BV (Ω). Then if x0 ∈ Ω, |σ.∇u|({x0}) = 0.

The proof of this result can be found in [14].

Let ũn,ε be the extension of un,ε by 0 in R
N −Ω. Then ũn,ε ∈ W 1,1+ε(RN ),

since un,ε = 0 on ∂Ω, and (ũn,ε) is bounded in BV (RN ). Then one may extract
from it a subsequence, still denoted (ũn,ε) such that

ũn,ε → vn in Lk(RN ), ∀k <
N

N − 1
,

with vn = 0 outside of Ω. We denote by un the restriction of vn to Ω. In
addition:

∇ũn,ε ⇀ ∇vn in M1(RN ) weakly,

σn,ε = |∇un,ε|
ε−1∇un,ε ⇀ σn in Lq(Ω), ∀q < ∞.

Using Concentration Compactness Lemma, there exists a non negative measure
µ, with support in Ω, a numerable set {xi}i in Ω and some non negative reals
µi, such that

|∇ũn,ε|
1+ε ⇀ µ ≥ |∇vn| + Σiµiδxi

.

Multiplying (3.3) by ũn,εϕ where ϕ ∈ D(RN ), and integrating by parts, one
obtains:

∫

Ω

σn,ε · ∇(ũn,εϕ) + 2n

(
∫

Ω

ũ1+ε
n,ε − 1

)
∫

Ω

ũ1+ε
n,ε ϕ = 0,

or equivalently

∫

RN

|∇(ũn,ε)|
1+εϕ +

∫

RN

σn,εũn,ε · ∇ϕ + 2n

(
∫

RN

ũ1+ε
n,ε − 1

)
∫

RN

ũ1+ε
n,ε ϕ = 0.

9



Since σn,ε ⇀ σn in Lq(Ω) for all q, in particular for some α > 0, σn,ε tends
weakly towards σn in LN+α(Ω) , and then, since ũn,ε tends strongly towards vn

in Lk, k < N
N−1 , one obtains that:

∫

RN

σn,εũn,ε · ∇ϕ −→

∫

RN

σnvn · ∇ϕ, when ε → 0.

By passing to the limit in the last equation above, one obtains:

〈µ, ϕ〉 +

∫

Ω

σnun · ∇ϕ + 2n

(
∫

Ω

un − 1

)
∫

Ω

unϕ = 0. (3.14)

Using generalised Green’s Formula in Proposition 1 and (3.13), we have

∫

Ω

σnun · ∇ϕ = −

∫

Ω

divσnunϕ −

∫

Ω

σn · ∇unϕ +

∫

∂Ω

σn · −→n un ϕ

= −2n

(
∫

Ω

un − 1

)
∫

Ω

unϕ −

∫

Ω

σn · ∇vnϕ. (3.15)

Substracting (3.15) from (3.14), one gets for ϕ ∈ D(Ω)

〈µ, ϕ〉 −

∫

Ω

σn · ∇vnϕ = 0. (3.16)

Let now h be a |∇vn|−measurable function and µ⊥ be a measure orthogonal to
|∇un|, such that, according to the Radon-Nikodym decomposition, one has

µ = h|∇vn| + µ⊥. (3.17)

By Lemma 2 and the analogous of (3.12) of Lemma 1, one has

h|∇vn| ≥ |∇vn|, (3.18)

and

µ⊥ ≥
∑

i

µiδxi
. (3.19)

Using (3.18) and (3.19) in equation (3.16) one gets that

h|∇vn| = σn · ∇vn on Ω, (3.20)

and

µ⊥ =
∑

i

µiδxi
≤ σn · ∇vn. (3.21)

Using Lemma 2 one gets that µi = 0 ∀i. And from (3.20), |σn| ≤ 1 and
Proposition 1, one obtains that in the sense of measures:

|σn · ∇vn| ≤ |∇vn| on Ω,

10



µ = σn · ∇vn,

and then

σn · ∇vn = |∇vn| on Ω,

and h = 1, |∇vn|−almost everywhere. Using this in equation (3.14) with ϕ = 1,
we have:

∫

Ω

|∇vn| +

∫

∂Ω

vn + 2n

(
∫

Ω

vn − 1

)
∫

Ω

vn = 0.

Recalling that we have from Proposition 1 that:

∇vn = ∇vnχΩ − vn δ∂Ω
−→n ,

σn · ∇vn = σn · ∇vnχΩ − σn.−→n vnδ∂Ω.

This implies that σn.∇vn = |∇vn|, on Ω ∪ ∂Ω. This condition can be splitted
in the two equations

{

σn · ∇un = |∇un| in Ω,

σn · −→n un = −un on ∂Ω.

Then un is a nonnegative solution of (2.2). Moreover, the convergence of |∇ũn,ε|
is tight on Ω which means that

∫

Ω

|∇un,ε| −→

∫

Ω

|∇un| +

∫

∂Ω

un, when ε → 0.

Indeed, one has
∫

Ω
|∇un,ε|

1+ε →
∫

Ω
|∇un| +

∫

∂Ω
un and using the lower semi-

continuity for the extension vn,ε, we get first

∫

Ω

|∇un| +

∫

∂Ω

un ≤ limε→0

∫

Ω

|∇un,ε|,

and secondly, using Hölder’s inequality
∫

Ω |∇un,ε|
1+ε ≥ (

∫

Ω |∇un,ε|)
1

1+ε |Ω|
−ε

1+ε

which gives by passing to the limit the reverse inequality.
Step 5: un is a solution of (2.4)
Let us recall the relaxed form of (2.3)

inf
u∈BV (Ω)

{

∫

Ω

|∇u| +

∫

∂Ω

|u| + n

(
∫

Ω

|u| − 1

)2
}

. (1.4)

We prove now that the solution un obtained in the two previous steps is a
nonnegative solution of (2.4). For that aim, let us recall that by using the lower
semi-continuity for the weak topology of BV (RN ), we have:
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λn(Ω) =

∫

Rn

|∇vn| + n

(
∫

Ω

vn − 1

)2

≤ limε→0

∫

Rn

|∇ũn,ε|
1+ε + n

(
∫

Ω

ũ1+ε
n,ε − 1

)2

≤ limε→0λn,ε(Ω) ≤ λn(Ω).

Using the fact that

∫

Rn

|∇vn| =

∫

Ω∪∂Ω

|∇vn| =

∫

Ω

|∇un| +

∫

∂Ω

un.

One obtains that un is a nonnegative solution of the relaxed problem (2.4) and
in the same time we get

lim
ε→0

λn,ε = λn.

Moreover, one has:

∫

Ω

|un,ε| −→

∫

Ω

un, when ε → 0.

Then, we conclude that:

∫

Ω

|∇un,ε| −→

∫

Ω

|∇un| +

∫

∂Ω

un, when ε → 0.

Hence we get the tight convergence of un,ε towards un in BV (Ω).

4 Convergence result

We begin to recall some properties of the first eingenvalue for the 1-Laplacian
operator, see e.g. [9]

Proposition 3. Suppose that λ > 0 is such that there exists σ, |σ|∞ ≤ 1, and

u ≥ 0 in BV (Ω) with











−divσ = λ, u ≥ 0, u 6≡ 0, u ∈ BV (Ω),

σ.∇u = |∇u| in Ω, |σ|L∞(Ω) ≤ 1,

σ.−→n (−u) = u on ∂Ω.

(4.1)

Then λ = λ1 where

λ1 = inf
u∈W

1,1

0 (Ω)

‖u‖1=1

∫

Ω

|∇u|,

12



λ1 is called the first eingenvalue for −∆1 on Ω. Moreover

λ1 = inf
u∈BV (Ω)
‖u‖1=1

{
∫

Ω

|∇u| +

∫

∂Ω

|u|

}

, (4.2)

and this last infimum is achieved on some u which satisfies (4.1). Among the

“eingenfunctions” there exist caracteristic functions of Cacciopoli sets.

Theorem 2. Let un be a function for which λn is achieved, then, up to a

subsequence, (un) converges to u ∈ BV (Ω), u ≥ 0, u 6≡ 0, which realizes the

minimum defined in (4.2). Moreover

lim
n→∞

λn = λ1.

Proof of the Theorem 2. For λn and λ1 defined as above, it is clear that we
have:

limn→∞λn ≤ λ1. (4.3)

Let (un)n be a sequence of solutions of the relaxed problem (2.4). We be-
gin to prove that (un)n is bounded in BV (Ω). For that aim let us note that

by (4.3), one gets that n
(∫

Ω
un − 1

)2
is bounded by λ1, which implies that

limn→∞

(∫

Ω
un − 1

)2
= 0. Then

limn→∞

∫

Ω

un = 1,

Hence, (un)n is bounded in L1(Ω).
Using once more (4.3) for |∇(un)|n one can conclude that (un)n is bounded in
BV (Ω). Then, the extension of un by zero outside of Ω is bounded in BV (RN ).
One can then extract from it a subsequence, still denoted un, such that

un ⇀ u in BV (RN ) weakly,

Obviously u = 0 outside of Ω. By compactness of the Sobolev embedding from
BV (Ω) into L1(Ω), one has |u|L1(Ω) = 1. Using lower semi continuity, one has

λ1 ≤

∫

RN

|∇u| ≤

∫

RN

|∇u| + n

(
∫

RN

u − 1

)2

≤ limn→∞

(

∫

RN

|∇un| + n

(
∫

RN

un − 1

)2
)

≤ limn→∞λn ≤ λ1.

Then one gets that

limn→∞λn = λ1.
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Since u = 0 outside of Ω, one has ∇u = ∇uχΩ − u · −→n δ∂Ω on ∂Ω, and then

∫

RN

|∇u| =

∫

Ω

|∇u| +

∫

∂Ω

u.

Moreover, one obtains that:

limn→∞n

(
∫

Ω

un − 1

)2

= 0,

and

limn→∞

∫

Ω

|∇un| =

∫

Ω

|∇u|.

Then, we get the tight convergence of un to u in BV (Ω).
Hence by passing to the limit in (3.13) when n → ∞ one gets that:

−2n

(
∫

Ω

un − 1

)

−→ λ1, when n → ∞.

5 Minima as Cacciopoli sets

Let us introduce λ0,n as the value of the infimum

λ0,n = inf
E,E is Cacciopoli set

E⊂⊂Ω

{

∫

Ω

|∇χE | + n

(
∫

Ω

χE − 1

)2
}

, (5.1)

(let us recall that a Cacciopoli set in Ω is merely a set whose caracteristicfunction
belongs to BV (Ω)). We have the following.

Theorem 3. One has

λ0,n = inf
E,E is Cacciopoli set

E⊂⊂Ω

{

∫

Ω

|∇χE | + n

(
∫

Ω

χE − 1

)2
}

= inf
E,E is Cacciopoli set

Eset in R
n

{

∫

Ω

|∇χE | +

∫

∂Ω

χE + n

(
∫

Ω

χE − 1

)2
}

= inf
E,E is Cacciopoli set

Eset in R
n

P (E, Ω) + |E ∩ ∂Ω| + n (|E ∩ Ω| − 1)
2

and

λ0,n ≥ λ1,n.

Remark 4. P (E, Ω) is the perimeter of E in Ω, see ([6], [15]).
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Proposition 4. Let λ0,n be defined as in Theorem 3, then λ0,n is achieved.

Proof. Let (Ei) be a subsequence of Cacciopoli sets, Ei ⊂⊂ Ω such that

∫

Ω

|∇χEi
| + n

(
∫

Ω

χEi
− 1

)2

→ λ0,n.

Then

limi→∞

{

∫

Ω

|∇χEi
| + n

(
∫

Ω

χEi
− 1

)2
}

≤ λ0,n.

It is clear that χEi
is bounded in BV (Ω) (same arguments as in Theorem 3).

More precisally χEi
is bounded in BV (Rn).

Extracting from it a subsequence still denoted χEi
, one get that

χEi
⇀ u inBV (Rn).

By construction u = 0 outside of Ω. Moreover one can assume thatχEi
tends to

u a.e, and then u can only takes the values 0 and 1. As a consequence u is the
caracteristic function of some set E.
By lower semicontinuity, one has that

∫

Rn

|∇χE | + n

(
∫

Rn

χE − 1

)2

≤ limi→∞

{

∫

Ω

|∇χEi
| + n

(
∫

Ω

χEi
− 1

)2
}

,

Then, one obtains that E is a solution for the relaxed problem (5.1).
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