Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry

Abstract : We introduce and study a notion of Orlicz hypercontractive semigroups. We analyze their relations with general $F$-Sobolev inequalities, thus extending Gross hypercontractivity theory. We provide criteria for these Sobolev type inequalities and for related properties. In particular, we implement in the context of probability measures the ideas of Maz'ja's capacity theory, and present equivalent forms relating the capacity of sets to their measure. Orlicz hypercontractivity efficiently describes the integrability improving properties of the Heat semigroup associated to the Boltzmann measures $\mu_\alpha (dx) = (Z_\alpha)^{-1} e^{-2|x|^\alpha} dx$, when $\alpha\in (1,2)$. As an application we derive accurate isoperimetric inequalities for their products. This completes earlier works by Bobkov-Houdré and Talagrand, and provides a scale of dimension free isoperimetric inequalities as well as comparison theorems.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00014138
Contributor : Import Arxiv <>
Submitted on : Sunday, November 20, 2005 - 1:34:45 PM
Last modification on : Thursday, March 19, 2020 - 12:26:02 PM

Links full text

Identifiers

Citation

F. Barthe, P. Cattiaux, Cyril Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. 2004. ⟨hal-00014138⟩

Share

Metrics

Record views

356