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Dynami
 Fragmentation of Brittle Solids:A Multi{S
ale ModelChristophe Denoual and Fran�
ois HildNovember 15, 2005Abstra
tModeling dynami
 fragmentation of brittle materials usually implies to 
hoose be-tween a dis
rete des
ription of the number of fragments and a 
ontinuum approa
h ofdamage variables. A damage model that 
an be used in the whole range of loadings(from quasi-stati
 to dynami
 ones) is developed. The deterministi
 or probabilisti
nature of fragmentation is dis
ussed. Qualitative and quantitative validations are givenby using a real-time visualization 
on�guration for analyzing the degradation kineti
sduring impa
t and a moir�e te
hnique to measure the strains in a 
erami
 tile duringimpa
t. Finally, a 
losed-form solution of the 
hange of the number of broken defe
tswith the applied stress gives a way of optimizing the mi
rostru
ture of 
erami
s forarmor appli
ations.Keywords: Cerami
 materials, probability and statisti
s, impa
t testing.
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1 Introdu
tionBilayered armors with 
erami
s as front plate and steels as ba
king fa
e have been used forseveral years to improve the eÆ
ien
y of light or medium armors (den Reijer, 1991). The highhardness of 
erami
 materials favors proje
tile blunting and/or failure and spreads the kineti
energy on a large surfa
e of the du
tile ba
king. The weight of the armor is then redu
ed in
omparison to an armor made of steel only. The response of a 
erami
 impa
ted by a steelrod is strongly dependent upon the impa
tor velo
ity. Low impa
t velo
ities (approximatelyless than 1000m/s) lead to degradations su
h as 
ra
king prior to a signi�
ant penetration.It follows that 
ra
king is the prevalent me
hanism to predi
t the residual properties of the
erami
 before penetration and to assess its multi-hit 
apability. Higher impa
t velo
ities(ranging from about 1000 to 3000m/s) usually lead to degradations in 
ompressive and ten-sile modes (Espinosa et al., 1992).Furthermore, the impa
tor 
an penetrate the 
erami
 layer even though some parti
u-lar 
on�nement 
onditions may prevent penetration (Bless et al., 1992; Hauver et al., 1994).Ultra-high velo
ities (greater than 3000m/s) lead to a fully fragmented 
erami
 whose behav-ior is 
loser to that of a 
uid rather than that of a solid material. Analyti
al models 
an beused to des
ribe the response of the material (Tate, 1967; 1969).The present paper is mostly 
on
erned with the �rst impa
t regime where the mainme
hanism is fragmentation of brittle materials, and spe
i�
ally 
erami
s used in light ar-mors. During the �rst mi
rose
onds of impa
t, high stress waves are produ
ed and lead topossible degradation in a 
ompressive mode in the immediate surroundings of the proje
tiletip and in tensile mode in a widely extended zone. The fragmentation in tension, whi
hextends over a larger zone than the degradation in a 
ompressive mode, is one of the mainme
hanisms to identify (in terms of lo
ation, kineti
s and anisotropi
 behavior due to 
ra
k-ing) for numeri
al simulations of impa
ts and penetration of proje
tiles. One 
an note thatdamage in 
ompression involves very di�erent me
hanisms 
ompared to damage in tension.
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For example, 
ra
ks propagating in mode II may lead to a di�erent kineti
s than that in modeI. Fri
tion at the 
ra
k fa
e has a signi�
ant in
uen
e on the damage des
ription (Espinosa etal., 1992; Halm and Dragon, 1998). Finally, the population of 
aws that lead to 
ra
k nu
le-ation may be di�erent in tension and in 
ompression. To avoid an overlapping of me
hanismsthat would make the model validation deli
ate, only damage in tension is 
onsidered herein.In Se
tion 2, a damage model des
ribing the tensile fragmentation is derived. Afterthe presentation of a simpli�ed des
ription for the initial (i.e., undamaged) material, thefragmentation is analyzed as an extension of the brittle fra
ture regime observed in quasi-stati
 loadings by 
onsidering random arrays of 
ra
ks. A multi-s
ale approa
h is proposedto model fragmentation with no 
onstrains on the stress rate. In parti
ular, the transitionbetween single and multiple fragmentation is analyzed. It follows that the domain of validityof a 
ontinuum and lo
al approa
h is obtained. A so-
alled \Edge-On-Impa
t" 
on�gurationis used in Se
tion 3 and allows for the observation of damage patterns and strain �elds duringimpa
t. Results of multi-s
ale simulations are dis
ussed with respe
t to experimental data.Finally, a material optimization, whi
h makes use of a 
losed-form solution of the 
hange ofthe number of fragments with time or stress, is performed in Se
tion 4 to assess the ballisti
performan
e of four di�erent SiC grades.2 A Model for the Fragmentation of Brittle MaterialsThe present model is based on a redu
ed set of hypotheses for the mi
rostru
ture des
riptionbefore and during the 
hange of damage. Be
ause mi
ro
ra
king (whi
h leads to stru
turalfailure) is assumed to be 
aused by 
ra
k nu
leation and growth, the �rst part of this study isdevoted to modeling the mi
rostru
ture of brittle materials prior to tensile degradation (x2.1).Cra
ks are supposed to emanate from defe
ts and relax the stresses in their surroundings(x2.2). A 
omplete des
ription of 
ra
k nu
leation and propagation �nally leads to a damagedes
ription and kineti
 law (see x2.3 and x2.5). The transition between single and multiplefragmentation is dis
ussed in x2.4. 3



2.1 Mi
rostru
ture of the Undamaged MaterialFor brittle materials, the analysis of failure during quasi-stati
 loadings 
an be used to de�nethe relevant features of the mi
rostru
ture in terms of 
aw density and failure stress distri-bution. The nu
leation of a 
ra
k in brittle materials subje
ted to quasi-stati
 tension is dueto (point) defe
ts de�ned by a failure strength �f(x). When an equivalent stress �(x), e.g.,maximum prin
ipal stress, is greater than �f(x), a 
ra
k emanating from the defe
t leadsto the failure of the whole stru
ture. The failure strength is a random fun
tion related tothe defe
t distribution and lo
ation within the material. Therefore, the ultimate strength ofa 
erami
 spe
imen is not deterministi
 and a failure probability PF 
an be des
ribed by aWeibull law (1939)PF = 1� exp [��t(�F) Ze� ℄ with �t(�F) = �0 ��F�0 �m (1)where �t is the defe
t density, m the Weibull modulus, �0 the referen
e stress relative to areferen
e density �0, �F the failure stress (i.e., the maximum equivalent stress in the 
onsid-ered domain 
) and Ze� the e�e
tive volume, surfa
e or length (Davies, 1973). The 
onstant�0=�m0 is the so-
alled Weibull s
ale parameter. In the following, when no spe
ial mentionis made, the development is valid for any spa
e dimension n (i.e., 1, 2 or 3). Otherwise, itwill be 
learly stated for whi
h spa
e dimension the results are valid. It 
an be noted thatthe previous formulation (i.e., Eqn. (1)) enters the framework of a Poisson point pro
ess ofintensity �t (Gulino and Phoenix, 1991; Jeulin, 1991). The mi
rostru
ture of the undamagedmaterial is therefore approximated by defe
ts of density �t with random lo
ations.Moreover, the mean failure stress �w and the 
orresponding standard deviation �sd aregiven by �w = �0(Ze��0) 1m ��1 + 1m� ; �2sd = �20(Ze��0) 2m ��1 + 2m�� �2w (2)where � is the Euler fun
tion of the se
ond kind. The relationships given in Eqn. (2) are usedto estimate the defe
t density �t[�(t)℄ by using quasi-stati
 tests even in the dynami
 range(Denoual and Riou, 1995): up to stress rates of 10 MPa ��s�1, the Weibull parameters of a
4



sili
on 
arbide 
erami
 are identi
al.
2.2 Simpli�
ation of the Damaged MaterialIn the bulk of an impa
ted 
erami
, damage in tension is observed when the hoop stressindu
ed by the radial motion is suÆ
iently large to generate fra
ture in mode I initiating onthe mi
rodefe
ts already mentioned in Se
tion 2.1. It will be assumed that the initial defe
tpopulation leading to damage and failure is identi
al when the material is subje
ted to quasi-stati
 and dynami
 loading 
onditions (Denoual and Riou, 1995). This statement 
orrespondsto the assumption that a single defe
t (e.g., a void, a mi
ro
ra
k) breaks at a stress level thatis weakly dependent on the stress rate. However, the broken defe
t population is stronglydependent on the stress history. For very low stress rates, only the dominant defe
t of thewhole population breaks (i.e., the weakest link of a stru
ture) and the Weibull law des
ribedin the previous se
tion applies. When dynami
 loadings are 
onsidered, a part (in
reasingwith the stress rate) of the initial defe
t population is broken. This point will be des
ribedin Se
tions 2.3 and 2.4.Closed-form expressions for the e�e
tive properties of various 
ra
k patterns are pro-posed in the literature (see for example (Ka
hanov, 1994)). These solutions are obtained forquasi-stati
 loadings and when 
ra
k intera
tions are 
onsidered, mostly periodi
 patterns areused. In the present study, the approximations needed for an analyti
al estimation of e�e
tiveelasti
 properties of the 
ra
ked solid no longer hold. The 
ra
k velo
ity has the same orderof magnitude as the Rayleigh wave speed (Kanninen and Popelar, 1985; Freund, 1990) andstress equilibrium during damage 
hange is never a
hieved.The 
onsidered 
ra
k pattern is made of penny-shaped 
ra
ks (instead of re
tilinear
ra
ks) of random lo
ations. It follows that periodi
 homogenization te
hniques 
annot beused to des
ribe this type of dynami
 
ra
king.The link between mi
ros
opi
 and ma
ros
opi
 s
ales is obtained by stating that the
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Gibbs' energy on a ma
ros
opi
 s
ale is equal to the average spe
i�
 enthalpy on a mi
ros
opi
s
ale 2�� = � : SD : � = 1Z Z
 �(x) : S : �(x) dx (3)where SD is the 
omplian
e tensor of the damaged material (and S is that of an undamagedmaterial), � the mass density, 
 a representative zone of measure Z, `:' the 
ontra
tion withrespe
t to two indi
es, �(x) the mi
ros
opi
 stress at point x, and � the ma
ros
opi
 stressde�ned by � = 1Z Z
 �(x) dx: (4)The aim of this se
tion is to introdu
e all the mi
ros
opi
 aspe
ts of fra
ture to des
ribe themi
rostru
ture of damaged material. A simpli�ed stress �eld is proposed in the followingse
tion for a single 
ra
k and then extended to a random population of 
ra
ks.2.2.1 Single Cra
kStress tensors are now expressed as ve
tors by using Voigt's notations and fourth order tensorsare redu
ed to se
ond order ones. When a fra
ture is initiated on a defe
t k lo
ated at xk, thestress state around the propagating 
ra
k is a 
omplex fun
tion of time, 
ra
k velo
ity andstress wave 
elerity. For a 
ra
k of normal n = x1 submitted to a far �eld �0, the mi
ros
opi
stress �eld �(x) at point x 
an be written as�(x) = h1�R(x)i �0 (5)where R(x) is a se
ond order tensor a

ounting for stress modi�
ations (mainly stress relax-ation) around a 
ra
k.In the appropriate 
oordinate system, the stress applied to the 
ra
k 
an be simpli�edas a uniform normal stress �0n in addition to a uniform tangential loading �0t (i.e., modes Iand II). The quasi-stati
 solution of stress relaxation around a penny-shaped 
ra
k given byFabrikant (1990) is used as an approximation of the relaxed stress state during a dynami
loading. The relevant stress �elds are plotted in Fig. 1. One 
an observe that for a 
ra
k
6



normal aligned along dire
tion x1, and a far �eld stress �0n, only the stress �11(x) is relaxedover an important zone. For a pure tangential far �eld stress �0t in the (x1; x2) plane, onlythe 
omponent �12(x) is signi�
antly relaxed. Even though the whole relaxation tensor 
anbe used, for the sake of simpli
ity, only the �rst and se
ond most relaxed stress �elds are
onsidered in the following. Two relaxation 
omponents Rn and Rt are de�ned as�11(x) = [1�Rn(x)℄ �0n; (6)�12(x) = [1�Rt(x)℄ �0t : (7)A simpli�
ation of the stress �eld around a 
ra
k is proposed by using Boolean fun
tions(Jeulin and Jeulin, 1981). An example of a Boolean representation of stress relaxation is givenin Fig. 2{a and {b. Inside the Boolean fun
tions 
ij(xk) asso
iated to a defe
t of lo
ationxk, the stress state is supposed to be 
ompletely relaxed whereas outside the far �eld stressis applied �ij(x) = 8>><>>: 0 if x 2 
ij(xk);�0ij otherwise: (8)In the appropriate 
oordinate system, only two Boolean fun
tions 
n(xk) = 
11(xk) and
t(xk) = 
12(xk) are used to des
ribe the stress relaxation for normal and tangential load-ings, respe
tively.It 
an be noted (see Eqns. (6), (7) and (8)) that the relaxation fun
tions Rij(x) 
orre-sponding to the `Boolean' stress �eld are also simpli�ed (i.e., Rij(x) = 1 when x 2 
ij(xk)and Rij(x) = 0 otherwise). The measure Zn and Zt of the relaxed (or obs
ured) zones 
n(xk)and 
t(xk) are estimated for ea
h stress 
omponents by assuming that the de�nition of thema
ros
opi
 stress � (see Eqn. (4)) 
an be used for the real stress �eld and the `Boolean'stress �eld de�ned in Eqn. (8)�11 = 1Z Z
 �11(x) dx = �1� 1Z Z
Rn(x)dx� �0n= �1� ZnZ � �0n (9)
7



and similarly �12 = �1� ZtZ � �0t (10)where Z is the measure of 
. A spa
e s
aling whi
h modi�es a length l into its dimensionless
ounter-part l = l=a (where a the radius of the 
onsidered 
ra
k) is used and allows one toderive a new expression for the measure of the obs
ured zonesZn = Z
Rn(x) dx = an Z
Rn(x) dx = an Sn (11)and Zt = Z
Rt(x) dx = an Z
Rt(x) dx = an St (12)where 
 is a dimensionless zone, Sn and St are dimensionless shape parameters of the obs
uredzone for normal and tangential far �eld stresses, respe
tively, and n is the spa
e dimension(n = 1 for a line, n = 2 for a shell, n = 3 for a volume).For sake of simpli
ity, it is assumed that 
ra
ks in brittle solids rapidly propagate at a
onstant velo
ity kC0 (C0 = qE=� where E is the Young's modulus of the virgin materialwith k a 
onstant dependent on the material properties (Kanninen and Popelar, 1985) or(Freund, 1990)). Therefore, Zn and Zt be
omeZn = Sn [kC0(T � t)℄n ; Zt = St [kC0(T � t)℄n (13)where T is the present time and t the time to nu
leation. It is worth mentioning that theshape parameters Sn and St may depend on the Poisson's ratio but they are independent oftime, i.e., the relaxed zones are self-similar. A numeri
al estimation of Sn and St is 
arriedout by using Fabrikant's solution and Eqns. (11) and (12). It follows that Sn = 3:74 andSt = 1:15 for � = 0:15 and n = 3.
2.2.2 Random Array of Cra
ksTo model more 
omplex situations (i.e., non-periodi
 penny-shaped 
ra
ks of various sizes,with random lo
ations and propagating at high velo
ity), Boolean fun
tions are used. Various8



non-periodi
 patterns 
an be obtained by simple operations su
h as dilution, superposition(see a review by Jeulin and Laurenge (1997)). For a random array of 
ra
ks during a dynami
loading, stress �elds 
an be approximated by the unions 
[ij of the whole set of Booleanfun
tions 
ij(xk), ea
h of them de�ned as the relaxed stress state around a single 
ra
k(Fig 2{
 and {d) of random lo
ation xk
[ij = [k 
ij(xk): (14)The measure Z[ij of 
[ij is expressed as (Jeulin and Jeulin, 1981; Serra, 1982; Denoual et al.,1997a) Z[ijZ = 1� exp f��t[�(t)℄Zij(t)g (15)where Zij(t) denotes the mean relaxed zone and �t[�(t)℄ the intensity of the Poisson point pro-
ess (Eqn. (1)). The mean relaxed zone Zij(t) is 
al
ulated by averaging at time t the se
tionof the obs
ured zones Zij(t� �) for a nu
leation at time � and with a density 1�t[�(t)℄ d�tdt [�(�)℄Zij(t)�t[�(t)℄ = Z t0 d�tdt [�(�)℄ Zij(t� �)d� (16)where Z11(t) = Zn(t) and Z12(t) = Zt(t). A simple proof of these results is given in Ap-pendix 1.The kineti
s of damage is dis
ussed in the following se
tion. Both damage kineti
s anddes
ription will be de�ned by using the simpli�ed stress �eld des
ription.
2.3 Damage Kineti
 LawThe �rst approa
h dealing with stress relaxation has been proposed by Mott (1947) to modelthe fragmentation of a shell. Defe
ts are assumed to be randomly lo
ated on a 
ir
ular line.When the hoop stress in
reases, some of the defe
ts break and relax the hoop stress. Be
ausethe following defe
ts will break only in the non-relaxed (or non-obs
ured) zones, the in
rementof broken defe
ts is equal to the in
rement of defe
ts able to break multiplied by the fra
tion
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of loaded material. No analyti
al solutions were proposed but the same hypotheses were usedin several models (see a review by Meyers (1994)). Another fragmentation model was pro-posed by Grady and Kipp (1980) and utilized for numeri
al 
al
ulations. The mi
rostru
turewas also des
ribed through stress relaxation of spheri
al shape around penny-shaped 
ra
ksnu
leated on initial defe
ts.To understand why a 
ra
k nu
leates, one has to model the intera
tion of nu
leated de-fe
ts and other defe
ts that would nu
leate. The spa
e lo
ation of the defe
ts is representedin a simple abs
issa of an x-y graph where the y-axis represents time (or stress) to failureof a given defe
t. In this graph, a shaded `
one' represents the expansion of the obs
urationzone with time due to nu
leation and propagation of a 
ra
k. A se
tion of a 
one 
an be avolume, a surfa
e or a length, depending on the spa
e dimension n (see Fig. 3-a). Inside thiszone, the stress is de
reasing and no new nu
leation 
an o

ur. An approximation of thiszone is given by 
[n (and 
[t ) i.e., the zone where the stress normal to the 
ra
k is de
reasingis assumed to be equal to the Boolean zone where the stress is relaxed. The defe
ts lo
atedoutside the shaded 
ones 
an nu
leate and produ
e their own in
reasing relaxation zone (e.g.,defe
ts nos. 1, 2 and 3 of Fig. 3-a). Inside the 
ones, the defe
ts that should have broken donot nu
leate (e.g., defe
ts nos. 4 and 5 of Fig. 3-a) sin
e they are shielded (or obs
ured).The total 
aw density �t 
an be split into two parts: �b (the broken 
aws) and �obs
(the obs
ured 
aws). Furthermore, the distribution of total 
aws in a zone of measure Z isassumed to be modeled by a Poisson point pro
ess of intensity �t[�(t)℄ in a

ordan
e withSe
tion 2.1 (Eqn. (1)). New 
ra
ks will initiate only if the defe
t exists in the 
onsidered zoneand if it does not belong to the relaxed zone 
[nd�bdt [�(t)℄ = d�tdt [�(t)℄� "1� Z[n (t)Z # (17)with �b(0) = �t(0) = 0.For a very high stress rate, most of the initial defe
ts nu
leate 
ra
ks before any signi�-
ant 
hange of the obs
ured zones, i.e., d�b=dt � d�t=dt and Z[n (t)=Z � 0. Conversely, when10



a very low stress rate is applied, the obs
ured zone o

upies the whole volume (Z[n (t)=Z � 1)after the �rst 
ra
k nu
leation, i.e., the nu
leation is stopped after the failure of the weakestdefe
t. The initial defe
t population des
ribed by �t is therefore used for both dynami
 frag-mentation and quasi{stati
 failure but the number of nu
leated defe
ts varies with respe
tto the stress rate. Another way of obtaining Eqn. (17) is given in Appendix 1 by using thehorizon of a defe
t. For a defe
t P, the horizon is de�ned as a spa
e-time zone in whi
h adefe
t always obs
ures P (Fig. 3-b).The fra
tion of relaxed zones Z[n (t)=Z is a good approximation for a damage variableD de�ned in the framework of Continuum Damage Me
hani
s (Lemaitre, 1992), with D = 0for the virgin material and D = 1 for the fully damaged oneD = Z[nZ : (18)It is worth noting that the damage des
ription is not ne
essarily isotropi
 even though it is
hara
terized through a volume ratio. Sin
e the relaxation zones are relative to a 
ra
kingdire
tion, an anisotropi
 damage des
ription is needed. The 
ase of multiple superimposed
ra
k patterns is studied in Se
tion 2.5 where di�erent variables Di are used for ea
h dire
tioni of 
ra
king. For any stress rate, the kineti
s of Di is given in di�erential form (a

ordingto 
lassi
al results of Continuum Damage Me
hani
s (Lemaitre, 1992), the 
hange of Di isstopped when d�i=dt � 0)dn�1dtn�1  11�Di dDidt ! = 
�t [�i(t)℄ n! S (kC0)n when d�idt > 0 and �i > 0 (19)where �i is the eigen stress asso
iated to penny-shaped 
ra
ks of normal xi and 
�t is thedensity of defe
ts e�e
tively broken in the 
onsidered zone (n = 1; 2 or 3). The density 
�t istherefore of probabilisti
 nature and may depend on a given realization (i.e., one 
an have 2,0, 1, 5, et
. defe
t(s) broken for di�erent �nite elements 
FE of volume VFE submitted to thesame pres
ribed loading).When an in�nite volume is 
onsidered 
�t is equal to �t. For a �nite size ZFE of a given�nite element 
FE, the probabilisti
 density 
�t is approximated by the �rst defe
t able to11



break in addition with the density �t (see also (Benz and Asphaug, 1994)). The density 
�t iseither equal to zero (no broken defe
t), or equal to or greater than 1=ZFE, i.e., at least onedefe
t is broken in 
FE (see Fig. 4)ZFE 
�t[�i(t)℄ = 8>>><>>>: 0 if �i(t) � �k;max "ZFE�0  �i(t)�0 !m ; 1# otherwise. (20)The parameter �k is the failure stress of the �rst defe
t k able to break in 
FE. The failurestress is obtained by random sele
tion of a failure probability PF 2 ℄0; 1[ with Z = ZFE andis a fun
tion of the Weibull parameters (m; �0=�m0 ) and the mesh size ZFE (see Eqns. (1), (2)and (15)).2.4 Continuum vs. Dis
rete Approa
hesWhen Continuum Damage Me
hani
s is used in numeri
al simulations, the medium is assumedto be 
ontinuum on the s
ale of a �nite element in whi
h numerous 
ra
ks are expe
ted tonu
leate. However, 
ra
k densities may strongly vary over the stru
ture and the analysis offragmentation through a 
ontinuum modeling may be deli
ate. As an alternative, dis
reteelement modeling has been proposed (Cama
ho and Ortiz, 1996; Mastilovi
 and Kraj
inovi
,1999) when the fragment size is greater than or equal to the size of a �nite element. Espinosaet al. (1998) have developed a 
ontinuum/dis
rete multi-s
ale model in whi
h the �ner s
aleis dis
rete and allows for the derivation of a 
ontinuum des
ription on a higher s
ale. Inthe present se
tion, 
hara
teristi
 s
ales are introdu
ed and enable one to 
hoose between
ontinuum or dis
rete approa
hes.When dynami
 (and proportional) loadings are 
onsidered with a 
onstant stress rated�i=dt = _�, one 
an de�ne a dimensionless 
aw density (� = �=�
), time (t = t=t
), spa
emeasure (Z = Z=Z
) and stress (�i = �i=�
) from the 
ondition (Denoual and Hild, 1998)�
 Z
 = 1 with �
 = �t( _�t
) and Z
 = Zn(t
) (21)where the subs
ript `
' denotes 
hara
teristi
 quantities. A 
hara
teristi
 stress is de�ned by�
 = _�t
. Equation (21) expresses the fa
t that the 
hara
teristi
 zone of measure Z
 
ontains12



on average one 
aw that may break at the 
hara
teristi
 time t
. By using Eqns. (1) and(21), the 
hara
teristi
 parameters are given byt
 = " �m0�0S(kC0)n _�m # 1m+n ; Z
 = "(�0kC0)mSm=n�0 _�m # nm+n ; �
 = " �m0 _�n�0S(kC0)n# 1m+n : (22)This s
aling is useful, in parti
ular, when 
losed-form expressions 
an be given for the nu-
leated defe
t density, damage kineti
s and ultimate strength (Denoual and Hild, 1998). Byusing Eqns. (1), (15), and (16) a 
losed-form solution 
an be derived for the di�erential equa-tion (17) in the 
ase of a 
onstant stress rate _� (see Se
tion 4). By using Eqns. (15), (16), (18)and by assuming that 
�t = �t, the 
hange of any of the damage parameters Di is deterministi
(Denoual and Hild, 2000) Di = 1� exp "�m! n! �m+ni(m+ n)! # : (23)The applied stress �i is related to the lo
al (or e�e
tive) stress �i by �i = �i=(1�Di). Theultimate strength (d�i=d�i = 0), denoted by �max, is therefore expressed as�max�
 = "1e (m+ n� 1)!m! n! # 1m+n : (24)These 
losed-form solutions for quasi{stati
 (Eqn. (2)) and dynami
 loadings (Eqn. (24))
an be validated by using Monte{Carlo simulations. In a 
ubi
 volume of 1.7mm3, a set of
aws of density �t[�(t)℄ is randomly lo
ated. When the stress rate in
reases (with a 
onstantstress rate _�), obs
uration zones following the pro
ess des
ribed in Se
tion 2.2.1 are modeled.The ma
ros
opi
 stress is obtained by averaging the mi
ros
opi
 stress in the non-relaxedzones. The behavior of this `�nite volume' is not deterministi
 and numerous 
al
ulationshave to be performed when average values are sought (e.g., average ma
ros
opi
 ultimatestrength and standard deviation). Su
h 
al
ulations are shown in Fig. 5 where the ma
ro-s
opi
 ultimate strength is plotted against the stress rate _�. It 
an be noted that the resultsobtained with the multi-s
ale model (Eqn. (19)) are very 
omparable (in terms of mean andstandard deviation) to those given by Monte-Carlo simulations (Denoual and Hild, 2000),with a CPU time divided by 3000. For a stress rate within [0 , 500 MPa ��s�1℄, the ultimatestrength is not modi�ed by the loading rate. Consequently, the quasi-stati
 Weibull solution(Eqn. (2)) applies. When _� in
reases by approximately one order of magnitude, the ultimate13



tensile strength follows the `dynami
' Weibull solution (24).During the single / multiple fragmentation transition, the di�eren
e between the dashedlines (Eqns. (2) and (24)) and the Monte-Carlo simulations does not ex
eed 10%. The stan-dard deviation signi�
antly de
reases in the 
ase of multiple fragmentation when the stressrate in
reases. Furthermore, for S-SiC 
erami
s, a stress rate up to 10 MPa ��s�1 has shownno stress rate e�e
t on the mean failure strength (Denoual and Riou, 1995). This observationis in good agreement with the result shown in Fig. 5.The 
losed-form solutions for quasi{stati
 (Eqn. (2)) or dynami
 regimes (Eqn. (24)) arenow used to determine when dis
rete or 
ontinuum approa
hes 
an be used. The transitionbetween single and multiple fragmentation 
an be estimated as the interse
tion between theweakest link and the multiple fragmentation solutions (see Fig. 5)�max( _�) = �w: (25)The transition de�ned by Eqn. (25) leads to the following inequalities8>>>><>>>>: _�Zm+nmn < f Single fragmentation_�Zm+nmn � f Multiple fragmentation (26)with f = �0��1=m0 S1=nn kC0 "e m! n!(m + n� 1)!��m + 1m �m+n# 1n : (27)This transition does not only depend upon material (Weibull) parameters but also involves thesize Z of the 
onsidered element and the applied stress rate _�. The response of a large element
an be 
onsidered as `dynami
' for low stress rates although the same material follows theweakest link hypothesis for the same loading applied on a smaller element. There is thereforeno intrinsi
 relationship between material parameters and 
hara
teristi
 s
ales to des
ribe thefragmentation of brittle materials. It is a 
ombination of material parameters, size and stressrate sin
e there is a 
ompetition between lo
al (in
reasing) stress rate and stress relaxation
14



around 
ra
ks. By using the 
hara
teristi
 spa
e measure Z
, Eqn. (26) 
an be rewritten as8>>>>><>>>>>: ZZ
( _�) < g(m) Single fragmentationZZ
( _�) � g(m) Multiple fragmentation (28)with g(m) = "e m! n!(m+ n� 1)!��m+ 1m �m+n# mm+n : (29)The size Z
 
an therefore be 
onsidered as the 
hara
teristi
 s
ale for whi
h a single / multiplefragmentation transition is observed. Furthermore, Fig. 5 shows that, when Z=Z
 � 1, theultimate strength s
atter is very small i.e., when the stress rate in
reases, the 
hara
teristi
s
ale of the fragmented 
erami
 de
reases and the stress estimated over Z be
omes a goodapproximation of the average stress.Furthermore, a hypothesis of uniformity of the damage variables over the horizon (seeFig. 3) is needed in a lo
al (and 
ontinuum) approa
h. When the mesh size ZZE is smallerthan the horizon, two neighboring integration points have their horizons overlapping: a spa
elo
ation may be in
uen
ed by two a priori independent sets of variables. To avoid su
h asituation, the minimummesh size must be greater than or equal to the horizon. Equation (23)shows that Di(�i = 1) �= 0 and Di(�i = 2) �= 1 (i.e., most of the damage 
hange o

urs duringa time interval equal to t
). During t
, the measure of the horizon is limited by Zn(t
) = Z
.Therefore the minimum mesh size is Z
. The size Z
 is dependent on the loading rate: thehigher the stress rate, the smaller the mesh size. This is 
onsistent with the general pra
ti
eof mesh re�ning when sho
k waves are suspe
ted to o

ur. The 
hara
teristi
 size 
an be usedin FE 
omputations in whi
h the mesh size Z = ZFE has to be greater than or equal to Z
 touse a 
ontinuum (and deterministi
) des
ription of damage (Eqn. (28)).The proposed s
aling allows one to determine whether a 
ontinuum or dis
rete approa
h
an be used. In the single fragmentation regime, a dis
rete (and non-lo
al) method is a naturalway of dealing with failure. Conversely, in the multiple fragmentation regime, the s
atter
15



in terms of overall behavior and failure strength be
omes small. In that 
ase, a 
lassi
alContinuum (and lo
al) Me
hani
s approa
h 
an be used. In the transition regime, dis
reteapproa
hes may no longer be needed while Continuum (Damage) Me
hani
s hypotheses arenot yet reasonable.2.5 Damage Des
riptionThe aim of this se
tion is to estimate of the 
omplian
e tensor SD of a damaged body. The 
aseof 
ra
ks in one dire
tion is analyzed in Se
tion 2.5.1 and generalized thereafter to multiple
ra
k patterns in Se
tion 2.5.2.2.5.1 Cra
ks in One Dire
tionThe damage state 
an be des
ribed by using only one s
alar variable D1. Let the shapeparameter St be written as a fra
tion � of SnSt = �Sn (30)with � � 0:31 for � = 0:15 and n = 3, see the numeri
al evaluation of St and Sn in Se
-tion 2.2.1.It follows (see Eqns. (15), (16) and (18)) that1� ZtZ = (1�D1)� : (31)Consequently, there is a 
omplian
e in
rease for the 55 and 66 
omponents of the 
omplian
etensor
SD = 1E

26666666666666666664
11�D1 �� �� 0 0 0�� 1 �� 0 0 0�� �� 1 0 0 00 0 0 1 + � 0 00 0 0 0 1+�(1�D1)� 00 0 0 0 0 1+�(1�D1)�

37777777777777777775(d1;:;:)
(32)
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where D1 is the damage variable due to 
ra
ks in the dire
tion d1. It 
an be noted that a
ra
k in dire
tion d1 is surrounded by a zone Zt that relaxes the shear stresses �12(x) and�13(x).2.5.2 Cra
ks in Multiple Dire
tionsWhen three orthogonal 
ra
k patterns are superimposed (i.e., the Boolean fun
tions 
an besuperimposed), the 
omplian
e tensor SD is obtained by using Eqn. (3)
SD = 1E

26666666666666666664
11�D1 �� �� 0 0 0�� 11�D2 �� 0 0 0�� �� 11�D3 0 0 00 0 0 1+�(1�D2)�(1�D3)� 0 00 0 0 0 1+�(1�D3)�(1�D1)� 00 0 0 0 0 1+�(1�D1)�(1�D2)�

37777777777777777775(d1;d2;d3)
: (33)

The 
omplian
e tensor SD is de�ned in the dire
tions of 
ra
king (d1, d2, d3). These dire
tionsasso
iated to D1, D2 and D3 may 
hange at ea
h time step until D1 rea
hes a threshold valueDth = 0:01 (the e�e
t of the threshold value was found to be negligible in the simulations).Then, only the dire
tion d1 is lo
ked, the other dire
tions follow the eigen dire
tions of �,with the 
onstraint to be perpendi
ular to d1. When D2 rea
hes the threshold value, thewhole dire
tions di are lo
ked. It 
an be noted that the same type of result 
an be obtainedby using mathemati
al arguments on a se
ond order damage tensor. The only 
hange is thevalue of the power �: � = 12 (Cordebois and Sidoro�, 1982). Lastly, another des
ription ofthe stress �eld (e.g., relaxation fun
tion R(x) obtained by a numeri
al analysis instead ofusing Fabrikant's solution) would probably lead to yet another value of the 
onstant �.The model 
an handle superpositions of 
ra
k patterns in up to three perpendi
ulardire
tions. This is espe
ially interesting when a 
omplete fragmentation of the material isexpe
ted due to the stress waves re
e
ting on free surfa
es. Su
h an experiment with a post{mortem analysis (Denoual and Hild, 2000) also shows that the orientation of 
ra
ks does not17




hange during impa
t, i.e., the fragments are 
reated by the superposition of an array ofstraight 
ra
ks. The inability to deal with rapidly rotating prin
ipal dire
tions of stress ishowever a limitation of the model.
3 Comparison with Experiments on SiC Cerami
sOn
e the elasti
 properties and the Weibull parameters are known, the model has no otherparameters to tune. A spe
ial emphasis will be put on sili
on 
arbide 
erami
s. Sin
e sili
on
arbide 
erami
s 
an be obtained by di�erent pro
essing routes, the present study mainlyfo
uses on two SiC grades whose properties are listed in Table I. The �rst grade, referred toas S-SiC, was provided by C�eramique et Composites (Fran
e). The se
ond grade (SiC-B) hasbeen manufa
tured by CERCOM (USA). The S-SiC 
erami
 is naturally sintered (sinteringtemperature: 2000ÆC). The end produ
t is an �-SiC (6H hexagonal stru
ture). The materialis not fully dense. No se
ondary phase 
an be observed but B4C in
lusions are present (Riou,1996) be
ause boron was added to enhan
e di�usion during sintering. Transgranular failureis the dominant me
hanism. On the other hand, SiC-B 
erami
s are obtained by pressureassisted densi�
ation. Aluminum is used to eliminate porosities (pro
essing temperature:2000ÆC, pressure: 15MPa). An alumina-ri
h se
ondary (glassy) phase is present (Forquin,2000). Be
ause of the lower strength of the se
ondary phase, the failure mode is predomi-nantly intergranular.Tensile 
ra
king 
an be observed during impa
t by using Edge On Impa
t (EOI) 
on-�gurations instead of a real 
on�guration where the degradation is `hidden' in the bulk of the
erami
. These 
on�gurations are developed by the Ernst-Ma
h-Institut (EMI) in Germany(Hornemann et al., 1984; Winkler et al., 1989; Stra�burger and Senf, 1994) and more re
entlyby the Centre Te
hnique d'Ar
ueil (CTA) in Fran
e (Riou et al., 1996; 1998). It 
an be shownthat the same damage me
hanism (i.e., damage in tension) is observed in EOI and in realimpa
t 
on�gurations (Denoual et al., 1996).18



For low impa
t velo
ities (< 500m/s) no damage in 
ompression o

urs in SiC 
eram-i
s (Denoual et al., 1997b) and the EOI 
on�guration 
an therefore be used to validate thedamage kineti
 laws for numeri
al simulations of the behavior of light armors.Figure 6{a (top) shows a stress rate map 4�s after impa
t with the 
orresponding dam-aged zone (bottom). When damage is generated, the stress rate is about 103MPa/�s. One
an see in Fig. 6 that this loading 
annot be modeled a

urately by using either 
ontinuum ordis
rete approa
hes, i.e., more than one defe
t breaks but the material 
annot be 
onsideredas 
ontinuum in a FE 
ell. It follows that the multi-s
ale model is used. It 
an be noted thatfor ea
h numeri
al simulation the set of random numbers is 
hara
terized by an integer 
alledthe `seed' of the random generator (Press et al., 1992). A given probabilisti
 simulation isthen de�ned by this integer and 
an always be reprodu
ed by using the same `seed'.
3.1 Real Time VisualizationReal time visualizations of damage have been performed with the SiC-B grade by using theEdge-on Impa
t 
on�guration developed by the EMI (Stra�burger et al., 1994). The velo
ityof a single 
ra
k has been measured (Riou et al., 1998) and is about 4800m/s. The value ofthe parameter k is thus equal to 0:4. A remark 
an be drawn on the shape of the damagedzone with respe
t to the impa
t velo
ity. With an impa
t of high velo
ity, the damage ishomogeneous in a 
ir
ular zone in front of the proje
tile (see Fig. 7{b and {
). Below a 
rit-i
al value depending on the material properties, damage is lo
alized in thinner and thinner
orridors when the velo
ity de
reases. Even though this lo
alization leads to larger fragments,it has been demonstrated (Denoual and Hild, 1998) that the transition between 
orridors and
ir
ular shapes of damage is not related to the single/multiple fragmentation transition. Amore detailed observation of the experimental result of Fig. 7{b shows that a 
orridor 
ontainsa high density of 
ra
ks, 
orresponding to a high lo
al stress rate.
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The random stress to failure (Fig. 7{a) is 
al
ulated by using Eqns. (1) and (2) for aFE volume of 1mm3. For high stress rates (i.e., in front of the proje
tile and in the Hertz-like
one 
ra
k), many defe
ts nu
leate in a FE 
ell. For a velo
ity of 185m/s, failure of an ele-ment set, whi
h 
an be 
ompared to ma
ros
opi
 
ra
ks, 
an be observed in addition to the
ontinuous degradation generated at the edge of the proje
tile (see Fig. 7{b). However, thereare some diÆ
ulties in handling ma
ros
opi
 
ra
ks. The failure of a FE 
ell is not alwaysfollowed by a 
ra
k generation and propagation, and when su
h a 
ra
k is 
reated, there is atenden
y to follow the dire
tion of the FE mesh. The des
ription of 
ra
k propagation maybe improved by 
onsidering the failure of interfa
es between �nite elements instead of bulkfailure (Cama
ho and Ortiz, 1996; Espinosa et al., 1998; Mastilovi
 and Kraj
inovi
, 1999).
3.2 Moir�e Te
hniqueA se
ond EOI 
on�guration provides quantitative strain measurements over a �eld of 32 �32mm2 during impa
t. Details on the moir�e photography set-up 
an be found in (Bertin-Mourot et al., 1997). The advantage of the moir�e measurement is that a quantitative ratherthan qualitative analysis 
an be performed between experiments and simulations. Figure 8{ais the fringe pattern approximately 2�s after impa
t.The 
omparison of numeri
al and experimental strains is given in Fig. 8{b. The straindiagram is plotted for a point M at a distan
e of 13mm from the surfa
e hit by the proje
tile(
ir
ular mark in Fig. 8-a). It 
an be noted that the radial strain rea
hes an important value(of the order of 0:8%) before any signi�
ant 
hange of the hoop strain. This is 
onsistentwith a 
ylindri
al stress wave in whi
h the tensile strain is indu
ed by the radial motionof the material. The multi-s
ale model is used to give probabilisti
 numeri
al simulationsinstead of the deterministi
 simulations proposed with a 
ontinuum model. That is, numeroussimulations have to be performed when the average behavior is analyzed. Five hundredrealizations of the simulation presented in Se
tion 3.2 are performed with the multi-s
ale
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model (a CPU time of 4 minutes per realization is needed on an HP 715 workstation withthe �nite element pa
kage PamSho
k (1998)). The average and standard deviation of thehoop and radial strains are plotted in Fig. 8. The multi-s
ale model yields good predi
tionsof the strain levels. All the experimental measurements fall in the grey shaded zone, i.e., theexperiment may be 
ompared to one realization of the 500 numeri
al simulations. The useof an anisotropi
 model is ne
essary if one wants to a

urately predi
t the strain levels. Anelasti
 
omputation underestimates both radial and hoop strains. An isotropi
 damage modelwould have given even lower strain levels (Denoual et al., 1996).4 Towards Material OptimizationA �ne fragmentation of the 
erami
 leads to a lo
alized strain around the proje
tile tip. Theenergy needed for the penetration into an armor is thus redu
ed in 
omparison to a 
oarsefragmentation where large fragments spread the strain within the volume and 
onsume energy(see (Woodward et al., 1994) and Fig. 9). Therefore, an optimization 
riterion assumed to berelevant for armor is that an in
rease of fragment size (i.e., a de
rease of broken defe
t density)leads to an in
rease of stru
tural strength. A 
losed-form solution for �b(t) (Eqn. (17)) isused with a 
onstant stress rate of 5MPa�ns�1 and a maximum tensile stress �max of 1GPa�max (�max) = �
 mm + n  m! n!(m + n)!!m+nm 
 " mm + n ; (m+ n)! �m+nmaxm! n! # (34)where 
[p; x℄ = R x0 tp�1 exp(�t) dt is the in
omplete gamma fun
tion. When the maximumtensile stress is rea
hed, the kineti
s of broken 
aw density is stopped (see Fig. 10{a). Thematerial parameters 
hosen to be optimized are the mean failure stress �w and the Weibullmodulus m. For ea
h 
ouple (�w; m), the Weibull parameter �0=�m0 is 
omputed by usingEqn. (2). The results are shown in Fig. 10{b where the broken defe
t density is plotted asa fun
tion of �w and m. One 
an observe a signi�
ant in
uen
e of the Weibull modulus onthe defe
t density: the higher m, the higher the broken 
aw density (i.e., a poor ballisti
performan
e). Moreover, it 
an be noted that an in
rease of the average failure stress wouldnot improve the performan
e of the 
erami
 if the Weibull modulus in
reases too.21



The SiC-B and S-SiC 
erami
s shown in Fig. 10{b have di�erent mi
rostru
tures, thelow porosity of SiC-B 
erami
s leading to a high average failure stress with a redu
ed s
at-ter (i.e., a high Weibull modulus). However, the S-SiC grade has the 
oarser fragmentationleading to a better ballisti
 performan
e (Beylat and Cottenot, 1996). Finally, two othergrades of sili
on 
arbide 
alled SiC{HIP (Riou, 1996) and SiC{150 (Leroy, 1999) are plottedin Fig. 10{b. The SiC{HIP grade exhibits better ballisti
 performan
es than the S{SiC grade(Beylat and Cottenot, 1996), as shown in Fig. 10{b. The SiC{150 grade, whi
h has a porosityof 10-14%, shows that a good material must have a low Weibull modulus, i.e., a large s
atterof failure stresses and a low porosity 
ontent, i.e., a high average failure stress.
5 SummaryA fragmentation model based on a me
hanism of nu
leation of 
aws and stress relaxationaround propagating 
ra
ks is derived. By 
onstru
tion, this approa
h is non-lo
al and thehorizon of a defe
t 
onstitutes the key ingredient. When a 
onstant stress rate is applied, a
losed-form solution for the number of nu
leated defe
ts is given. A damage kineti
 law isderived from the fragmentation model. The analysis of stress relaxation around the propagat-ing 
ra
ks leads naturally to an anisotropi
 des
ription of damage. A di�erential equation isobtained for the kineti
s of damage variables in order to be implemented into a FE 
ode. Theprobabilisti
 nature of this model will help in understanding the non-deterministi
 behaviorof stru
tures made of brittle materials and submitted to a wide range of loadings (from quasi-stati
 to dynami
 ones). This model is able to des
ribe a high density of 
ra
ks of randomlo
ation. It is therefore well suited for des
ribing degradations from the very early stages(i.e., nu
leation of few 
ra
ks) up to the onset of 
ra
k 
oales
en
e.Sin
e all the parameters are determined by analyti
al analyses or identi�ed throughquasi-stati
 (independent) tests, the model 
an be 
onsidered as fully predi
tive. The lo
al-22



ization of damage in 
orridors that appears for materials with high Weibull moduli and highfailure strength (e.g., the SiC{B grade) is well reprodu
ed by the model. The strain historyduring impa
t is also predi
ted, in parti
ular when the material seems to be intensively dam-aged (e.g., the S-SiC grade).The set of hypotheses shows that this model 
an only be used for damage in tension.Damage in 
ompression should lead to a very di�erent model even if the same kind of me
h-anisms (i.e., 
aw nu
leation, obs
uration zones) are used. Moreover, when rapid rotatingstresses are 
onsidered, the resulting damage is obtained through the superposition of orthog-onal damage patterns instead of 
hanging the dire
tion of the 
ra
k propagation. This may beseen as a limitation of the model, as long as the di�eren
es between superposition of damagepattern and rotating 
ra
ks in terms of overall stru
tural response is proven.The transition zone for whi
h the number of nu
leated 
aws is greater than but neverthe-less 
lose to one in a FE 
ell is well reprodu
ed by the multi-s
ale model. The 
orrespondingbehavior, neither 
ontinuum (deterministi
 and lo
al) nor dis
rete (probabilisti
 and non-lo
al) is one of the major features of this model. Lastly, it is expe
ted that these modelsare appli
able to other brittle materials (su
h as ro
k, glass or 
on
rete). Sin
e the numbersof parameters to identify is very limited and 
an be 
arried out under quasi-stati
 loading
onditions, the model 
an be tested on a large 
lass of brittle materials.6 A
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8 Appendix 1The kineti
s of nu
leated 
aw density or damage variable 
an be obtained by using the
onditions of non-relaxation for a given defe
t by examining the inverse problem (Denoual etal., 1997). It 
onsists in 
onsidering the past history of a defe
t that would break at a timeT . The defe
t will break if no defe
ts exist in its horizon. For a given defe
t D, its horizonis de�ned as a spa
e-time zone in whi
h a defe
t will always obs
ure P (Fig. 3). Outside thehorizon a defe
t will never obs
ure P. Equation (17) be
omesd�bdt (T ) = d�tdt (T )[1� Po(T )℄ with �b(0) = 0 and �t(0) = 0 (35)where 1 � Po is the probability that no defe
t exist in the horizon (Po = ZnZ ). The variablePo 
an be split into an in�nity of events de�ned by the probability �P (t) of �nding at t anew defe
t during a time step dt in a zone Zn(T � t). This probability in
rement is writtenby using a Poisson point pro
ess of intensity d�t=dt. Those independent events 
an be usedto derive the following expression for Po1� Po(T ) = �Tt (1��P (t))= �Tt exp "�d�tdt (t)�TZn(T � t)#� exp "� Z T0 d�tdt (t)Zn(T � t) dt# (36)where Zn(T � t) is the measure of the intera
tion zone at t for a defe
t that would break atT . This 
ompletes the proof.
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Table I. Material properties of four SiC 
erami
s.Parameters S{SiC℄ SiC{B[ SIC{HIP℄ SiC{150\Young's modulus E (GPa) 410 455 465 350Poisson's ratio � 0.15 0.16 0.15 0.25Density 3.15 3.20 3.18 2.76-2.89Porosity 1.8 % 0 NA 10-14 %Weibull modulus m 9.3 27 8.6 15Mean failure strength �w (MPa) 370 560 590 225E�e
tive volume Ze� (mm3) 1.7 1.5 1.2 1.4Number of samples 65 30 26 NAType of 
exural test 3-point 4-point 3-point 3-point℄: (Denoual and Riou, 1995)[: (Palika, 1995; Cho et al., 1994)\: (Leroy, 1999)
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hange given by a moir�e te
hnique (dots) and by the multi-s
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Figure 10: Denoual and HildFigure 10: a{ Stress history for material optimization. The dashed 
urve is any positivemonotoni
ally de
reasing fun
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ted by 
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