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Abstract

Modeling dynamic fragmentation of brittle materials usually implies to choose be-
tween a discrete description of the number of fragments and a continuum approach of
damage variables. A damage model that can be used in the whole range of loadings
(from quasi-static to dynamic ones) is developed. The deterministic or probabilistic
nature of fragmentation is discussed. Qualitative and quantitative validations are given
by using a real-time visualization configuration for analyzing the degradation kinetics
during impact and a moiré technique to measure the strains in a ceramic tile during
impact. Finally, a closed-form solution of the change of the number of broken defects
with the applied stress gives a way of optimizing the microstructure of ceramics for

armor applications.

Keywords: Ceramic materials, probability and statistics, impact testing.



1 Introduction

Bilayered armors with ceramics as front plate and steels as backing face have been used for
several years to improve the efficiency of light or medium armors (den Reijer, 1991). The high
hardness of ceramic materials favors projectile blunting and/or failure and spreads the kinetic
energy on a large surface of the ductile backing. The weight of the armor is then reduced in
comparison to an armor made of steel only. The response of a ceramic impacted by a steel
rod is strongly dependent upon the impactor velocity. Low impact velocities (approximately
less than 1000m/s) lead to degradations such as cracking prior to a significant penetration.
It follows that cracking is the prevalent mechanism to predict the residual properties of the
ceramic before penetration and to assess its multi-hit capability. Higher impact velocities
(ranging from about 1000 to 3000m/s) usually lead to degradations in compressive and ten-

sile modes (Espinosa et al., 1992).

Furthermore, the impactor can penetrate the ceramic layer even though some particu-
lar confinement conditions may prevent penetration (Bless et al., 1992; Hauver et al., 1994).
Ultra-high velocities (greater than 3000m/s) lead to a fully fragmented ceramic whose behav-
ior is closer to that of a fluid rather than that of a solid material. Analytical models can be

used to describe the response of the material (Tate, 1967; 1969).

The present paper is mostly concerned with the first impact regime where the main
mechanism is fragmentation of brittle materials, and specifically ceramics used in light ar-
mors. During the first microseconds of impact, high stress waves are produced and lead to
possible degradation in a compressive mode in the immediate surroundings of the projectile
tip and in tensile mode in a widely extended zone. The fragmentation in tension, which
extends over a larger zone than the degradation in a compressive mode, is one of the main
mechanisms to identify (in terms of location, kinetics and anisotropic behavior due to crack-
ing) for numerical simulations of impacts and penetration of projectiles. One can note that

damage in compression involves very different mechanisms compared to damage in tension.



For example, cracks propagating in mode IT may lead to a different kinetics than that in mode
I. Friction at the crack face has a significant influence on the damage description (Espinosa et
al., 1992; Halm and Dragon, 1998). Finally, the population of flaws that lead to crack nucle-
ation may be different in tension and in compression. To avoid an overlapping of mechanisms

that would make the model validation delicate, only damage in tension is considered herein.

In Section 2, a damage model describing the tensile fragmentation is derived. After
the presentation of a simplified description for the initial (i.e., undamaged) material, the
fragmentation is analyzed as an extension of the brittle fracture regime observed in quasi-
static loadings by considering random arrays of cracks. A multi-scale approach is proposed
to model fragmentation with no constrains on the stress rate. In particular, the transition
between single and multiple fragmentation is analyzed. It follows that the domain of validity
of a continuum and local approach is obtained. A so-called “Edge-On-Impact” configuration
is used in Section 3 and allows for the observation of damage patterns and strain fields during
impact. Results of multi-scale simulations are discussed with respect to experimental data.
Finally, a material optimization, which makes use of a closed-form solution of the change of
the number of fragments with time or stress, is performed in Section 4 to assess the ballistic

performance of four different SiC grades.

2 A Model for the Fragmentation of Brittle Materials

The present model is based on a reduced set of hypotheses for the microstructure description
before and during the change of damage. Because microcracking (which leads to structural
failure) is assumed to be caused by crack nucleation and growth, the first part of this study is
devoted to modeling the microstructure of brittle materials prior to tensile degradation (§2.1).
Cracks are supposed to emanate from defects and relax the stresses in their surroundings
(§2.2). A complete description of crack nucleation and propagation finally leads to a damage
description and kinetic law (see §2.3 and §2.5). The transition between single and multiple

fragmentation is discussed in §2.4.



2.1 Microstructure of the Undamaged Material

For brittle materials, the analysis of failure during quasi-static loadings can be used to define
the relevant features of the microstructure in terms of flaw density and failure stress distri-
bution. The nucleation of a crack in brittle materials subjected to quasi-static tension is due
to (point) defects defined by a failure strength o¢(xz). When an equivalent stress o(x), e.g.,
maximum principal stress, is greater than o¢(z), a crack emanating from the defect leads
to the failure of the whole structure. The failure strength is a random function related to
the defect distribution and location within the material. Therefore, the ultimate strength of

a ceramic specimen is not deterministic and a failure probability Pr can be described by a

Weibull law (1939)

Po=1— exp[—A(or) Zea] with A(0r) = Ao <@>m (1)

0o
where ); is the defect density, m the Weibull modulus, oq the reference stress relative to a
reference density Ao, op the failure stress (i.e., the maximum equivalent stress in the consid-
ered domain Q) and Zeg the effective volume, surface or length (Davies, 1973). The constant
Xo/oy is the so-called Weibull scale parameter. In the following, when no special mention
is made, the development is valid for any space dimension n (i.e., 1, 2 or 3). Otherwise, it
will be clearly stated for which space dimension the results are valid. It can be noted that
the previous formulation (i.e., Eqn. (1)) enters the framework of a Poisson point process of
intensity Ay (Gulino and Phoenix, 1991; Jeulin, 1991). The microstructure of the undamaged

material is therefore approximated by defects of density \¢ with random locations.

Moreover, the mean failure stress o, and the corresponding standard deviation ogq are

given by

1 2 2
Uw:%F<1+—);de:%FOJF—)—UVQV (2)
(Zeff)\o)m m (Zeff)\o)m m

where I is the Euler function of the second kind. The relationships given in Eqn. (2) are used
to estimate the defect density Ai[o(¢)] by using quasi-static tests even in the dynamic range

(Denoual and Riou, 1995): up to stress rates of 10 MPa xus™!, the Weibull parameters of a



silicon carbide ceramic are identical.

2.2 Simplification of the Damaged Material

In the bulk of an impacted ceramic, damage in tension is observed when the hoop stress
induced by the radial motion is sufficiently large to generate fracture in mode I initiating on
the microdefects already mentioned in Section 2.1. It will be assumed that the initial defect
population leading to damage and failure is identical when the material is subjected to quasi-
static and dynamic loading conditions (Denoual and Riou, 1995). This statement corresponds
to the assumption that a single defect (e.g., a void, a microcrack) breaks at a stress level that
is weakly dependent on the stress rate. However, the broken defect population is strongly
dependent on the stress history. For very low stress rates, only the dominant defect of the
whole population breaks (i.e., the weakest link of a structure) and the Weibull law described
in the previous section applies. When dynamic loadings are considered, a part (increasing
with the stress rate) of the initial defect population is broken. This point will be described
in Sections 2.3 and 2.4.

Closed-form expressions for the effective properties of various crack patterns are pro-
posed in the literature (see for example (Kachanov, 1994)). These solutions are obtained for
quasi-static loadings and when crack interactions are considered, mostly periodic patterns are
used. In the present study, the approximations needed for an analytical estimation of effective
elastic properties of the cracked solid no longer hold. The crack velocity has the same order
of magnitude as the Rayleigh wave speed (Kanninen and Popelar, 1985; Freund, 1990) and
stress equilibrium during damage change is never achieved.

The considered crack pattern is made of penny-shaped cracks (instead of rectilinear
cracks) of random locations. Tt follows that periodic homogenization techniques cannot be

used to describe this type of dynamic cracking.

The link between microscopic and macroscopic scales is obtained by stating that the



Gibbs’ energy on a macroscopic scale is equal to the average specific enthalpy on a microscopic

scale

! o(z) :

20Pp=X:5": 2 =—
P == 7 Ja=

[
e

to(z) dz (3)

where §D is the compliance tensor of the damaged material (and S is that of an undamaged

material), p the mass density, {2 a representative zone of measure 7, ‘:’ the contraction with

respect to two indices, g(x) the microscopic stress at point z, and X the macroscopic stress

defined by

1
L= | oz)dz

(4)
The aim of this section is to introduce all the microscopic aspects of fracture to describe the
microstructure of damaged material. A simplified stress field is proposed in the following

section for a single crack and then extended to a random population of cracks.

2.2.1 Single Crack

Stress tensors are now expressed as vectors by using Voigt’s notations and fourth order tensors
are reduced to second order ones. When a fracture is initiated on a defect k located at z;, the
stress state around the propagating crack is a complex function of time, crack velocity and
stress wave celerity. For a crack of normal n = z; submitted to a far field ¢°, the microscopic

stress field g(z) at point x can be written as
o(z) = [L - R(x)] o’ (5)

where R(z) is a second order tensor accounting for stress modifications (mainly stress relax-

ation) around a crack.

In the appropriate coordinate system, the stress applied to the crack can be simplified
as a uniform normal stress o¥ in addition to a uniform tangential loading o (i.e., modes I
and IT). The quasi-static solution of stress relaxation around a penny-shaped crack given by
Fabrikant (1990) is used as an approximation of the relaxed stress state during a dynamic

loading. The relevant stress fields are plotted in Fig. 1. One can observe that for a crack



normal aligned along direction x;, and a far field stress ¢¥, only the stress oy;(x) is relaxed
over an important zone. For a pure tangential far field stress o0 in the (z;,z,) plane, only
the component o12(z) is significantly relaxed. Even though the whole relaxation tensor can
be used, for the sake of simplicity, only the first and second most relaxed stress fields are

considered in the following. Two relaxation components R, and R; are defined as

ou(z) = [1—Ra(2)] oy, (6)

o12(z) = [1-Ri(a)] o). (7)

A simplification of the stress field around a crack is proposed by using Boolean functions
(Jeulin and Jeulin, 1981). An example of a Boolean representation of stress relaxation is given
in Fig. 2-a and —b. Inside the Boolean functions €2;;(z;) associated to a defect of location
Z, the stress state is supposed to be completely relaxed whereas outside the far field stress

is applied

0 if z € Qy(ay),
oij(z) = (8)
oy; otherwise.
In the appropriate coordinate system, only two Boolean functions Q,(z;) = Q(z;) and
Qq(zy) = Qa(zy,) are used to describe the stress relaxation for normal and tangential load-

ings, respectively.

It can be noted (see Eqns. (6), (7) and (8)) that the relaxation functions R;;(z) corre-
sponding to the ‘Boolean’ stress field are also simplified (i.e., R;j(z) = 1 when z € Q;;(z;)
and R;;(z) = 0 otherwise). The measure Z, and Z; of the relaxed (or obscured) zones €, (z;)
and € (x;) are estimated for each stress components by assuming that the definition of the

macroscopic stress ¥ (see Eqn. (4)) can be used for the real stress field and the ‘Boolean’

stress field defined in Eqn. (8)
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and similarly

Z
Y = (1 — ; ) o? (10)

where Z is the measure of ). A space scaling which modifies a length [ into its dimensionless
counter-part [ = I/a (where a the radius of the considered crack) is used and allows one to

derive a new expression for the measure of the obscured zones
Iy = / Ry (z) dz = a"/_Rn(Z) dz =ad" S, (11)
Q Q

and
7y = / Ri(z) dz = a" /_Rt(z) dz = a" S (12)
Q Q
where ) is a dimensionless zone, S, and S; are dimensionless shape parameters of the obscured

zone for normal and tangential far field stresses, respectively, and n is the space dimension

(n =1 for a line, n = 2 for a shell, n = 3 for a volume).

For sake of simplicity, it is assumed that cracks in brittle solids rapidly propagate at a
constant velocity kCy (Co = /E/p where E is the Young’s modulus of the virgin material
with k& a constant dependent on the material properties (Kanninen and Popelar, 1985) or

(Freund, 1990)). Therefore, Z, and Z; become
Zy =8y [kCo(T =) , Z,=S; [kCo(T —t)]" (13)

where T is the present time and ¢ the time to nucleation. It is worth mentioning that the
shape parameters S, and S; may depend on the Poisson’s ratio but they are independent of
time, i.e., the relaxed zones are self-similar. A numerical estimation of S, and S; is carried
out by using Fabrikant’s solution and Equns. (11) and (12). It follows that S, = 3.74 and

S; = 1.15 for » = 0.15 and n = 3.

2.2.2 Random Array of Cracks

To model more complex situations (i.e., non-periodic penny-shaped cracks of various sizes,

with random locations and propagating at high velocity), Boolean functions are used. Various



non-periodic patterns can be obtained by simple operations such as dilution, superposition
(see a review by Jeulin and Laurenge (1997)). For a random array of cracks during a dynamic
loading, stress fields can be approximated by the unions QZL; of the whole set of Boolean
functions €;;(x;), each of them defined as the relaxed stress state around a single crack

(Fig 2—¢ and —d) of random location x;

Q= LkJQij(ik)- (14)

The measure Zilj- of Qf] is expressed as (Jeulin and Jeulin, 1981; Serra, 1982; Denoual et al.,
1997a)

% =1—exp{—XN[o(t)]Z;;(1)} (15)

where Z;;(t) denotes the mean relaxed zone and \;[o(¢)] the intensity of the Poisson point pro-

cess (Eqn. (1)). The mean relaxed zone Z;;(¢) is calculated by averaging at time ¢ the section

of the obscured zones Z;;(t — 7) for a nucleation at time 7 and with a density At[;(t)] 4o (7)]

2yl = [ o) Zye - r)ar (16)

where Zy,(t) = Z,(t) and Zy5(t) = Zi(t). A simple proof of these results is given in Ap-

pendix 1.

The kinetics of damage is discussed in the following section. Both damage kinetics and

description will be defined by using the simplified stress field description.

2.3 Damage Kinetic Law

The first approach dealing with stress relaxation has been proposed by Mott (1947) to model
the fragmentation of a shell. Defects are assumed to be randomly located on a circular line.
When the hoop stress increases, some of the defects break and relax the hoop stress. Because
the following defects will break only in the non-relaxed (or non-obscured) zones, the increment

of broken defects is equal to the increment of defects able to break multiplied by the fraction



of loaded material. No analytical solutions were proposed but the same hypotheses were used
in several models (see a review by Meyers (1994)). Another fragmentation model was pro-
posed by Grady and Kipp (1980) and utilized for numerical calculations. The microstructure
was also described through stress relaxation of spherical shape around penny-shaped cracks

nucleated on initial defects.

To understand why a crack nucleates, one has to model the interaction of nucleated de-
fects and other defects that would nucleate. The space location of the defects is represented
in a simple abscissa of an x-y graph where the y-axis represents time (or stress) to failure
of a given defect. In this graph, a shaded ‘cone’ represents the expansion of the obscuration
zone with time due to nucleation and propagation of a crack. A section of a cone can be a
volume, a surface or a length, depending on the space dimension n (see Fig. 3-a). Inside this
zone, the stress is decreasing and no new nucleation can occur. An approximation of this
zone is given by QY (and Q) i.e., the zone where the stress normal to the crack is decreasing
is assumed to be equal to the Boolean zone where the stress is relaxed. The defects located
outside the shaded cones can nucleate and produce their own increasing relaxation zone (e.g.,
defects nos. 1, 2 and 3 of Fig. 3-a). Inside the cones, the defects that should have broken do

not nucleate (e.g., defects nos. 4 and 5 of Fig. 3-a) since they are shielded (or obscured).

The total flaw density A; can be split into two parts: A, (the broken flaws) and Agpsc
(the obscured flaws). Furthermore, the distribution of total flaws in a zone of measure 7 is
assumed to be modeled by a Poisson point process of intensity A¢[o(¢)] in accordance with
Section 2.1 (Eqn. (1)). New cracks will initiate only if the defect exists in the considered zone

and if it does not belong to the relaxed zone 2/

A,
dt

o] = ot x 1 210 (17

with Ap(0) = A¢(0) = 0.
For a very high stress rate, most of the initial defects nucleate cracks before any signifi-

cant change of the obscured zones, i.e., d\,/dt ~ d)\;/dt and Z;(t)/Z ~ 0. Conversely, when

10



a very low stress rate is applied, the obscured zone occupies the whole volume (Z7(t)/Z ~ 1)
after the first crack nucleation, i.e., the nucleation is stopped after the failure of the weakest
defect. The initial defect population described by A; is therefore used for both dynamic frag-
mentation and quasi-static failure but the number of nucleated defects varies with respect
to the stress rate. Another way of obtaining Eqn. (17) is given in Appendix 1 by using the
horizon of a defect. For a defect P, the horizon is defined as a space-time zone in which a

defect always obscures P (Fig. 3-b).

The fraction of relaxed zones Z7(t)/Z is a good approximation for a damage variable
D defined in the framework of Continuum Damage Mechanics (Lemaitre, 1992), with D = 0

for the virgin material and D = 1 for the fully damaged one

ZU
D= (18)

It is worth noting that the damage description is not necessarily isotropic even though it is
characterized through a volume ratio. Since the relaxation zones are relative to a cracking
direction, an anisotropic damage description is needed. The case of multiple superimposed
crack patterns is studied in Section 2.5 where different variables D; are used for each direction
i of cracking. For any stress rate, the kinetics of D; is given in differential form (according
to classical results of Continuum Damage Mechanics (Lemaitre, 1992), the change of D; is

stopped when do;/dt < 0)

din=t \1 - D; dt

dn=t 1 dD;
dt

> =X\ [o:(1)] n!' S (kCo)™ when doi >0and o; >0 (19)

where o; is the eigen stress associated to penny-shaped cracks of normal z; and )\At is the
density of defects effectively broken in the considered zone (n = 1,2 or 3). The density X is
therefore of probabilistic nature and may depend on a given realization (i.e., one can have 2,
0, 1, 5, etc. defect(s) broken for different finite elements Qpg of volume Vig submitted to the
same prescribed loading).

When an infinite volume is considered /\At is equal to A;. For a finite size Zgg of a given

finite element Qpg, the probabilistic density :\; is approximated by the first defect able to

11



break in addition with the density \; (see also (Benz and Asphaug, 1994)). The density A; is
either equal to zero (no broken defect), or equal to or greater than 1/Zpg, i.e., at least one

defect is broken in Qpg (see Fig. 4)

0 if 04(t) < oy,

Zrx Mloi(1)] = ai(t)\" . (20)
max |ZrgAg | — | ,1| otherwise.
0o

The parameter o}, is the failure stress of the first defect £ able to break in Qpg. The failure
stress is obtained by random selection of a failure probability Pr € ]0; 1] with Z = Zpg and
is a function of the Weibull parameters (m, A\g/c") and the mesh size Zpg (see Eqns. (1), (2)
and (15)).

2.4 Continuum vs. Discrete Approaches

When Continuum Damage Mechanics is used in numerical simulations, the medium is assumed
to be continuum on the scale of a finite element in which numerous cracks are expected to
nucleate. However, crack densities may strongly vary over the structure and the analysis of
fragmentation through a continuum modeling may be delicate. As an alternative, discrete
element modeling has been proposed (Camacho and Ortiz, 1996; Mastilovic and Krajcinovic,
1999) when the fragment size is greater than or equal to the size of a finite element. Espinosa
et al. (1998) have developed a continuum/discrete multi-scale model in which the finer scale
is discrete and allows for the derivation of a continuum description on a higher scale. In
the present section, characteristic scales are introduced and enable one to choose between

continuum or discrete approaches.

When dynamic (and proportional) loadings are considered with a constant stress rate
do;/dt = &, one can define a dimensionless flaw density (A = \/\.), time ( = t/t.), space

measure (Z = 7/7Z.) and stress (¢; = 0;/0.) from the condition (Denoual and Hild, 1998)
A Zo =1 with Ao = A (6t) and Z. = Zy(tc) (21)

where the subscript ‘¢’ denotes characteristic quantities. A characteristic stress is defined by

o. = dt.. Equation (21) expresses the fact that the characteristic zone of measure 7. contains

12



on average one flaw that may break at the characteristic time ¢.. By using Eqns. (1) and

(21), the characteristic parameters are given by

oy | [lookCyrsmm TS [ oper JmE
)no-m )\0 )n

e = [/\OS(kCO A& S(kCq
This scaling is useful, in particular, when closed-form expressions can be given for the nu-
cleated defect density, damage kinetics and ultimate strength (Denoual and Hild, 1998). By
using Eqns. (1), (15), and (16) a closed-form solution can be derived for the differential equa-
tion (17) in the case of a constant stress rate & (see Section 4). By using Eqns. (15), (16), (18)

and by assuming that /\At = )\, the change of any of the damage parameters D; is deterministic

(Denoual and Hild, 2000)

7

(m +n)!
The applied stress ¥; is related to the local (or effective) stress o; by o; = ¥;/(1 — D;). The

I ) gmtn
D=1 oxp [_w]

(23)

ultimate strength (dX;/do; = 0), denoted by Y.y, is therefore expressed as

1
Smax |1 — )]
m (mtn— D (24)
e m! n!

These closed-form solutions for quasi-static (Eqn. (2)) and dynamic loadings (Eqn. (24))
can be validated by using Monte—Carlo simulations. In a cubic volume of 1.7mm?, a set of
flaws of density Ai[o ()] is randomly located. When the stress rate increases (with a constant
stress rate &), obscuration zones following the process described in Section 2.2.1 are modeled.
The macroscopic stress is obtained by averaging the microscopic stress in the non-relaxed
zones. The behavior of this ‘finite volume’ is not deterministic and numerous calculations
have to be performed when average values are sought (e.g., average macroscopic ultimate
strength and standard deviation). Such calculations are shown in Fig. 5 where the macro-
scopic ultimate strength is plotted against the stress rate ¢. It can be noted that the results
obtained with the multi-scale model (Eqn. (19)) are very comparable (in terms of mean and
standard deviation) to those given by Monte-Carlo simulations (Denoual and Hild, 2000),
with a CPU time divided by 3000. For a stress rate within [0, 500 MPa x us™'], the ultimate
strength is not modified by the loading rate. Consequently, the quasi-static Weibull solution

(Eqn. (2)) applies. When & increases by approximately one order of magnitude, the ultimate

13



tensile strength follows the ‘dynamic’ Weibull solution (24).

During the single / multiple fragmentation transition, the difference between the dashed
lines (Eqns. (2) and (24)) and the Monte-Carlo simulations does not exceed 10%. The stan-
dard deviation significantly decreases in the case of multiple fragmentation when the stress
rate increases. Furthermore, for S-SiC ceramics, a stress rate up to 10 MPa x s ! has shown
no stress rate effect on the mean failure strength (Denoual and Riou, 1995). This observation

is in good agreement with the result shown in Fig. 5.

The closed-form solutions for quasi—static (Eqn. (2)) or dynamic regimes (Eqn. (24)) are
now used to determine when discrete or continuum approaches can be used. The transition
between single and multiple fragmentation can be estimated as the intersection between the

weakest link and the multiple fragmentation solutions (see Fig. 5)
Ymax(0) = 0. (25)
The transition defined by Eqn. (25) leads to the following inequalities

m+n

oZ mn < f  Single fragmentation

(26)
57 > f Multiple fragmentation
with .
_ !'n! m+ 1\
= oAy /™S mEC L ( ) 27
=00k " 0 €(m+n—1)! m (27)

This transition does not only depend upon material (Weibull) parameters but also involves the
size Z of the considered element and the applied stress rate 0. The response of a large element
can be considered as ‘dynamic’ for low stress rates although the same material follows the
weakest link hypothesis for the same loading applied on a smaller element. There is therefore
no intrinsic relationship between material parameters and characteristic scales to describe the
fragmentation of brittle materials. It is a combination of material parameters, size and stress

rate since there is a competition between local (increasing) stress rate and stress relaxation

14



around cracks. By using the characteristic space measure Z., Eqn. (26) can be rewritten as

VA
7.(5) < g(m)  Single fragmentation
(o
P (28)
7.0 > g(m)  Multiple fragmentation
with
m! n! m 4 1\ ™+ men
g(m) = le(m%—n—l)! ( m ) ] ' (29)

The size Z. can therefore be considered as the characteristic scale for which a single / multiple
fragmentation transition is observed. Furthermore, Fig. 5 shows that, when Z/Z. > 1, the
ultimate strength scatter is very small ¢.e., when the stress rate increases, the characteristic
scale of the fragmented ceramic decreases and the stress estimated over Z becomes a good

approximation of the average stress.

Furthermore, a hypothesis of uniformity of the damage variables over the horizon (see
Fig. 3) is needed in a local (and continuum) approach. When the mesh size Zyzp is smaller
than the horizon, two neighboring integration points have their horizons overlapping: a space
location may be influenced by two a priori independent sets of variables. To avoid such a
situation, the minimum mesh size must be greater than or equal to the horizon. Equation (23)
shows that D;(7; = 1) = 0 and D;(7; = 2) = 1 (i.e., most of the damage change occurs during
a time interval equal to t.). During t., the measure of the horizon is limited by Z,(t.) = Z..
Therefore the minimum mesh size is Z.. The size Z. is dependent on the loading rate: the
higher the stress rate, the smaller the mesh size. This is consistent with the general practice
of mesh refining when shock waves are suspected to occur. The characteristic size can be used
in FE computations in which the mesh size 7 = Zgg has to be greater than or equal to Z. to

use a continuum (and deterministic) description of damage (Eqn. (28)).
The proposed scaling allows one to determine whether a continuum or discrete approach

can be used. In the single fragmentation regime, a discrete (and non-local) method is a natural

way of dealing with failure. Conversely, in the multiple fragmentation regime, the scatter

15



in terms of overall behavior and failure strength becomes small. In that case, a classical
Continuum (and local) Mechanics approach can be used. In the transition regime, discrete
approaches may no longer be needed while Continuum (Damage) Mechanics hypotheses are

not yet reasonable.

2.5 Damage Description

The aim of this section is to estimate of the compliance tensor §D of a damaged body. The case
of cracks in one direction is analyzed in Section 2.5.1 and generalized thereafter to multiple

crack patterns in Section 2.5.2.

2.5.1 Cracks in One Direction

The damage state can be described by using only one scalar variable D;. Let the shape

parameter S; be written as a fraction « of S,
St = OéSn (30)

with o ~ 0.31 for v = 0.15 and n = 3, see the numerical evaluation of S; and S, in Sec-
tion 2.2.1.
It follows (see Eqns. (15), (16) and (18)) that

1_%:(1_1)1)@. (31)

Consequently, there is a compliance increase for the 55 and 66 components of the compliance

tensor

1 -v —v 1 0 0 0
SP == (32)
Ef 9 0 0 14r 0 0
0 0 0 0 h O
0 0 0 0 0 v
: =P0% 1)
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where D; is the damage variable due to cracks in the direction d;. It can be noted that a

crack in direction d, is surrounded by a zone Z; that relaxes the shear stresses o2(x) and
013 (&)
2.5.2 Cracks in Multiple Directions

When three orthogonal crack patterns are superimposed (i.e., the Boolean functions can be

superimposed), the compliance tensor S® is obtained by using Eqn. (3)

_ 1_1D1 . L 0 0 0 -
IS 0 0 0
o % IR 10 0 0 . (33)
00 0 pimE 0 0
0 0 0 0 Q_Dg,)lcx% 0
| ; ) 0 0 0 @_m;cx% 4(d, dy.dy)

The compliance tensor §D is defined in the directions of cracking (d, d,, d3). These directions
associated to Dy, Dy and D3 may change at each time step until D; reaches a threshold value
Dy, = 0.01 (the effect of the threshold value was found to be negligible in the simulations).
Then, only the direction d; is locked, the other directions follow the eigen directions of g,
with the constraint to be perpendicular to d;. When D, reaches the threshold value, the
whole directions d; are locked. Tt can be noted that the same type of result can be obtained
by using mathematical arguments on a second order damage tensor. The only change is the
value of the power a: o = % (Cordebois and Sidoroff, 1982). Lastly, another description of
the stress field (e.g., relaxation function R(z) obtained by a numerical analysis instead of

using Fabrikant’s solution) would probably lead to yet another value of the constant c.

The model can handle superpositions of crack patterns in up to three perpendicular
directions. This is especially interesting when a complete fragmentation of the material is
expected due to the stress waves reflecting on free surfaces. Such an experiment with a post—

mortem analysis (Denoual and Hild, 2000) also shows that the orientation of cracks does not
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change during impact, i.e., the fragments are created by the superposition of an array of
straight cracks. The inability to deal with rapidly rotating principal directions of stress is

however a limitation of the model.

3 Comparison with Experiments on SiC Ceramics

Once the elastic properties and the Weibull parameters are known, the model has no other
parameters to tune. A special emphasis will be put on silicon carbide ceramics. Since silicon
carbide ceramics can be obtained by different processing routes, the present study mainly
focuses on two SiC grades whose properties are listed in Table [. The first grade, referred to
as S-SiC, was provided by Céramique et Composites (France). The second grade (SiC-B) has
been manufactured by CERCOM (USA). The S-SiC ceramic is naturally sintered (sintering
temperature: 2000°C). The end product is an «-SiC (6H hexagonal structure). The material
is not fully dense. No secondary phase can be observed but B,C inclusions are present (Riou,
1996) because boron was added to enhance diffusion during sintering. Transgranular failure
is the dominant mechanism. On the other hand, SiC-B ceramics are obtained by pressure
assisted densification. Aluminum is used to eliminate porosities (processing temperature:
2000°C, pressure: 15MPa). An alumina-rich secondary (glassy) phase is present (Forquin,
2000). Because of the lower strength of the secondary phase, the failure mode is predomi-

nantly intergranular.

Tensile cracking can be observed during impact by using Edge On Impact (EOI) con-
figurations instead of a real configuration where the degradation is ‘hidden’ in the bulk of the
ceramic. These configurations are developed by the Ernst-Mach-Institut (EMI) in Germany
(Hornemann et al., 1984; Winkler et al., 1989; Stralburger and Senf, 1994) and more recently
by the Centre Technique d’Arcueil (CTA) in France (Riou et al., 1996; 1998). It can be shown
that the same damage mechanism (i.e., damage in tension) is observed in EOI and in real

impact configurations (Denoual et al., 1996).
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For low impact velocities (< 500m/s) no damage in compression occurs in SiC ceram-
ics (Denoual et al., 1997b) and the EOI configuration can therefore be used to validate the

damage kinetic laws for numerical simulations of the behavior of light armors.

Figure 6-a (top) shows a stress rate map 4us after impact with the corresponding dam-
aged zone (bottom). When damage is generated, the stress rate is about 10°MPa/us. One
can see in Fig. 6 that this loading cannot be modeled accurately by using either continuum or
discrete approaches, i.e., more than one defect breaks but the material cannot be considered
as continuum in a FE cell. It follows that the multi-scale model is used. It can be noted that
for each numerical simulation the set of random numbers is characterized by an integer called
the ‘seed’ of the random generator (Press et al., 1992). A given probabilistic simulation is

then defined by this integer and can always be reproduced by using the same ‘seed’.

3.1 Real Time Visualization

Real time visualizations of damage have been performed with the SiC-B grade by using the
Edge-on Impact configuration developed by the EMI (Straburger et al., 1994). The velocity
of a single crack has been measured (Riou et al., 1998) and is about 4800m/s. The value of
the parameter k is thus equal to 0.4. A remark can be drawn on the shape of the damaged
zone with respect to the impact velocity. With an impact of high velocity, the damage is
homogeneous in a circular zone in front of the projectile (see Fig. 7-b and —¢). Below a crit-
ical value depending on the material properties, damage is localized in thinner and thinner
corridors when the velocity decreases. Even though this localization leads to larger fragments,
it has been demonstrated (Denoual and Hild, 1998) that the transition between corridors and
circular shapes of damage is not related to the single/multiple fragmentation transition. A
more detailed observation of the experimental result of Fig. 7-b shows that a corridor contains

a high density of cracks, corresponding to a high local stress rate.
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The random stress to failure (Fig. 7-a) is calculated by using Eqns. (1) and (2) for a
FE volume of Imm3. For high stress rates (i.e., in front of the projectile and in the Hertz-like
cone crack), many defects nucleate in a FE cell. For a velocity of 185m/s, failure of an ele-
ment set, which can be compared to macroscopic cracks, can be observed in addition to the
continuous degradation generated at the edge of the projectile (see Fig. 7-b). However, there
are some difficulties in handling macroscopic cracks. The failure of a FE cell is not always
followed by a crack generation and propagation, and when such a crack is created, there is a
tendency to follow the direction of the FE mesh. The description of crack propagation may
be improved by considering the failure of interfaces between finite elements instead of bulk

failure (Camacho and Ortiz, 1996; Espinosa et al., 1998; Mastilovic and Krajcinovic, 1999).

3.2 Moiré Technique

A second EOI configuration provides quantitative strain measurements over a field of 32 x
32mm? during impact. Details on the moiré photography set-up can be found in (Bertin-
Mourot et al., 1997). The advantage of the moiré measurement is that a quantitative rather
than qualitative analysis can be performed between experiments and simulations. Figure 8-a

is the fringe pattern approximately 2us after impact.

The comparison of numerical and experimental strains is given in Fig. 8-b. The strain
diagram is plotted for a point M at a distance of 13mm from the surface hit by the projectile
(circular mark in Fig. 8-a). It can be noted that the radial strain reaches an important value
(of the order of 0.8%) before any significant change of the hoop strain. This is consistent
with a cylindrical stress wave in which the tensile strain is induced by the radial motion
of the material. The multi-scale model is used to give probabilistic numerical simulations
instead of the deterministic simulations proposed with a continuum model. That is, numerous
simulations have to be performed when the average behavior is analyzed. Five hundred

realizations of the simulation presented in Section 3.2 are performed with the multi-scale
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model (a CPU time of 4 minutes per realization is needed on an HP 715 workstation with
the finite element package PamShock (1998)). The average and standard deviation of the
hoop and radial strains are plotted in Fig. 8. The multi-scale model yields good predictions
of the strain levels. All the experimental measurements fall in the grey shaded zone, i.e., the
experiment may be compared to one realization of the 500 numerical simulations. The use
of an anisotropic model is necessary if one wants to accurately predict the strain levels. An
elastic computation underestimates both radial and hoop strains. An isotropic damage model

would have given even lower strain levels (Denoual et al., 1996).

4 Towards Material Optimization

A fine fragmentation of the ceramic leads to a localized strain around the projectile tip. The
energy needed for the penetration into an armor is thus reduced in comparison to a coarse
fragmentation where large fragments spread the strain within the volume and consume energy
(see (Woodward et al., 1994) and Fig. 9). Therefore, an optimization criterion assumed to be
relevant for armor is that an increase of fragment size (i.e., a decrease of broken defect density)

leads to an increase of structural strength. A closed-form solution for Ay(¢) (Eqn. (17)) is

1

used with a constant stress rate of 5MPaxns™" and a maximum tensile stress o, of 1GPa

m+n

ol m | Zm+n
Mo (Fonne) = Ao m m! n! ) m | (m 4+ n)l gt (34)
m—+n \(m+n)! m+n m! n!

where y[p,z] = [ "' exp(—t) dt is the incomplete gamma function. When the maximum
tensile stress is reached, the kinetics of broken flaw density is stopped (see Fig. 10-a). The
material parameters chosen to be optimized are the mean failure stress oy and the Weibull
modulus m. For each couple (o, m), the Weibull parameter \y/of" is computed by using
Eqn. (2). The results are shown in Fig. 10-b where the broken defect density is plotted as
a function of oy, and m. One can observe a significant influence of the Weibull modulus on
the defect density: the higher m, the higher the broken flaw density (i.e., a poor ballistic
performance). Moreover, it can be noted that an increase of the average failure stress would

not improve the performance of the ceramic if the Weibull modulus increases too.
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The SiC-B and S-SiC ceramics shown in Fig. 10-b have different microstructures, the
low porosity of SiC-B ceramics leading to a high average failure stress with a reduced scat-
ter (i.e., a high Weibull modulus). However, the S-SiC grade has the coarser fragmentation
leading to a better ballistic performance (Beylat and Cottenot, 1996). Finally, two other
grades of silicon carbide called SiC-HIP (Riou, 1996) and SiC-150 (Leroy, 1999) are plotted
in Fig. 10-b. The SiC-HIP grade exhibits better ballistic performances than the S-SiC grade
(Beylat and Cottenot, 1996), as shown in Fig. 10-b. The SiC-150 grade, which has a porosity
of 10-14%, shows that a good material must have a low Weibull modulus, i.e., a large scatter

of failure stresses and a low porosity content, 7.e., a high average failure stress.

5 Summary

A fragmentation model based on a mechanism of nucleation of flaws and stress relaxation
around propagating cracks is derived. By construction, this approach is non-local and the
horizon of a defect constitutes the key ingredient. When a constant stress rate is applied, a
closed-form solution for the number of nucleated defects is given. A damage kinetic law is
derived from the fragmentation model. The analysis of stress relaxation around the propagat-
ing cracks leads naturally to an anisotropic description of damage. A differential equation is
obtained for the kinetics of damage variables in order to be implemented into a FE code. The
probabilistic nature of this model will help in understanding the non-deterministic behavior
of structures made of brittle materials and submitted to a wide range of loadings (from quasi-
static to dynamic ones). This model is able to describe a high density of cracks of random
location. It is therefore well suited for describing degradations from the very early stages

(i.e., nucleation of few cracks) up to the onset of crack coalescence.

Since all the parameters are determined by analytical analyses or identified through

quasi-static (independent) tests, the model can be considered as fully predictive. The local-
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ization of damage in corridors that appears for materials with high Weibull moduli and high
failure strength (e.g., the SiC-B grade) is well reproduced by the model. The strain history
during impact is also predicted, in particular when the material seems to be intensively dam-

aged (e.g., the S-SiC grade).

The set of hypotheses shows that this model can only be used for damage in tension.
Damage in compression should lead to a very different model even if the same kind of mech-
anisms (i.e., flaw nucleation, obscuration zones) are used. Moreover, when rapid rotating
stresses are considered, the resulting damage is obtained through the superposition of orthog-
onal damage patterns instead of changing the direction of the crack propagation. This may be
seen as a limitation of the model, as long as the differences between superposition of damage

pattern and rotating cracks in terms of overall structural response is proven.

The transition zone for which the number of nucleated flaws is greater than but neverthe-
less close to one in a FE cell is well reproduced by the multi-scale model. The corresponding
behavior, neither continuum (deterministic and local) nor discrete (probabilistic and non-
local) is one of the major features of this model. Lastly, it is expected that these models
are applicable to other brittle materials (such as rock, glass or concrete). Since the numbers
of parameters to identify is very limited and can be carried out under quasi-static loading

conditions, the model can be tested on a large class of brittle materials.
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8 Appendix 1

The kinetics of nucleated flaw density or damage variable can be obtained by using the
conditions of non-relaxation for a given defect by examining the inverse problem (Denoual et
al., 1997). Tt consists in considering the past history of a defect that would break at a time
T. The defect will break if no defects exist in its horizon. For a given defect D, its horizon
is defined as a space-time zone in which a defect will always obscure P (Fig. 3). Outside the

horizon a defect will never obscure P. Equation (17) becomes

A,
dt

_

(1) = ZHDL= Po(D)] with A,(0) =0 and A (0) =0 (35)

where 1 — P, is the probability that no defect exist in the horizon (P, = 2*). The variable
P, can be split into an infinity of events defined by the probability AP(¢) of finding at ¢ a
new defect during a time step dt in a zone Z,(T — t). This probability increment is written
by using a Poisson point process of intensity d;/d¢. Those independent events can be used

to derive the following expression for P,

1— P(T) = T/ (1—AP(1))
~ exp l— /0 Tz dt] (36)

where Z,(T — t) is the measure of the interaction zone at ¢ for a defect that would break at

T. This completes the proof.
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Table 1. Material properties of four SiC ceramics.

Parameters S-SiC* SiC-B’  SIC-HIP*  SiC-1507
Young’s modulus £ (GPa) 410 455 465 350
Poisson’s ratio v 0.15 0.16 0.15 0.25
Density 3.15 3.20 3.18 2.76-2.89
Porosity 1.8 % 0 NA 10-14 %
Weibull modulus m 9.3 27 8.6 15
Mean failure strength o, (MPa) 370 560 590 225
Effective volume Zgz (mm?) 1.7 1.5 1.2 1.4
Number of samples 65 30 26 NA
Type of flexural test 3-point  4-point  3-point 3-point

% (Denoual and Riou, 1995)
>. (Palika, 1995; Cho et al., 1994)
i (Leroy, 1999)
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10

Numerical simulations of a SiC-B ceramic in an EOI configuration (50 x 100 x 10

elements of 1 x 1 x Tmm?).

a— Example of random failure stress oy, for the first defect able to break in each

FE cell.

b— and ¢~ Tile upper part: simulations (multi-scale model), tile lower part:

experiments. Damaged zones (D; > 0.5 in the dark zones) for two impact

velocities. . . . .. L
a— Typical example of moiré fringes.

b— Strain change given by a moiré technique (dots) and by the multi-scale

model (plain curve: average, grey bandwidth: + standard deviation). . . . . .
Strains around a penetrating projectile when the fragmentation is coarse (left)

and fine (right). . . . . . . ...
a— Stress history for material optimization. The dashed curve is any positive

monotonically decreasing function.

b— Broken flaw density map as function of Weibull modulus m and average

failure stress oy. The four grades of silicon carbide are depicted by crosses. . .
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Figure 1: Example of stress relaxation functions for normal and tangential loadings. The
normal stress oy, and shear stress o2 have the greatest relaxation zones for normal and

tangential loadings, respectively.
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Figure 2: Example of simplification for a complex microstructure containing penny-shaped
cracks submitted to a normal far field stress. The stress field around a single crack (a) is
transformed into a Boolean function (b) on which Boolean operations (i.e., union) can be
performed (d). This simplification is used as a representation of complex microstructures (c)
for which effective elastic properties are delicate to obtain. For the sake of simplicity, only

the stress field oy is represented even if the method is applied on tensor fields.
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Figure 4: Change of broken flaw density with time predicted by the multi—scale model (solid

line) and the fragmentation theory (dashed line).
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Figure 5: Ultimate macroscopic strength vs. stress rate predicted by the multi-scale model
and Monte—Carlo simulations (500 realizations for each points (Denoual and Hild, 2000)) for

an S-SiC ceramic.
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Figure 6: Requirements to be fulfilled to use a continuum damage model can be checked by
using a maximum stress rate map.

a— Example of maximum stress rate for the first eigen stress 4us after impact (top) and the
corresponding damaged zone (bottom). The line density is a function of broken flaws density
and the line direction is that of cracking.

b— The stress rate associated to locations where damage is generated leads to a complex

behavior, neither discrete nor continuum.
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Figure 7: Numerical simulations of a SiC-B ceramic in an EOI configuration (50 x 100 x 10
elements of 1 x 1 x Tmm?).

a— Example of random failure stress oy for the first defect able to break in each FE cell.

b— and c— Tile upper part: simulations (multi-scale model), tile lower part: experiments.

Damaged zones (D; > 0.5 in the dark zones) for two impact velocities.
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Figure 8: Denoual and Hild

Figure 8: a— Typical example of moiré fringes.
b— Strain change given by a moiré technique (dots) and by the multi-scale model (plain curve:

average, grey bandwidth: + standard deviation).
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Figure 9: Denoual and Hild

Figure 9: Strains around a penetrating projectile when the fragmentation is coarse (left) and

fine (right).
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Figure 10: Denoual and Hild

Figure 10: a- Stress history for material optimization. The dashed curve is any positive
monotonically decreasing function.
b- Broken flaw density map as function of Weibull modulus m and average failure stress oy,.

The four grades of silicon carbide are depicted by crosses.
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