
HAL Id: hal-00013788
https://hal.science/hal-00013788v2

Preprint submitted on 20 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Playing with Conway’s Problem
Emmanuel Jeandel, Nicolas Ollinger

To cite this version:

Emmanuel Jeandel, Nicolas Ollinger. Playing with Conway’s Problem. 2008. �hal-00013788v2�

https://hal.science/hal-00013788v2
https://hal.archives-ouvertes.fr

Playing with Conway’s Problem

Emmanuel Jeandel a,b, Nicolas Ollinger b,∗

aLIP, École Normale Supérieure de Lyon, CNRS

46 allée d’Italie, 69007 Lyon, France

bLIF, Aix-Marseille Université, CNRS,

39 rue Joliot-Curie, 13013 Marseille, France

Abstract

The centralizer of a language is the maximal language commuting with it. The ques-
tion, raised by Conway in 1971, whether the centralizer of a rational language is
always rational, recently received a lot of attention. In Kunc 2005, a strong nega-
tive answer to this problem was given by showing that even complete co-recursively
enumerable centralizers exist for finite languages. Using a combinatorial game ap-
proach, we give here an incremental construction of rational languages embedding
any recursive computation in their centralizers.

In 1999, Choffrut et al. [1] renewed an old problem raised by Conway [2] in
1971: given a rational language, does its centralizer — the maximal language
commuting with it — have to be rational? The property is known to hold
for some particular families of languages. In the case of codes, Ratoandra-
manana [3] showed in 1989 that it holds for prefix codes, raising a restriction
of Conway’s problem to codes which recently recieved a positive answer by
Karhumäki et al. [4]. In the general case, until recently, the best known result,
by Karhumäki and Petre [5], was that the centralizer of a recursive language
has to be co-recursively enumerable. This property may also be considered
as a particular case of results of Okhotin [6] concerning the computational
power of systems of equations on languages. For a complete survey on Con-
way’s problem, the reader may refer to [7–10]. In 2004, the community was
thrilled by an announcement by Kunc [11] that a centralizer can actually be
non-recursive. This announcement was followed by a conference communica-
tion [12] in 2005 showing that finite languages exist whose centralizers are
complete for co-recursively enumerable languages 1 . It includes a sketch of the
proof for the special case of rational languages. While simpler than the proof

∗ Corresponding author.
Email address: Nicolas.Ollinger@lif.univ-mrs.fr (Nicolas Ollinger).

1 Since the writing of the present paper, a journal version appeared in [13]

Preprint submitted to Elsevier 15 May 2008

for finite languages, this proof is still rather involved — mostly due to a direct
construction of the language encoding a given Minsky machine.

In this paper we propose another proof of the existence of rational languages
with non-recursive centralizers. The key arguments of the proof come from a
careful study of the first example in Kunc [12] leading to the core construc-
tions of our proof: checking and flooding. Our approach significantly differs for
two reasons. First, a combinatorial game point of view is taken through the
whole proof. Games are convenient tools to embed a dynamical process like
a computation into a static object like a fix-point. Using this point of view,
a computation can be transformed incrementally into a centralizer by trans-
forming winning strategies from one game to another more specialized game.
Secondly, the construction of the language embedding a particular computa-
tion is incremental — explicitly explaining how to compile any program into a
language so that its centralizer corresponds to the computation. Whereas the
final proof is by no way shorter than Kunc original proof, cutting the construc-
tion into locally independent propositions improves its readability. Our proof
also uses Post tag systems instead of Minsky machines as Post tag systems
are in a way closer to centralizers.

In this paper, the letters Σ and Γ denote finite alphabets. The set of finite words
over an alphabet Σ is denoted by Σ⋆, the empty word by ε, the catenation of
two words x and y by xy and the length of x ∈ Σ⋆ by |x|. A word x is a prefix

(resp. suffix) of a word y, if there exists a word z ∈ Σ⋆ such that xz = y (resp.
y = zx); this word z is unique and is denoted as x−1y (resp. yx−1). A word x
is a subword of a word y if there exist two words z, z′ ∈ Σ⋆ such that zxz′ = y.
A language over Σ is a subset of Σ⋆. The product XY of two languages X
and Y is the language {xy : x ∈ X, y ∈ Y }. The language of prefixes (resp.
suffixes) of a language X, denoted as Pref(X) (resp. Suff(X)), is the set of all
prefixes (resp. suffixes) of words in X. The language of subwords of a language
X, denoted as Sub(X), is the set of all subwords of words in X. The language
X−1Y is the language {z : ∃x ∈ X,∃y ∈ Y, y = xz}. The language Y X−1 is
the language {z : ∃x ∈ X,∃y ∈ Y, y = zx}.

Two languages X and Y commute if the equation XY = Y X is satisfied.
The set of languages that commute with a given language X is closed under
infinite union. Thus it admits a unique maximal element for inclusion called
the centralizer of X, denoted by C(X). The centralizer of X always contains
X⋆. Moreover, if X contains the empty word then its centralizer is equal to
Σ⋆. Otherwise, it is contained in Pref(X⋆) ∩ Suff(X⋆).

Conway’s Problem Is C(X) rational if X is rational?

The paper is constructed as follows. In section 1, a particular family of games
called cutenation games are introduced. These games can be viewed as an

2

extension of tag systems with states, languages constraints on states and the
ability to cut and catenate on both sides of the word. In section 2, tag systems
are encoded into games verifying some regularity properties. In section 3, these
games are recursively transformed into games with only two states. In section
4, language constraints on both states are removed. In section 5, every parts
are glued together to obtain the main result.

1 Cutenation games

In this section cutenation 2 games are introduced and their relations with
centralizers are explained before sketching the proof of existence of rational
languages with non-recursive centralizers.

1.1 Definition

A cutenation game is a tuple (A,B, L,R, VA, VB) where A and B are finite,
both (A,B, L) and (A,B, R) are bipartite graphs whose edges are tagged with
words on Σ (i.e. L,R ⊆ A × B × Σ⋆) and the mappings VA : A → Rat(Σ⋆)
and VB : B → Rat(Σ⋆) constraint the positions. Given such a game, an A-

configuration (a, x) ∈ A × Σ⋆ verifies x ∈ VA(a). A pair (a, x) ∈ A × Σ⋆

might not be a valid position of the game. Symmetrically a B-configuration

(b, y) ∈ B × Σ⋆ verifies y ∈ VB(b).

Remark. In this paper we will only consider connected cutenation games,
that is cutenation games (A,B, L,R, VA, VB) for which the bipartite graph
(A,B, L ∪R) is connected.

Notation. We will depict L and R by a graph where A-vertices are repre-
sented by black points, B-vertices are represented by white points, L-edges
are represented by plain edges and R-edges are represented by dashed edges
(for clarity ε tags will be omitted).

Example. A sample cutenation game, omitting VA and VB, is depicted on
Fig. 1 where A = {α, β, γ, δ}, B = {a, b, c}, L = {(α, b, ε), (α, c, ε), (β, a, ab)}
and R = {(α, a, ε), (β, c, ε), (γ, c, ε), (δ, b, baa), (δ, c, ε)}.

A cutenation game is played as an iterated two-player combinatorial game
where the set of A-configurations is the set of positions of the player A and

2 cutenation is a free contraction of both words cut and catenation.

3

β

c

γ

δ

αa b

ab

baa

Fig. 1. graphical representation of a simple cutenation game

the set of B-configurations is the set of positions of the player B. A move of
the player A, from an A-configuration (a, x) to a B-configuration (b, y), is a
catenation:

• either an l-move (a, x) ⊢A,l (b, zx) such that y = zx and (a, b, z) ∈ L;
• or an r-move (a, x) ⊢A,r (b, xz) such that y = xz and (a, b, z) ∈ R.

Symmetrically, a move of the player B, from a B-configuration (b, y) to an
A-configuration (a, x), is a cut:

• either an l-move (b, zx) ⊢B,l (a, x) such that y = zx and (a, b, z) ∈ L;
• or an r-move (b, xz) ⊢B,r (a, x) such that y = xz and (a, b, z) ∈ R.

A round of the game starts from an A-configuration (a, x) and consists first of
a move of the player A from (a, x) to a B-configuration (b, y), then of a move
of the player B from (b, y) to an A-configuration (a′, x′). Furthermore, if A
plays an l-move then B must play an r-move and symmetrically if A plays an
r-move then B must play an l-move. If a player cannot move then the player
loses. The next round will start from (a′, x′). If the game lasts forever then
the player B wins.

Example. For the cutenation game of Fig. 1, this is a valid sequence of
consecutive rounds, assuming VA(a) and VB(b) always equal to Σ⋆:

1. (β, aa) ⊢A,l (a, abaa) ⊢B,r (α, abaa) ;

2. (α, abaa) ⊢A,l (b, abaa) ⊢B,r (δ, a) ;

3. (δ, a) ⊢A,r (c, a) ⊢B,l (α, a) .

Notice that such a game can be played without memory. Thus a strategy

for the player A in this game is simply a mapping from A-configurations to
valid moves from the given configuration. The strategy is winning for a given
configuration if, when the player A plays according to the strategy, whatever
moves the player B decide to play, the player A wins the game. Strategies and
winning strategies for the player B are defined symmetrically. A configuration

4

is called a winning position for a given player if there exists a winning strategy
from this configuration for this player. The following classical result holds for
these games, we give here a sketch of a proof.

Lemma 1 Starting from an A-configuration (a, x) either the player A has a

winning strategy or the player B has a winning strategy.

PROOF. Let (a, x) be an A-configuration for which neither the player A nor
the player B has a winning strategy. If every move from the player A starting
from (a, x) would lead to a B-configuration from which the player B could
move to an A-configuration on which the player B has a winning strategy
then the position (a, x) would be winning for the player B. Thus, the player A
has a valid move from (a, x) to a B-configuration (b, y) from which the player
B can move either to A-configurations on which the player A has a winning
strategy or to A-configurations on which neither the player A nor the player
B has a winning strategy. On such configurations the best moves from both
the player A and the player B would lead to an infinite run. By the rules, the
player B would win which implies that the player B has a winning strategy
starting from (a, x). ✷

1.2 Languages and centralizers

Given a cutenation game (A,B, L,R, VA, VB) and an element a of A, the lan-
guage L(a) is the set of words x ∈ Σ⋆ such that the configuration (a, x) admits
a winning strategy for the player B.

In the special case where L, R, VA and VB are recursive, given an element a

of A, the language L(a) is co-recursively enumerable. It follows from the fact
that one can exhaustively search a winning strategy for the player A as a finite
one exists — the player B only has finitely many valid moves starting from a
B-configuration, as one word has finitely many subwords.

The centralizer C(X) of a given language X can be expressed as the language
L associated with the unique element of A of the cutenation game where both
A and B are singletons, L and R are both equal to the language X, and
both VA(a) = Σ⋆ and VB(b) = Σ⋆. In the following, we call such a game a
commutation game. For the sake of readability, when manipulating cutenation
game where A and B are singletons, we will manipulate L, R, VA and VB as
subsets of Σ⋆ and denote the language associated with the game as L. For
the same reasons A-configurations and B-configurations will be considered as
elements of Σ⋆.

5

In order to prove the main result of this paper, we will proceed through the
following steps. First, we restrict ourselves to a specific subset of special cute-
nation games. Then, we show how to recursively encode co-recursively enumer-
able languages into the language of such a game. After that we proceed to the
core of the proof and explain how to transform such special cutenation game
into a commutation game. During this transformation, the language associ-
ated with any element of A is recursively encoded into the language associated
with the commutation game of a rational language.

2 Encoding Post Tag Systems

In order to encode every co-recursively enumerable language into the language
associated with a commutation game, the family of cutenation games is first
restricted to games with special properties that will allow further reductions;
then Post tag systems are encoded into games verifying these particular prop-
erties.

2.1 Restraining Cutenation Games

The following special kinds of cutenation games will be used in the proof. The
main reason to enforce these properties is to enable the later encoding of both
A and B into L, R, VA and VB.

Unfairness. A cutenation game is unfair if the player A has no constraint.
More formally, a cutenation game (A,B, L,R, VA, VB) over the alphabet Σ is
unfair if for all b ∈ B, VB(b) = Σ⋆.

Rootedness. A cutenation game is rooted if the player A can catenate non-
empty words on the left (respectively on the right) from at most one position
called the left root (respectively the right root). More formally, a cutenation
game (A,B, L,R, VA, VB) is rooted if there exists a left root aL ∈ A such that
for all (a, b, x) ∈ L if x 6= ε then a = aL and there exists a right root aR ∈ A

such that for all (a, b, x) ∈ R if x 6= ε then a = aR.

Oscillation. A cutenation game is oscillating if the player A is enforced
to oscillate at each round between l-moves and r-moves. More formally, a
cutenation game (A,B, L,R, VA, VB) is oscillating if the set A can be split
into two disjoint sets AL and AR such that for all (a, b, x) ∈ L necessarily
a ∈ AL and for all (a, b, x) ∈ R necessarily a ∈ AR.

6

Separation. A cutenation game is separated if positions can be viewed as
pairs of left and right positions, a left position being only affected by l-
moves and a right position only by r-moves. More formally, a cutenation game
(A,B, L,R, VA, VB) is separated if there exist two sets SL and SR such that
A ∪ B ⊆ SL × SR and both L and R satisfy the following requirements. For
every move ((s, t), (s′, t′), x) ∈ L only the left part is modified, so t = t′.
Moreover, for every t′′ ∈ SR such that (s, t′′) ∈ A necessarily (s′, t′′) ∈ B

and the move ((s, t′′), (s′, t′′), x) must be in L. Symmetrically, for every move
((s, t), (s′, t′), x) ∈ R only the right part is modified, so s = s′. Moreover, for
every s′′ ∈ SL such that (s′′, t) ∈ A necessarily (s′′, t′) ∈ B and the move
((s′′, t), (s′′, t′), x) must be in R.

Orientation. A cutenation game is oriented if it is both separated and
oscillating and if its left and right positions can be ordered into minimal and
maximal positions, a move changing the corresponding position from minimal
to maximal. More formally, a cutenation game (A,B, L,R, VA, VB) is oriented

if it is both separated and oscillating and if the set SL, respectively SR, can
be split into two disjoint sets S−

L and S+
L , respectively S−

R and S+
R , such that

AL ⊆ S−

L × S+
R , AR ⊆ S+

L × S−

R , and B ⊆ S+
L × S+

R .

Lemma 2 Let (A,B, L,R, VA, VB) be an oscillating cutenation game. Let νL,

symmetrically νR, be the function mapping an element of A ∪ B to its con-

nected component in the bipartite graph (A,B, L), symmetrically (A,B, R).
If the mapping ν : a 7→ (νR(a), νL(a)) is injective then the given oscillating

cutenation game can be considered, up to the isomorphism ν, as a separated

oscillating cutenation game where SL = νR(A ∪ B) and SR = νL(A ∪ B).

PROOF. Let (A,B, L,R, VA, VB) be an oscillating cutenation game satis-
fying the hypothesis. Let (a, b, x) be in L and let both (s, t) = ν(a) and
(s′, t′) = ν(b). By definition of νL, as a and b are connected by L then
νL(a) = νL(b) thus t = t′. Moreover, as the game is oscillating a ∈ AL.
Let t′′ ∈ SR be such that (s, t′′) = ν(a′) for some a′ ∈ A. By definition of
νR this means that a and a′ are connected by R. As a ∈ AL it implies that
a = a′. A symmetrical reasoning applies to R. Therefore, the game is, up to
the isomorphism ν, separated. ✷

Lemma 3 Let (A,B, L,R, VA, VB) be a separated oscillating cutenation game

obtained by Lemma 2. Such a game is oriented.

PROOF. Let (A,B, L,R, VA, VB) be a separated oscillating cutenation game
obtained by Lemma 2. Let S+

L be defined as {s : ∃t ∈ SR, (s, t) ∈ B} and S−

L =
SL \ S+

L . Symmetrically, let S+
R be defined as {t : ∃s ∈ SL, (s, t) ∈ B} and

S−

R = SR \ S+
R . By construction, the inclusion B ⊆ S+

L × S+
R holds. Let (s, t)

7

be in AL. As the cutenation game is connected there is at least one move in
L involving (s, t) thus t ∈ S+

R . Assume that s ∈ S+
L . This means that there

exists some t′ ∈ S+
R such that (s, t′) ∈ B. By definition of νR necessarily (s, t)

and (s, t′) are connected by R. As the game is oscillating it implies that t = t′,
but A and B are disjoint. This is a contradiction, therefore s must be in S−

L .
Symmetrically, the same holds for AR. ✷

2.2 Post Tag Systems

A Post tag system P is a triple (Σ, k, ϕ) where Σ is a finite alphabet, k is a
positive integer and ϕ is a mapping from Σk to Σ⋆. A configuration of the
system is a word from Σ⋆. For all y in Σ⋆ and i in Σk, the configuration iy

evolves into the configuration yϕ(i). The computation stops when no further
evolution is possible, i.e. when the length of the word is less than k. The
language LP associated with the Post tag system is the set of words for which
the evolution eventually stops. Post tag systems are universal in the sense
that one can recursively encode any recursively enumerable language into their
languages. For more details about tag systems and their computational power,
the reader might consult Minsky [14].

Proposition 4 Let P be a Post tag system over the alphabet Σ. There exists

an unfair rooted oriented cutenation game (A,B, L,R, VA,Σ
⋆) over the same

alphabet such that, for some distinguished element a ∈ A, the languages L(a)
and Σ⋆ \ LP are equal.

PROOF. Let P be a Post tag system (Σ, k, ϕ). The tag system will be en-
coded as a cutenation game (A,B, L,R, VA,Σ

⋆) where

A = {α, η} ∪
⋃

i∈Σk {βi, γi, δi, ζi} ,

B = {a} ∪
⋃

i∈Σk {bi, ci, di}

and the relations L and R are depicted on Fig. 2.

The constraints VA are defined as follows: VA(α) = Σ⋆, VA(η) = Σ⋆, and for
all i in Σk:

VA(βi) =
(

Σk \ {i}
)

Σ⋆ϕ(i),

VA(γi) = iΣ⋆ϕ(i),

VA(δi) = iΣ⋆ϕ(i),

VA(ζi) = Σ⋆ \ iΣ⋆ϕ(i).

8

bi

γi

ci

δi

di

η

a

α

βi ζi

ϕ(i) i

Fig. 2. the rooted oriented cutenation game of a Post system

This game is unfair and rooted, the roots being α and η. Moreover, it is
oscillating and fulfills the requirements of Lemma 2 thus by Lemma 3 it is
oriented. It remains to prove that L(α) equals Σ⋆ \ LP.

Let x be a word in LP. A winning strategy for the player A starting from
the A-configuration (α, x) is to follow the computation steps of the Post tag
system. If a transition of the tag system exists starting from x then x can be
written as iy with i ∈ Σk. Going through the states bi, ci, di and a, the player
A will force the player B to go to the A-configuation (α, yϕ(i)). If no transition
of the tag system exists starting from x, this means that |x| is less than k, the
player A moves to bi for any i ∈ Σk. The player B has no valid move. The
player A wins. Therefore, the player A has a winning strategy starting from
(α, x) with x ∈ LP.

Let x be a word in Σ⋆ \ LP. A winning strategy for the player B starting
from the A-configuration (α, x) works as follows. In this game the player B
has no choice so his strategy is to play when he can. The only possibility for
the player B to have no valid move is to play from some position bi obtained
from the position α with a word of length less than k. Observe that the only
possible sequences of moves going from a configuration (α, y) to a configuration
(α, z) imply that in the tag system there is a valid sequence of forward and
backward transitions from y to z. Thus, as in the tag system x has an infinite
sequence of valid forward transitions, the position (α, x) is winning for the
player B. Therefore, the player B has a winning strategy starting from (α, x)
with x ∈ Σ⋆ \ LP. ✷

3 Removing states

In order to transform unfair rooted oriented cutenation games into commuta-
tion games, the first step is to transform the state sets A and B into singletons
and to ensure that L = R. This is done by choosing a proper encoding of every
configuration ((s, t), x) into a proper word 〈s, x, t〉.

9

3.1 Encoding states

Let (A,B, L,R, VA, VB) be an unfair rooted oriented cutenation game. We
encode each configuration ((s, t), x) into a proper word 〈s, x, t〉 using the fol-
lowing encoding.

Let m be the size of S−

L and Γ−

L be an alphabet of m− 1 ordered new letters
{α1, . . . , αm−1}. Let ρ map S−

L into {0, 1, . . . ,m− 1} so that the left coordi-
nate of the left root is mapped into 0. Let ϕ−

L map s ∈ S−

L into the word
αρ(s) · · ·α2α1 of length ρ(s). The encoding ϕL(s) of a state s ∈ SL is equal to
ϕ−

L(s) when s ∈ S−

L . Let n be the size of S+
L and Γ+

L be an alphabet of n ordered
new letters {β1, . . . , βn}. Let σ map S+

L into {1, . . . , n}. Let ϕ+
L map s ∈ S+

L

into the word βσ(s)αm−1 · · ·α1 of length m. The encoding ϕL(s) of a state
s ∈ SL is equal to ϕ+

L(s) when s ∈ S+
L . For each pair of states (s, s′) ∈ S−

L ×S+
L

define φL(s, s′) as ϕ+
L(s′)ϕ−

L(s)−1, which is βσ(s′)αm−1 · · ·αρ(s)+1. Notice that

φL(s, s′) ∈ Γ+
L

(

Γ−

L

)⋆
.

Symmetrically, let m′ be the size of S−

R and Γ−

R be an alphabet of m′ − 1
ordered new letters {γ1, . . . , γm′−1}. Let ρ′ map S−

R into {0, 1, . . . ,m′ − 1} so
that the right coordinate of the right root is mapped into 0. Let ϕ−

R map
t ∈ S−

R into the word γ1γ2 · · · γρ′(t) of length ρ′(t). The encoding ϕR(t) of a
state t ∈ SR is equal to ϕ−

R(t) when t ∈ S−

R . Let n′ be the size of S+
R and

Γ+
R be an alphabet of n′ ordered new letters {δ1, . . . , δn′}. Let σ′ map S+

R into
{1, . . . , n′}. Let ϕ+

R map t ∈ S+
R into the word γ1 · · · γm′−1δσ′(t) of length m′.

The encoding ϕR(t) of a state t ∈ SR is equal to ϕ+
R(t) when t ∈ S+

R . For
each pair of states (t, t′) ∈ S−

R × S+
R define φR(t, t′) as ϕ−

R(t)−1ϕ+
R(t′), which is

γρ′(t)+1 · · · γm′−1δσ′(t′). Notice that φR(t, t′) ∈
(

Γ−

R

)⋆
Γ+

R.

Let τL and τR be the two morphisms from Σ⋆ to (Σ ∪ {o})⋆, where o is a new
letter, defined for each letter a ∈ Σ by τL(a) = oa and τR(a) = ao. For each
word x ∈ Σ⋆ define τ(x) as τL(x)o, which is equal to oτR(x). These morphisms
will be used to encode configurations of the game with two goals in mind: first
of all, ensure that no word is encoded as the empty word; secondly ensure that
each encoded word has an odd length.

A configuration ((s, t), x) ∈ (SL × SR)×Σ⋆ of the game will be encoded by the
word ϕL(s)τ(x)ϕR(t) denoted as 〈s, x, t〉. The set L will be encoded using the
mapping ψL defined by ψL((s, t), (s′, t), x) = φL(s, s′)τL(x). Symmetrically, the
set R will be encoded using the mapping ψR defined by ψR((s, t), (s, t′), y) =
τR(y)φR(t, t′).

Remark. To summarize, AL-configurations are encoded by words in the lan-
guage Suff(αm−1 · · ·α1) (oΣ)⋆

oγ1 · · · γm′−1Γ
+
R, symmetrically AR-configurations

10

are encoded by words in Γ+
Lαm−1 · · ·α1 (oΣ)⋆

oPref(γ1 · · · γm′−1), and finally,
B-configurations are encoded by words in Γ+

Lαm−1 · · ·α1 (oΣ)⋆
oγ1 · · · γm′−1Γ

+
R.

Proposition 5 Let (A,B, L,R, VA,Σ
⋆) be an unfair rooted oriented cutena-

tion game. Let V ′

A be the set {〈s, x, t〉 : (s, t) ∈ A, x ∈ VA((s, t))} and V ′

B the set

Sub
({

〈s, x, t〉 : x ∈ Σ⋆, (s, t) ∈ S+
L × S+

R

})

. Let ((s, t), x) be an A-configuration

of the game. There exists a valid l-move for the player A in the cutena-

tion game ({a} , {b} , ψL(L), ψR(R), V ′

A, V
′

B) from the configuration 〈s, x, t〉 to

a configuration w if and only if w = 〈s′, y, t′〉 for some s′, y, t′ and the l-move

from ((s, t), x) to ((s′, t′), y) is valid for the player A in the first game. The

same holds for r-moves and B-configurations.

PROOF. Let (A,B, L,R, VA,Σ
⋆) be an unfair rooted oriented cutenation

game. Let ((s, t), x) be a configuration of the game.

Let ((s′, t′), y) be a configuration of the game such that a move from ((s, t), x)
to ((s′, t′), y) is valid. Let w = 〈s′, y, t′〉. If the move is an l-move for the
player A then t = t′ and ((s, t), (s′, t), z) ∈ L where y = zx, and thus
φL(s, s′)τL(z) ∈ ψL(L). To prove that this move is a valid l-move in the new
game, it is sufficient to show that φL(s, s′)τL(z) 〈s, x, t〉 = 〈s′, y, t′〉. If (s, t) is
the left root then ϕL(s) = ε and φ(s, s′) = ϕL(s′) thus φL(s, s′)τL(z) 〈s, x, t〉 =
ϕL(s′)τ(zx)ϕR(t). If (s, t) is not the left root then z = ε, and therefore
φL(s, s′)τL(z) 〈s, x, t〉 = ϕL(s′)τ(x)ϕR(t) as φL(s, s′)ϕL(s) = ϕL(s′). There-
fore, if the move is a valid l-move for the player A in the original game then
it is a valid l-move for the player A in the new game. The three other cases
work on the same principle (do not forget to check with VA in the case of a
move for the player B).

Let w be a word such that there is a valid move for the player A in the new
game from 〈s, x, t〉 to w where (s, t) ∈ A. If it is an l-move, there exist some
s′, s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and w = φL(s′, s′′)τL(z) 〈s, x, t〉.
As w ∈ V ′

B and both s′′ ∈ S+
L and t ∈ S+

R then w = 〈s′′, y, t〉 for some
y ∈ Σ⋆. This implies that s = s′ and y = zx. To prove that there is a valid
l-move in the original game for the player A from the configuration ((s, t), x)
to the configuration ((s′′, t), zx) it is sufficient to show that (s′′, t) ∈ B and
((s, t), (s′′, t), z) ∈ L. As φL(s, s′′)τL(z) ∈ ψL(L) there exists some t′ such that
((s, t′), (s′′, t′), z) ∈ L. As the original game is separated and both (s, t) ∈ A

and (s, t′) ∈ A then (s′′, t) ∈ B and ((s, t), (s′′, t), z) ∈ L. The case of an
r-move for the player A works symmetrically.

Let w be a word such that there is a valid move for the player B in the new
game from 〈s, x, t〉 to w where (s, t) ∈ B. If it is an l-move then there exists
some s′, s′′ and z such that φL(s′, s′′)τL(z) ∈ ψL(L) and φL(s′, s′′)τL(z)w =
〈s, x, t〉. As w ∈ V ′

A and both s ∈ S+
L and t ∈ S+

R then s′′ = s and w = 〈s′, y, t〉

11

where (s′, t) ∈ A and y ∈ VA((s′, t)) is such that zy = x. To prove that there
is a valid l-move in the original game for the player B from the configuration
((s, t), zy) to the configuration ((s′, t), y) it is sufficient to show that (s′, t) ∈
AL and ((s′, t), (s, t), z) ∈ L. As φL(s′, s)τL(z) ∈ ψL(L) there exists some t′

such that ((s′, t′), (s, t′), z) ∈ L. As the original game is separated and both
(s′, t) ∈ A and (s′, t′) ∈ A then ((s′, t), (s, t), z) ∈ L. The case of r-move for
the player B works symmetrically. ✷

3.2 Enforcing symmetry

In a commutation game both sets of left moves L and right moves R are equal.
If the sets VA and VB bring enough constraints to the game, both L and R

can be replaced by L ∪R to enforce this symmetry.

Proposition 6 Let ({a} , {b} , L,R, VA, VB) be a cutenation game. Let X be

the language L ∪ R. If the four sets RVA ∩ VB, VAL ∩ VB, R−1VB ∩ VA

and VBL
−1 ∩ VA are empty then the valid moves, both for the player A and

the player B, are the same in the given game and in the cutenation game

({a} , {b} , X,X, VA, VB).

PROOF. Every move in the original game is allowed in the new game. Con-
versely, let x ⊢A,l y be a valid l-move for the player A in the new game. There
exists z ∈ X such that y = zx so y ∈ XVA ∩ VB. As RVA ∩ VB is empty, then
z ∈ L and the move is also valid in the original game. The three remaining
cases are similar using the three other empty sets (use VAL∩ VB for ⊢A,r, use
R−1VB ∩ VA for ⊢B,l, and use VBL

−1 ∩ VA for ⊢B,r). ✷

The construction to enforce symmetry can be applied directly after encoding
the states as the new encoding verifies the required hypothesis.

Lemma 7 Let (A,B, L,R, VA,Σ
⋆) be some unfair rooted oriented cutenation

game. Let V ′

A and V ′

B be defined as in Prop. 5. Let X be the set ψL(L)∪ψR(R).
The valid moves for both the player A and the player B are the same in both

games ({a} , {b} , ψL(L), ψR(R), V ′

A, V
′

B) and ({a} , {b} , X,X, V ′

A, V
′

B).

PROOF. By Prop. 6 it is sufficient to show that the four sets ψR(R)V ′

A∩V ′

B,
V ′

AψL(L) ∩ V ′

B, ψR(R)−1V ′

B ∩ V ′

A, and V ′

BψL(L)−1 ∩ V ′

A are empty.

The language ψR(R)V ′

A does not intersect V ′

B because every word of ψR(R)V ′

A

contains an occurrence of a letter in Γ+
R before a letter o and this is never the

case in V ′

B. A symmetrical proof works for V ′

AψL(L) ∩ V ′

B.

12

The language ψR(R)−1V ′

B does not intersect V ′

A because ψR(R)−1V ′

B only con-
tains the empty word which is not in V ′

A. The same holds for V ′

BψL(L)−1. ✷

4 Removing constraints

In order to conclude the construction the constraints sets VA and VB must
be removed. This part is the core of the proof. The construction proceeds in
two steps : first we remove VA through checking, then we remove VB through
flooding.

4.1 Checking

To remove VA means to remove constraints on the positions at the end of a
move from the player B. To ensure that the set of winning strategies of the
player B does not grow, the idea is to allow the player A to challenge the
player B if he plays outside of VA by checking the validity of the move.

Proposition 8 Let ({a} , {b} , X,X, VA, VB) be a cutenation game over the

alphabet Σ with associated language L. Let c be a new letter not in Σ, let X ′ =
X∪cV ⋆

A∪V ⋆
Ac and V ′

B = VB∪cVB∪VBc. Let ({a} , {b} , X ′, X ′, (Σ ∪ {c})⋆
, V ′

B)
be the cutenation game over the alphabet Σ∪{c} with associated language L′.

If the four sets X−1X−1VB, VBX
−1X−1, ((X−1 (VAX ∩ VB)) \ VA) ∩ V ⋆

A, and

(((XVA ∩ VB)X−1) \ VA) ∩ V ⋆
A are empty and both inclusions X−1VB ⊆ VB

and VBX
−1 ⊆ VB hold then L is equal to L′ ∩ Σ⋆.

PROOF. We prove that the player B has a winning strategy in the original
game if and only if the player B has a winning strategy in the new game.

If the player B had a winning strategy in the original game starting from
a given position then he keeps playing according to his original strategy as
long as the player A keeps using moves that were valid in the original game.
If the player A uses a new move from a position x ∈ VA then there are two
possibilities:

• either he catenates a word of X, leading to a new position in V ′

B \ VB; this
is impossible as all the new valid positions must contain the new letter c
which does not appear in X;

• or he catenates a word of X ′ \X containing the new letter c, leading to a
new valid position y which must be either in cVB or in VBc; as x ∈ VA and
as X ′ \X = cV ⋆

A ∪ V ⋆
Ac, necessarily y ∈ cV ⋆

A ∪ V ⋆
Ac and thus y ∈ X ′.

13

A winning strategy for the player B starting from a position y ∈ X ′ is simply
to cut y completely thus leading to the empty word position. The empty word
position is winning for the player B: when the player A catenates a word z,
the player B just cuts z, coming back to the empty word. Therefore, the player
B still has a winning strategy in the new game.

If the player A had a winning strategy in the original game starting from a
given position then he keeps playing according to his original strategy as long
as the player B keeps using moves that were valid in the original game. If
the player B uses a new move from a position x ∈ VB then there are two
possibilities:

• either he cuts a word of X ′\X containing the new letter c; this is impossible
as the new letter c does not appear in VB;

• or he cuts a word of X, leading to a new valid position in Σ⋆ \ VA, more
precisely in ((X−1 (VAX ∩ VB)) ∪ ((XVA ∩ VB)X−1)) \ VA.

A winning strategy for the player A starting from a position y in the language
(X−1 (VAX ∩ VB)) \ VA is simply to catenate the word c on the right, leading
to the valid position yc in VBc. As y 6∈ V ⋆

A and X−1X−1VB = ∅ the player B
has no valid move starting from yc, thus the player A wins. By a symmetrical
argument, the player A has a winning strategy starting from a position in
((XVA ∩ VB)X−1) \ VA. Therefore, the player A still has a winning strategy
in the game. ✷

4.2 Flooding

To remove VB means to remove constraints on the positions at the end of a
move from the player A. To ensure that the set of winning strategies of the
player A does not grow, the idea is to force every position outside of VB to
admit a winning strategy for the player B by flooding the language X with
all words outside of VB.

Proposition 9 Let ({a} , {b} , X,X,Σ⋆, VB) be a cutenation game over the

alphabet Σ with associated language L. If VB is closed under subword then the

centralizer C(X ∪ Σ⋆ \ VB) is equal to L.

PROOF. We prove that the player B has a winning strategy in the cutena-
tion game if and only if the player B has a winning strategy in the commuta-
tion game of X ∪ Σ⋆ \ VB.

If the player A had a winning strategy in the original game starting from a
given position then he keeps playing according to his original strategy. As VB

14

is closed under subword, starting from a word in VB the player B cannot use a
transition in Σ⋆ \VB to cut: the player B has exactly the same possible moves
as in the original game. Therefore, the player A still has a winning strategy
in the new game.

If the player B had a winning strategy in the original game starting from a
given position then he keeps playing according to its original strategy as long
as the player A keeps using moves that were valid in the original game. If
the player A uses a new move then, as VB is closed under subword, just after
this move the new position is a word in Σ⋆ \ VB. A winning strategy for the
player B starting from a word x in Σ⋆ \ VB is simply to cut x completely thus
accessing to the empty word position. The empty word position is winning for
the player B: when the player A catenates a word y, the player B just cuts y,
coming back to the empty word. Therefore, the player B still has a winning
strategy in the new game. ✷

To combine both checking and flooding to remove the constraints on a game
it is sufficient to ensure that the original constraints VB are closed under
subword.

Lemma 10 Let ({a} , {b} , X,X, VA, VB) be a cutenation game over the alpha-

bet Σ with associated language L such that VB is closed under subword. Let c

be a new letter not in Σ, let X ′ = X ∪ cV ⋆
A ∪ V ⋆

Ac and V ′

B = VB ∪ cVB ∪ VBc.

If the four sets X−1X−1VB, VBX
−1X−1, ((X−1 (VAX ∩ VB)) \ VA) ∩ V ⋆

A, and

(((XVA ∩ VB)X−1) \ VA) ∩ V ⋆
A are empty then L is equal to

C (X ∪ cV ⋆
A ∪ V ⋆

Ac ∪ (Σ ∪ {c})⋆ \ (VB ∪ cVB ∪ VBc)) ∩ Σ⋆ .

PROOF. If VB is closed under subword, so is V ′

B = VB ∪ cVB ∪ VBc. To
conclude, combine both Prop. 8 and Prop. 9. ✷

5 Gluing all together

We can now conclude the proof of the main statement by combining the three
parts of the construction together.

Theorem 11 There exists a rational language X whose centralizer C(X) is

complete for co-recursively enumerable languages.

PROOF. Let P be a Post tag sytem, whose language is complete for recur-
sively enumerable languages. Let (A,B, L,R, VA,Σ

⋆) be the unfair rooted ori-

15

ented cutenation game obtained by Prop. 4 and such that for some a ∈ A the
equality L(a) = Σ⋆ \LP holds. Let ({a} , {b} , X,X, V ′

A, V
′

B) be the cutenation
game with language L obtained by Prop. 5 and Lemma 7 such that the equa-
tion L∩{〈s, x, t〉 , x ∈ Σ⋆} = {〈s, x, t〉 , x ∈ Σ⋆ \ LP} holds for some (s, t) ∈ A.
To combine this cutenation game with Lemma 10, as V ′

B is closed under sub-
word it is sufficient to show that the hypotheses of Prop. 8 are satisfied. More
precisely, it is sufficient to show that the four sets X−1X−1V ′

B, V ′

BX
−1X−1,

((X−1 (V ′

AX ∩ V ′

B)) \ V ′

A)∩V ′⋆
A , and (((XV ′

A ∩ V ′

B)X−1) \ V ′

A)∩V ′⋆
A are empty

and both inclusions X−1V ′

B ⊆ V ′

B and V ′

BX
−1 ⊆ V ′

B hold. Both inclusions hold
because V ′

B is closed under subword.

The set X−1X−1V ′

B is empty because first ψR(R)−1V ′

B only contains the empty
word and X does not contain the empty word, secondly because ψL(L)−1V ′

B

contains only the empty word and words which begin with a letter in Γ−

L ∪
{o} and words in X never begin with such a letter. Symmetrically, the set
V ′

BX
−1X−1 is empty.

The set ((X−1 (V ′

AX ∩ V ′

B)) \ V ′

A) ∩ V ′⋆
A is empty because all words in the

language X−1 (V ′

AX ∩ V ′

B) contain exactly one occurence of a letter from Γ+
L ∪

Γ+
R. Symmetrically, the set (((XV ′

A ∩ V ′

B)X−1) \ V ′

A) ∩ V ′⋆
A is empty.

Therefore, Lemma 10 can be applied and Σ⋆ \ LP can be recursively com-
puted from the centralizer of the rational set X ∪ cV ′⋆

A ∪ V ′⋆
A c ∪ (Σ′ ∪ {c})⋆ \

(V ′

B ∪ cV ′

B ∪ V ′

Bc). As a consequence, the centralizer of this rational language
is complete for co-recursively enumerable languages. ✷

References

[1] C. Choffrut, J. Karhumäki, N. Ollinger, The commutation of finite sets: a
challenging problem, Theoret. Comput. Sci. 273 (2002) 69–79.

[2] J. H. Conway, Regular Algebra and Finite Machines, Chapman Hall, 1971.

[3] B. Ratoandramanana, Codes et motifs, RAIRO Theor. Informat. 23 (1989)
425–444.

[4] J. Karhumäki, M. Latteux, I. Petre, The commutation with codes and ternary
sets of words, Theoret. Comput. Sci. 340 (2005) 322–333.

[5] J. Karhumäki, I. Petre, Conway’s problem for three-word sets, Theoret.
Comput. Sci. 289 (2002) 705–725.

[6] A. Okhotin, Decision problems for language equations with boolean operations,
in: Proc. of ICALP 2003, Vol. 2719 of LNCS, Springer, 2003, pp. 239–251.

[7] J. Karhumäki, Challenges of commutation: an advertisement, in: Proc. of FCT
2001, Vol. 2138 of LNCS, Springer, 2001, pp. 15–23.

16

[8] T. Harju, O. Ibarra, J. Karhumäki, A. Salomaa, Decision questions in
semilinearity and commutation, J. Comput. Syst. Sci. 65 (2002) 278–294.

[9] I. Petre, Commutation problems on sets of words and formal power series, Ph.D.
thesis, University of Turku (2002).

[10] J. Karhumäki, I. Petre, Two problems on commutation of languages, in:
G. Rozenberg, A. Salomaa (Eds.), Current Trends in Theoretical Computer
Science, World Scientific, 2004.

[11] M. Kunc, Regular solutions of language inequalities and well quasi-orders, in:
Proc. of ICALP 2004, Vol. 3142 of LNCS, Springer, 2004, pp. 870–881.

[12] M. Kunc, The power of commuting with finite sets of words, in: Proc. of STACS
2005, Vol. 3404 of LNCS, Springer, 2005, pp. 569–580.

[13] M. Kunc, The power of commuting with finite sets of words, Theory of
Computing Systems 40 (4) (2007) 521–551.

[14] M. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, 1967.

17

