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Abstract. Coding, transmission and recovery of quantum states with high security
and efficiency, and with as low fluctuations as possible, is the main goal of quantum
information protocols and their proper technical implementations. The paper deals
with this promise focusing on the quantum states related to Galois algebras. We first
review the constructions of complete sets of mutually unbiased bases in a Hilbert space
of dimension q = pm, with p being a prime and m a positive integer, employing the
properties of Galois fields Fq (for p > 2) and/or Galois rings of characteristic four Rm

4

(for p = 2). We then discuss the Gauss sums and their role in describing quantum
phase fluctuations. Finally, we examine an intricate connection between the concepts
of mutual unbiasedness and maximal entanglement.
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1. Introduction

It has been known for a long time that concepts belonging to the separate fields of

quantum optics, quantum information, Galois algebra and geometry, or even group

theory, are related. In the realm of quantum optics, problems arose in attempts to

identify a suitable Hermitian operator for the quantum optical phase [1, 2]; they can now

be solved by means of a properly defined quantum phase operator over a Galois field [3].

In the field of quantum information, the quantum theory of von Neumann measurements

is being supplemented by more symmetric and efficient protocols based, for example, on

mutually unbiased bases (MUBs)[4, 5, 6], or positive operator valued measures (POVMs)

[7], which are optimally constructed thanks to a Galois algebra. The Galois fields and

rings are being extensively used to weave the resources of quantum information, in most

applications such as entanglement-assisted quantum cryptography, cloning, coding and

computing [8, 9], as well as in relation to the group theoretical approach of coherent

states [10, 11, 12, 13]. Finally, Galois fields can be used to coordinatize the projective

planes [14, 15], or the discrete phase space [4, 16], which are geometrical concepts having

an intrinsic relevance to complete sets of MUBs.

The physical motivations to embark on detailed studies of MUBs are as

follows. First, MUBs enter rigorous treatments of Bohr’s principle of complementarity

that distinguishes between quantum and classical systems at the practical level of

measurements. At the conceptual level, two observables are complementary if precise

knowledge of one of them implies that all possible outcomes of measuring the other

one are equally probable. The eigenstates of such complementary observables are

non-orthogonal quantum states, and in any attempt to distinguish between them,

information gain is only possible at the expense of introducing disturbance. This

property was first implicitly exploited by Bennett and Brassard in 1984 to secure the

quantum key exchange against eavesdropping. Most quantum cryptography protocols

to-date, like the original BB84 one, use only one-qubit technologies, i.e. quantum states

embedded in a Hilbert space of dimension 2, usually the polarisation states of a single

photon. But it was found that the security against eavesdropping is heightened by using

all the three mutually unbiased bases of qubits, going to higher dimensional Hilbert

spaces (i.e. employing qudits), or by making use of entanglement-based protocols [17].

There is a mathematical implementation of the complementary principle which

leads to this key notion of mutual unbiasedness. Let O be an observable in a Hilbert

space of dimension q, Hq, which is represented by a Hermitian q × q matrix. Let us

assume that its real eigenvalues are multiplicity-free and its eigenvectors |b〉 belong

to an orthonormal basis B. Let O′ be a (prepared) complementary observable with

eigenvectors |b′〉 in B′. If O is measured, then the probability to find the system in the

state |b〉 ∈ B is given by |〈b|b′〉|2 = 1/q. We here recall that two orthonormal bases

B and B′ of Hq are mutually unbiased precisely when |〈b|b′〉|2 = 1
q

for all b ∈ B and

b′ ∈ B′. It can be shown that in order to fully recover the density matrix of a set of

identical copies of a quantum state, we need at least q + 1 measurements performed on
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complementary observables [7, 18].

A simple example is provided by the “complementary” Pauli spin matrices in the

Hilbert space H2, e.g. σx =

[
0 1

1 0

]
, σy =

[
0 −i

i 0

]
and σz =

[
1 0

0 −1

]
, where

σy = iσxσz . The eigenvectors of these three observables are respectively in the bases

B0 = (|0〉, |1〉), B1 = 1√
2
(|0〉+|1〉, |0〉−|1〉), B2 = 1√

2
(|0〉+i|1〉, |0〉−i|1〉). They constitute

a complete set of three MUBs from which an arbitrary qubit state |ψ〉 = α|0〉 + β|1〉,
|α|2 + |β|2 = 1, can be recovered.

Recently, a search for complete, (q + 1)-sets of MUBs in Hq triggered off a way of

remarkable activity [19]. First, if the dimension q = p, p being an odd prime number,

then using the discrete Fourier transform applied to the kets |n〉 in the computational

basis (|0〉, |1〉, · · · , |p − 1〉),

|θk〉 =
1
√

p

p−1∑
n=0

exp

(
2iπkn

p

)
|n〉, (1)

and replacing k in (1) by its unique decomposition k = an + b in the set Zp of integers

modulo p, one gets

|θa
b 〉 =

1
√

p

p−1∑
n=0

exp

(
2iπ(an + b)n

p

)
|n〉. (2)

Eq. (2) defines a set of p bases (with the index a = 0, . . . , p − 1) of p vectors (with the

index b = 0, . . . , p − 1). The p bases are mutually unbiased to each other and to the

computational basis and thus form the expected (p + 1)-set of MUBs. This procedure,

however, fails for qubits, i.e. for p = 2, because the polynomial in the exponential factor

of (2) has a degree which is not coprime to 2. This observation will be made clear

below in relation to the property of the Weil sums. It is worthwhile to observe that the

complete set of MUBs in this case can also be derived from the generalized Pauli spin

matrices

Xq|n〉 = |n + 1〉, (3)

Zq|n〉 = exp

(
2iπn

q

)
|n〉;

here, the eigenvectors of the unitary operators (Zp, Xp, XpZp, · · · , XpZ
p−1
p ) generate the

set of p+1 MUBs [20]. The task of finding a complete set of MUBs may also be related

to the phase properties of the single-mode electromagnetic field in quantum optics [2].

A suitable procedure to examine the phase properties of a quantized electromagnetic

field state is to introduce a Hermitian phase operator of the form

ΘPB =
∑

k∈Zq

θk|θk〉〈θk|, (4)

with eigenvalues θk = θ0 + 2πk
q

, θ0 being an arbitrary initial phase, and eigenvectors as

in the discrete Fourier transform (1).‖
‖ Pegg and Barnett [2] used the same quantum phase operator for an arbitrary dimension q and thus
failed to notice the connection of their problem to complete sets of MUBs. See [21] and [3] for a
generalization of their work.
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It has been said that with a complete set of q +1 mutually unbiased measurements

one can ascertain the density matrix of an ensemble of unknown quantum q-states;

hence, a natural question emerges as what mathematics can provide the construction.

It is known that in dimensions q = pm, p being a prime and m a positive integer, the

complete sets of MUBs result from a Fourier analysis over the Galois fields Fq (p odd)

[22] or the Galois rings R4m (p = 2) [24]. See also [25].

2. Quantum phase states in MUBs and their relation to additive characters

in the Galois field Fq: m-qudits in odd characteristic p

2.1. Construction of finite fields

The key relation between finite (also called) Galois fields and MUBs is the theory of

characters. A Galois field Fq, q = pm, is a finite set structure endowed with two group

operations, addition “+” and multiplication “·”. It can be represented as classes of

polynomials obtained by computing modulo an irreducible polynomial over the ground

field Fp = Zp [26, 28].

Let us consider the ring of polynomials Fp[x] defined over the field Fp

Fp[x] = {a0 + a1x + · · · + anxn}, ai ∈ Fp. (5)

For a polynomial g ∈ Fp[x], the residue class ring Fp[x]/(g), where (g) is the ideal

class generated by g, is a field iff g is irreducible (cannot be factored) over Fp. For

example, for q = 22 one can choose the polynomial g(x) = x2 + x + 1 ∈ F2[x] which is

irreducible over F2. Contrary to Z4, which has zero divisors and is thus only a ring, the

above construction defines indeed the field with four residue classes: F4 = {0, 1, x, x+1}.
For example [x] + [x + 1] = x + (g) + x + 1 + (g) = 2x + 1 + (g) + (g) = 1 + (g) = [1].

Similarly [x][x] = (x+(g))(x+(g)) = x2+(g)(2x+1) = x2+(g) = x2−(x2+x+1)+(g) =

−(x + 1) + (g) = (x + 1) + (g) = [x + 1].

It can be shown that a Galois field with q elements exists iff q = pm, a power of

a prime number p. Actually they are several representations of Galois fields. The first

one is as a polynomial as in (5). The second one consists in identifying the Galois field

Fq, with q = pm to the vector space Fm
p build from the coefficients of the polynomial.

The third one uses the property that F ∗
q = Fq − {0} is a multiplicative cyclic group.

One needs the concept of a primitive polynomial. A (monic) primitive polynomial, of

degree m, in the field Fq[x] is irreducible over Fq and has a root α ∈ Fqm that generates

the multiplicative group of Fqm . A polynomial g ∈ Fq[x] of degree m is primitive iff

g(0) �= 0 and divides xr − 1, with r = qm − 1.

For example F8 can be build from R = F2 and g = x3+x+1 which is primitive over

F2. One gets F8 = F2[x]/(g) = {0, 1, α, α2, α3 = 1+α, α4 = α+α2, α5 = 1+α+α2, α6 =

1 + α2} (see Table 1).
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as powers of α as polynomials as 3-tuples in Z3
2

0 0 (0, 0, 0)

1 1 (0, 0, 1)

α α (0, 1, 0)

α2 α2 (1, 0, 0)

α3 1 + α (0, 1, 1)

α4 α + α2 (1, 1, 0)

α5 1+α+α2 (1, 1, 1)

α6 1 + α2 (1, 0, 1)

2.2. Characters of a finite field and Gauss sums

A character κ(g) over an abelian group G is a (continuous) map from G to the field of

complex numbers C of unit modulus, i.e. such that |κ(g)| = 1, g ∈ G. In a finite field Fq

there are two finite abelian groups that are of significance–namely, the additive group

and the multiplicative group of the field (Chapt. 5 in [26]). The characters pertaining

to these two group structures are very different.

As far as the additive group is concerned one starts with a map from the extended

field Fq to the ground field Fp which is called the trace function

tr(x) = x + xp + · · · + xpm−1 ∈ Fp, ∀ x ∈ Fq. (6)

In addition to its property of mapping an element of Fq into Fp, the trace function has

other interesting properties [26]

tr(x + y) = tr(x) + tr(y), x, y ∈ Fq

tr(ax) = atr(x), x ∈ Fq, a ∈ Fp,

tr(a) = ma, a ∈ Fp,

tr(xq) = tr(x), x ∈ Fq. (7)

Using (6), a canonical additive character over Fq is defined as

κ(x) = ωtr(x)
p , ωp = exp

(
2iπ

p

)
, x ∈ Fq; (8)

it is easy to check that κ(x + y) = κ(x)κ(y), x, y ∈ Fq.

Characters of the multiplicative group F ∗
q are called multiplicative characters of

Fq. Since F ∗
q is a cyclic group of order q − 1, its characters can easily be determined as

[26, 29]

ψk(n) = ωnk
q−1, k = 0...q − 2, n = 0...q − 2. (9)

The construction of complete sets of MUBs is related to character sums with

polynomial arguments f(x), also called Weil sums [24], viz.

Wf =
∑

x∈Fq

κ(f(x)). (10)
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In particular (Theorem 5.38 in [26]), for a polynomial fd(x) ∈ Fq[x] of degree d ≥ 1 and

gcd(d, q) = 1, one finds Wfd
≤ (d − 1)q1/2. The quantum fluctuations arising from the

phase MUBs are found to be related to Gauss sums which are of the form

G(ψ, κ) =
∑

x∈F ∗
q

ψ(x)κ(x), (11)

Using the notation ψ0 for a trivial multiplicative character, ψ = 1, and κ0 for a

trivial additive character, κ = 1, the Gaussian sums (11) acquire the following values

G(ψ0, κ0) = q − 1; G(ψ0, κ) = −1; G(ψ, κ0) = 0 and |G(ψ, κ)| = q1/2 for any non-trivial

characters κ and ψ.

2.3. Galois quantum phase states

We shall now introduce a class of quantum phase states as a “Galois” discrete quantum

Fourier transform of the Galois number kets

|θ(y)〉 =
1
√

q

∑
n∈Fq

ψk(n)κ(yn)|n〉, y ∈ Fq, (12)

in which the coefficient in the computational basis {|0〉, |1〉, · · · , |q − 1〉} represents

the product of an arbitrary multiplicative character ψk(n) with an arbitrary additive

character κ(yn). It is easy to show that previous basic results in this area can be

obtained as particular cases of (12). Indeed, as in [2], for κ = κ0 and ψ ≡ ψk(n) one

recovers the ordinary quantum Fourier transform over Zq. As also shown in [2], the

corresponding states

|θk〉 =
1
√

q

∑
n∈Zq

ψk(n)|n〉 (13)

are eigenstates of the Hermitian phase operator

ΘPB =
∑

k∈Zq

θk|θk〉〈θk| (14)

with eigenvalues θk = θ0 + 2πk
q

, θ0 being an arbitrary initial phase. We also recover the

result of Wootters & Fields [22] in a more general form by employing the Euclidean

division theorem (see Theorem 11.19 in [27]) for the field Fq, which says that given any

two polynomials y and n in Fq, there exists a uniquely determined pair (a, b) ∈ Fq × Fq

such that y = an + b, deg(b) < deg(a). Using this decomposition in the exponent of

(12), we obtain

|θa
b 〉 =

1
√

q

∑
n∈Fq

ψk(n)κ(an2 + bn)|n〉, a, b ∈ Fq. (15)

The result of [22] corresponds to the trivial multiplicative character ψ0 = 1. Eq. (15)

defines a set of q bases (with index a) of q vectors (with index b). Employing the Weil

sums (10), it is easily shown that for q odd the bases are orthogonal and mutually

unbiased to each other and to the computational basis as well [24, 3].
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2.4. Quantum phase fluctuations

As already mentioned, following [2], a convenient procedure to examine the phase

properties of a quantized electromagnetic field state is by introducing a phase operator

and this was one of the reasons that led Pegg & Barnett to introduce their famous

Hermitian phase operator ΘPB. In this section we proceed along the same lines using

the phase form of the Wootters-Field MUBs.

2.4.1. The Galois phase operator. The phase MUBs as given by (15) are eigenstates

of a “Galois” quantum phase operator

ΘGal =
∑
b∈Fq

θb|θa
b 〉〈θa

b |, a, b ∈ Fq, (16)

with eigenvalues θb = 2πb
q

. We use this fact to perform several calculations of quantum

phase expectation values and phase variances for these MUBs. Inserting (15) in (16),

and making use of the properties of the field theoretical trace, the Galois quantum phase

operator can be brought into the form

ΘGal =
2π

q2

∑
m,n∈Fq

ψk(n − m)ωtr[a(n2−m2)]
p S(n, m)|n〉〈m|,

S(n, m) =
∑
b∈Fq

bωtr[b(n−m)]
p . (17)

In the diagonal matrix elements, we have the partial sums S(n, n) = q(q−1)
2

so that

〈n|ΘGal|n〉 = π(q−1)
q

. In the non-diagonal matrix elements, the partial sums can be

calculated from
∑

b∈Fq
bεb = ε(1 + 2ε + 3ε2 + · · · + qεq−1) = ε[ 1−εq

(1−ε)2
− qεq

1−ε
] = εq

ε−1
, where

we introduced ε = ωtr(n−m)
p and we made use of the relation εq = 1. Hence,

S(m, n) =
q

1 − ω
tr(m−n)
p

. (18)

2.4.2. Galois phase properties of a pure quantum electromagnetic state. For the

evaluation of the phase properties of a general pure state of an electromagnetic field

mode in the Galois number field we proceed similarly to [2]. Thus, we consider the pure

state of the form

|f〉 =
∑

n∈Fq

un|n〉, un =
1
√

q
exp(inβ), (19)

where β is a real parameter, and sketch the computation of the phase probability

distribution |〈θb|f〉|2, the phase expectation value 〈ΘGal〉 =
∑

b∈Fq
θb|〈θb|f〉|2 and the

phase variance 〈ΔΘ2
Gal〉 =

∑
b∈Fq

(θb − 〈ΘGal〉)2|〈θb|f〉|2, respectively (the upper index a

for the basis is implicit and we discard it for simplicity). The two factors in the expression

for the probability distribution have absolute values bounded by the absolute value of

generalized Gauss sums G(ψ, κ) =
∑

x∈Fq
ψ(g(x))κ(f(x)), with f, g ∈ Fq[x]. Weil [7]

showed that for f(x) of degree d with gcd(d, q) = 1 as in (10), under the constraint

that for the multiplicative character ψ of order s the polynomial g(x) should not be an
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sth power in Fq[x] and with ν distinct roots in the algebraic closure of Fq, the order

of magnitude of the sums is (d + ν − 1)
√

q. The overall bound is |〈θb|f〉|2 ≤ 1
q

and it

follows that the absolute value of the Galois phase expectation value is bounded from

above as expected for a common phase operator

|〈ΘGal〉| ≤
2π

q2

∑
b∈Fq

b ≤ π. (20)

The exact formula for the phase expectation value reads

〈ΘGal〉 =
2π

q3

∑
m,n∈Fq

eβ(m, n)S(m, n), (21)

where eβ(m, n) = ψk(m−n) exp[i(n−m)β]χ[a(m2−n2)] and S(m, n) as defined earlier.

The set of all the q diagonal terms m = n in 〈ΘGal〉 contributes an order of magnitude
2π
q3 qS(n, n) � π. The contributions from off-diagonal terms in (21) are not easy to

evaluate analytically; yet, we were able to show that |S(m, n)| = q
2
| sin[π

p
tr(n − m)]|−1.

The phase variance can be written as

〈ΔΘ2
Gal〉 =

∑
b∈Fq

(θ2
b − 2θb〈ΘGal〉)|〈θb|f〉|2; (22)

the term 〈ΘGal〉2
∑

b∈Fq
|〈θb|f〉|2 does not contribute since it is proportional to the

Weil sum
∑

b∈Fq
ωtr(b(n−m)

p = 0. As a result, a cancellation of the quantum phase

fluctuations may occur in (22) from the two extra terms of opposite signs. But

the calculations are again not easy to perform analytically. For the first term

one gets 2(2π/q2)2 ∑
m,n∈Fq

eβ(m, n)|S(m, n)|2. The second term acquires the form

−2
∑

b∈Fq
θb〈ΘGal〉|〈θb|f〉|2 = −2〈ΘGal〉2. Partial cancellation occurs in the diagonal

terms, leading to the contribution ≈ −2π2

3
, which is still (in the absolute value) twice

the amount of phase fluctuations found in the classical regime. A closed form for the

estimate of the non-diagonal terms is still an open problem. In odd prime dimension

q = p bounds on phase probability distribution, expectation value and variance can be

established [23].

3. Quantum phase states in MUBs and their relation to additive characters

in Galois rings R4m: m-qubits

The Weil sums (10), which have been proved useful in the construction of MUBs for

odd p (and, so, odd dimensions q = pm), are not useful for p = 2, because in this case

the degree of the polynomial fd(x) is such that gcd(2, q) = 2 — the characteristic of the

relevant Galois fields.

3.1. The Galois rings R4m

An elegant method for constructing complete sets of MUBs of m-qubits was found by

Klappenecker and Rötteler [24]¶. The method makes use of objects belonging to the

¶ Other, less explicit methods related to the discrete Fourier transform have also been proposed[9, 6].
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context of quaternary codes [30], the so-called Galois rings R4m ; we shall only give its

brief sketch and refer the interested reader to [24] for more mathematical details.

In contrast to the Galois fields where the ground alphabet has p elements (p a

prime number) in the field Fp = Zp, the ring R4m takes its ground alphabet in Z4. To

construct it one uses the ideal class (h), where h is a (monic) basic irreducible polynomial

of degree m i.e. such that its restriction to h̄(x) = h(x)mod 2 is irreducible over Z2. The

Galois ring R4m is defined as the residue class ring Z4[x]/(h). It has cardinality 4m. We

also needs the concept of a primitive polynomial. A (monic) primitive polynomial, of

degree m, in the ring Fq[x] is irreducible over Fq and has a root α ∈ Fqm that generates

the multiplicative group of Fqm . A polynomial f ∈ Fq[x] of degree m is primitive iff

f(0) �= 0 and divides xr − 1, with r = qm − 1. Similarly for Galois rings R4m , if h̄[x] is

a primitive polynomial of degree m in Z2[x], then there exists a unique basic primitive

polynomial h(x) of degree m in Z4[x] (it divides xr − 1, with r = 2m − 1). It can be

found as follows [31]. Let h̄(x) = e(x)−d(x), where e(x) contains only even powers and

d(x) only odd powers; then h(x2) = ±(e2(x) − d2(x)). For m = 2, 3 and 4 one takes

h̄(x) = x2 +x+1, h̄(x) = x3 +x+1 and h̄(x) = x4 +x+1 and one gets h(x) = x2 +x+1,

x3 +2x2 +x−1 and x4 +2x2−x+1, respectively. Any element y ∈ R4m can be uniquely

expressed in the form y = a + 2b, where a and b belong to the so-called Teichmüller set

Tm = (0, 1, ξ, · · · , ξ2m−2), where ξ is a nonzero element of the ring which is a root of the

basic primitive polynomial h(x) [24]. Moreover, one finds that a = y2m
. We can also

define the trace to the base ring Z4 as the map

t̃r(y) =
m−1∑
k=0

σk(y), (23)

where σ is the so-called Frobenius automorphism, endowed with the following

remarkable property

σ(a + 2b) = a2 + 2b2. (24)

Let us apply this formula to the case m = 2 (which corresponds to 2-qubits). In

R42 = Z4[x]/(x2 +x+1) the Teichmüller set reads T2 = (0, 1, x, 3+3x); the 16 elements

a + 2b with a and b in T2 are shown in the following matrix⎡
⎢⎢⎢⎢⎣

0 2 2x 2 + 2x

1 3 1 + 2x 3 + 2x

x 2 + x 3x 2 + 3x

3 + 3x 1 + 3x 3 + x 1 + x

⎤
⎥⎥⎥⎥⎦ . (25)

For example the element in the second line of the fourth column equals 1 + 2(3 + 3x) =

3 + 2x.

The case m = 3 (i.e. 3-qubits) can be examined in a similar fashion, with the ring

R43 = Z4[x]/(x3 + 2x2 + x − 1) and the Teichmüller set featuring the following eight

elements: T3 = {0, 1, x, x2, 1 + 3x + 2x2, 2 + 3x + 3x2, 3 + 3x + x2, 1 + 2x + x2}.
In a Galois ring of characteristic 4 the additive characters are

κ̃(x) = ω
t̃r(x)
4 = it̃r(x). (26)
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The Weil sums (10) are replaced by the exponential sums [24]

Γ(y) =
∑

u∈Tm

κ̃(yu), y ∈ R4m (27)

which satisfy

|Γ(y)| =

⎧⎪⎪⎨
⎪⎪⎩

0 if y ∈ 2Tm, y �= 0,

2m if y = 0,√
2m otherwise.

(28)

Gauss sums for Galois rings were constructed in [32]

Gy(ψ̃, κ̃) =
∑

x∈R4m

ψ̃(x)κ̃(yx), y ∈ R4m , (29)

where the multiplicative character ψ̄(x) can be made explicit. Using the notation ψ̄0 for

a trivial multiplicative character and κ̃0 for a trivial additive character, the Gaussian

sums (29) satisfy Gy(ψ̃0, κ̃0) = 4m; Gy(ψ̃, κ̃0) = 0 and |Gy(ψ̃, κ̃)| ≤ 2m.

3.2. Phase states for m-qubits

The quantum phase states for m-qubits can be found as the “Galois ring” Fourier

transform

|θ(y)〉 =
1√
2m

∑
n∈Tm

ψ̃k(n)κ̃(yn)|n〉, y ∈ R4m . (30)

Using the Teichmüller decomposition in the character function κ̃, one obtains

|θa
b 〉 =

1√
2m

∑
n∈Tm

ψ̃k(n)κ̃[(a + 2b)n]|n〉, a, b ∈ Tm. (31)

This defines a set of 2m bases (with index a) of 2m vectors (with index b). Using the

exponential sums (27), it is easy to show that the bases are orthogonal and mutually

unbiased to each other and to the computational basis. The case ψ̄ ≡ ψ̄0 = 1 was

obtained earlier [24].

4. Mutual unbiasedness and maximal entanglement

By definition entangled states in Hq cannot be factored into tensorial products of states

in Hilbert spaces of lower dimensions. We shall now show that there is an intrinsic

relation between MUBs and maximal entanglement.

The familiar Bell states are defined as

(|B0,0〉, |B0,1〉) =
1√
2
(|00〉 + |11〉, |00〉 − |11〉),

(|B1,0〉, |B1,1〉) =
1√
2
(|01〉 + |10〉, |01〉 − |10〉),

where the compact notation |00〉 = |0〉 � |0〉, |01〉 = |0〉 � |1〉,. . . is employed for the

tensorial products. These states are both orthonormal and maximally entangled, i.e.,

such that trace2|Bu,k〉〈Bu,k| = 1
2
I2, where trace2 means the partial trace over the second
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qubit [33]. One can define more general Bell states using the multiplicative Fourier

transform (13) applied to the tensorial products of two qudits,

|Bu,k〉 =
1
√

q

q−1∑
n=0

ωkn
q |n, n + u〉. (32)

Also these states are both orthonormal, 〈Bu,k|Bu′,k′〉 = δuu′δkk′ , and maximally

entangled, trace2|Bu,k〉〈Bu,k| = 1
q
Iq. We define here an even more general class of

maximally entangled states using the Fourier transform (15) over Fq as follows

|Ba
u,b〉 =

1
√

q

q−1∑
n=0

ωtr[(an+b)n]
p |n, n + u〉 . (33)

A list of the generalized Bell states of qutrits for the basis a = 0 can be found in [10],

which is a work that relies on a coherent state formulation of entanglement. In general,

for q a power of a prime, starting from (33) one obtains q2 bases of q maximally entangled

states. Each set of the q bases (with u fixed) has the property of mutual unbiasedness.

Similarly, for sets of maximally entangled m-qubits one uses the Fourier transform over

Galois rings (31) so that

|Ba
u,b〉 =

1√
2m

2m−1∑
n=0

it̃r[(a+2b)n]|n, n + u〉. (34)

For qubits (m = 1) one recovers the common family of Bell states. For two-particle

sets of quartits (see [3]) one gets 4 sets of |Ba
u,b〉, u = 0, . . . , 3, each entailing 4 MUBs,

a = 0, . . . , 3.

The two related concepts of mutual unbiasedness and maximal entanglement derive

from the study of lifts of the base field Zp to Galois fields of prime characteristic p > 2

(in odd dimensions), or of lifts of the base ring Z4 to Galois rings of characteristic 4 (in

even dimensions). One may wonder if lifts to more general algebraic structures could

play a role in the study of non-maximal entanglement.

5. Conclusion

This paper emphasized the relationship between the technological, physical and

mathematical levels of understanding the complementarity in quantum mechanics.

Secure quantum communications, quantum measurements and other optimal protocols

of the emerging field of quantum information, such as quantum cloning, teleportation

and computing, make use of mathematical concepts such as abstract algebra, algebraic

number theory and finite geometry. Mutual unbiasedness is a very important concept

arising from the exact formulation of quantum complementarity, and in this sense full

complementarity seems to be possible only if the Hilbert space’s dimension is a power of

a prime number. This reminds us of the quantum phase-locking effect [21] in which the

phase oscillations are smoothed out at dimensions equal to a prime power, due to the

properties of the Mangoldt function in the prime number theory. It might well be that

the Riemann hypothesis will eventually be formulated as a quantum complementarity
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effect! The quantum theory of von Neumann measurements is being progressively

replaced by MUBs-type measurements, or by other type of measurements called SIC

POVMs, which are positive operator valued measurements with an optimal symmetry

and efficiency. It is believed that these measures exist in arbitrary dimension and —

being intimately connected to MUBs — they thus deserve the most serious attention

[7]. We have also mentioned in the last section an application to phase MUBs states of

a generalized Bell type. This could lead to discovery of new measures for the degree of

entanglement.
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