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Abstract— Distributed Garbage Collection (DGC) algorithms
GLOBAL IDENTIFIER MEMORY FOOTPRINTS

are fundamental components of modern object-oriented distrib
uted systems. The design of a DGC raises numerous issues

. - . - . System Platform  Global identifiers  Size in bits
in term of performance and scalability. DGC object-migration NGrid Net Syst em Qui d 1282
approaches are known to be inefficient compared to graph cycle JoCaml SSPC Locati on 1083
detection approaches because of the tremendous costs asstada ProActive  Java VM D+ U D 2884

with object migration compared to graph-fragment migration Mozart Mozart Ticket 272
where only the object identifiers are carried over the network. Globus Java URLs > 500

Yet, even object identifiers have a large memory footprint in

practice.

In this paper, we introduce the idea of sketched Cycle Detection . . ) .
Message (CDM). We show that explicit graph-fragment represen- Mmessage delay or lossgolation (DGC implementation must
tations are very costly compared to the sketch-based ones. Wenot require modifications of LGC or Remote Procedure Call

prove, under reasonable assumptions that sketch-based megsa (RPC) subsystemshon-disruptive(no pause in the applica-
are smaller (up to one order of magnitude) than their explicit tion), promptnesggarbage should be promptly collected).
counterparts. Those resuilts apply to most of state-of-art DGC In respect to this list of desirable properties for the DGC
methods. The improvement brought by this approach is discussed . . ) >
in details in the particular case of the Veiga and Ferreira DGC  algorithms, we believe the wide spectrum of Distributed I€yc
algorithm. In this case, the amount of improvement is more than Detection Algorithm (DCDA) constitute the most scalable
a factor 3 under very limited assumptions. approaches for the DGC problem. To our knowledge, all cycle
detections methods ([2], [6] for recent examples) are nglyi
on messages carrying object-graph subsets in one form or
an other. We would like to emphasize that global object-
Garbage collection has been a major element in termsidéntifiers used in distributed systems are expensive. The
programmer productivity and program reliability [1]. Gage Figure | illustrates the memory footprints of global idéietis
collection identifiedive (or reachable) andead(or unreach- in various distributed systems. Since those global idensfi
able) objects in the application object graph. From the Gfied to be generated in a totaly decentralized fashion, we
viewpoint, any application can be regarded amuatatorwith believe that200bits is a reasonable lower bound estimation
a single relevant operation: reference-assignment. DGReis of the global identifier size for present and future largeesca
natural extension of the Local Garbage Collection (LGC) idistributed systents
the context of distributed systems. The design of a DGC The memory footprint of object identifiers calls for a more
algorithm raises numerous issues and a large literature [@dpmpact representation. The ideaseft approximatioris the
[3], [4], [5] is devoted to such algorithms. core of the bloom filters originally introduced in [17]. Rete
We believe that asynchronicity and completeness are tw@rks on bloom filters includes the study of compressed
highly desirable, yet most challenging properties, for kloom filter [18], optimal replacements [19], enhanced bhioo
DGC algorithm. Theasynchronicity states no synchroniza-filter with lookup capabilities [20] or frequency estimati®
tion should be required between more than two machinfxl]. The sketching idea, at the heart of the data streams
at the same time. This property is critical for the po-
tential scalability of a DGC algorithm. If recent methods ! Considering the UUID standard [16], 128bits seems a nattihation

are fully asynchronous[2], [6], many algorithms are nder a global identifier size. But it should be noticed the UUtDandard
' ' assume that all actors (see Section 6 of [16]) are fully tcut® adversarial

and requ_lre _a centralized arChneCture[?]* [8]’ [9] Or @¥OUjgentifier generation). The price for a certain level of ségu that we
synchronization[10], [11], [12] or consensus[13] betwéle@ believe unavoidable in large scale distributed systems, lager identifier.

processes. Theomp'etenes$tates that all unreachable buﬁdditionally The UUID standard also assumes a 48bits spaéablution
based on 802 MAC compliant addresses; and consequently adraiidress

only unreachable gral?hsg in particulayclic graphs, must resolution. Yet resolution can be a highly desirable prgpédor global
be collected. Indeed distributed cycles are frequent [@AYl identifiers (Globus, JoCaml, ProActive identifiers providesiress resolution
recent works seem to indicate that object-oriented deeigdst for example). In such case, 128bits IPv6 addresses will jmighblae much

. more adequate for spatial resolution, requiring again eetaidentifier size.
to generates scale-free graphs [15] (scale-free grapfeyelie 2o ") UiD discussion.

with a very high probability). Other architectural prOpe.St 3Assume 32bits IPv4 addresses and a local 32bits machine.
are also desirable such &mult-tolerance(robustness against “Assume 32bits IPv4 addresses.

I. INTRODUCTION



domain (see [22] for an excellent introduction), indicatlest compact set representations than explicit extensivendjsti
keeping an explicit representation of the data is, sometim@hose sketches are only accuracy on a certain (explicitly
neither required nor efficient, when the underlying objecti quantified) probability. The consequences of relying on a
are only associated to some the data propertieskedchrefers possibly inexact identifier representation is very aldnonit

to a compact representation of the data fitting certain préependent and therefore left to the Section Ill.

determined purposes. Many sketches have been introduced

in the data stream literature. Beside bloom filters, it can l%\e
noticed that the HSHMATRIX sketch(see Section 1I-B) shares -
a few similarities with theCount - M n sketch [23] used to  Since items are very large, a very naive, yet efficient,

detect frequent items in data streams (the underlying cainst @PProach to set sketching is simply to substitute a sma has
are very different though). to each object identifier. The hashing sketch is not new €t ha

been used for decades, see [24]). This section introduse thi
structure with a perspective that will be useful in the cghte
of DGC applications.

We introduce, to our knowledge, the idea of performing Formally let £ be the identifier space (simply called item
cycle detection through sketched messages rather than §¥ace in the following). Let = {s1,...,8,} C E be a set.
plicit ones. This approach states that object identifiersl (aLet s, : £ — {0,1}? be a random hash function that associates
sometimes their associated properties) can be sketchieel rah random bit-vector of lengthto each itemz € E. We define
than explicitly carried over the network. We introduce thghe hashing sketch sketch Sfwith H = {A(s1),...,h(sn)}.

HASHMATRIX sketch, a minimal variant of the bloom ﬁ'terBased on this definition, several Operations are very nlattoira
that is as simple the bloom filter itself, yet provides thgefine such as

performance of the compressed bloom filter but without rely- | inclusion testh(z) € H as equivalent of € S,

ing on compression/decompression schemes. Under redsonab

g e unionH; U H, as equivalent of5; U S5,
assumptions, those sketches are up to one order of magmtud.e intersectionH, N H, as equivalent of5; N S,

smaller than their explicit counterparts in the case of glob _, . o . L
Since a hash is non-injective function, false positive in-

identifier summarization. . . : .
a?lusmn can occur with the hashing sketch. The following

Those sketches apply to most of the DCDA. In particular, ) - .
we discuss extensively how the Veiga and Ferreira DCDA [ﬂ]uantlfles the False Positive Rate (FPR) of the hashinglsketc

can be improved through through a sketch-based approach. )
For this particular example, the overall gain in term of afier L€MMa 1 (FPR of the hashing sketch)Let H be the hash-

network transmission is roughly between a factor 3 undekwel!d Sketch equivalent f C £ with b bits allocated per item.
assumptions. Let assume thatS| = n. Letx € E. If x € S thenh(z) € H.

If z ¢ S thenh(z) ¢ H with a false positive probability of
1—(1—27%)" (note:27’n can be used as a more practical
upper bound on this probability).

The hashing sketch

A. Our results

Il. SKETCHING SETS OF IDENTIFIERS

A memory footprint of 200bits per global identifier is
hindering factor for any DGC algorithm relying on identifier Proof: Immediate.(]
transmission. Yet identifier transmission is at the core ofm

Of. the_DGC algorithm (with the notable exception of ObJeCtI%ashing sketch containintp00 items, the false positive rate
migration approaches). 'g lower than.10-5
) . .

Since the discovery of hashing, it has been known th h it ided by the L 1 is alread d
sets can be represented in more compact manner than explic}E € result provided by theé Lemma 21 IS already goo

listing if a certain degree of approximation is tolerated- Aenough for practical applications (as suggestion the nigaier

though very naive the hashing sketch can be very efficiei stration here above), but is weak somehow because for an
ocation of b bits per item, the false positive probability

and appropriate in the DGC context. The hashing sket | 0 i v with, th b it Th
is discussed in Section II-A and it's DGC application iéncrea.se (ar_nqs) inearly with, the humber ot items. the
ollowing definition formalizes this idea.

detailed in Section lll. Since the introduction of bloomdik

it is known that the hashing sketch is far from being an = . )
optimal solution. In Section 11-B, we introduce theasn- Definition 1 (sketch e-capacity) Let S be an empty sketch

MATRIX sketch a replacement for bloom filters. Although th¥/nereb bits are allocated per item on average. Theapacity

HASHMATRIX sketch does better bounds than most recefit S IS defined as the number of items that can be added to

set sketching structure, it shares both simplicity of bloom While maintaining a collisioh probability lower thane for

filters while providing performance matching the best knowfl€ments not previously added.

str;ctureh(trI]at are much .lclompll_catsed tlhan”li)lo?o]m f||te|.rs.). The following theorem provides some insights on the
evertheless, as we will see in Section Ill, the exp ',C't'repcapacity of the hashing sketch.

resentation of identifiers is not a requirement. Often, iregu

ments (on identifier sets) are restricted to certain opmrati

such as_ inCIus_ion testing, item insertion, set equalityirigs SWe says that aollision happen when then insertion of an item into the
...In this section, we propose, through sketches, much maketch does not modify the sketch (although it should).

Numerical illustration: By allocatin@4bits per item for a



Theorem 1 (hashing sketche-capacity) Let H be a hashing impliesz <M with a probability?

sketch withb bits allocated per item. The-capacity ofH is na p

greater than2®/2e. P(p,q,n) = (1 _ (1 _ 1) )
q

Proof: Immediate using Lemma 11 Proof: Immediate.]

It should be noticed that this result is weaker than what Nymerical illustration: LetP(k,n) = minyg_r, P(p,q,n)

can be ach|eved with a simple bloom filter [17] where thgq haveP(5 = 16,5) < 0.001. This result can be interpreted
e-capacity is27 ¢ (zm ~ 0.62 > 0.5). Nevertheless, as as: with only 16bits per identifier, the sketch df objects
we will see the simplicity of the hashing sketch has margan accurately assert object inclusion with a probabitityer
advantages for a DGC use (see Section Ill). than 1000 The memory footprint of the explicit i$.000bits
assuming a reasonali}é0bits per object whereas the memory
footprint of the HASHMATRIX sketch is only80bits. The
B. TheHASHMATRIX sketch sketch is more tham0 times smaller than the initial set.

In this section, we introduce theA$HMATRIX sketch that ~ The design of a HMSHMATRIX sketch depends the two
provides better performance than the hashing sketch. itlghoparametergp and q. Nevertheless, as suggest the Lemma 2,
be noted that the KSHMATRIX sketch is structurally almost for a fixed bit allocatiorp x ¢, it exists anoptimal repartition.
identical to bloom filters [17]: same structure (a vectorité)lp The following theorem characterizes this optimality.
same requirements (a set of hash functions), same opeyation
(insertion is a bitwise-OR, inclusion testing is a bitwisBD).  Theorem 2 (Optimal allocation for the HASHM ATRIX sketch)
Yet, a slightly different hashing scheme considerably imnps Let us consider eHASHMATRIX sketch withb bits allocated
the performance. The ABHMATRIX sketch provides the sameper item such thap.q = b.n. Let~ be such that; = yn then
performance than the compressed bloom filter [18]. bin()

We defin@ a HASHMATRIX sketchM = (v1,...,v,) as a Jim mﬂ}nP(p,q, n) =2
matrix comprisingp bit-vectors of lengthy. Each bit-vectors
is associated to a random hash functign E — {1,...,q} andy = g5 = 1.442695041.. is the minimurh
availablea priori’. In the following, such sketcM is refered N
as a(p, q) sketch. The empty set is associated, by definition, Proof: Tips: lim, . (1 - 2)" = ™. O
with My = (0,...,0). Let 1; be the bit-vector where th&"
bit is the sole b|t set td. The singleton sketch associated to th‘?ems andb bits per items, we must chooge— bIn(2) and
objectz € &, is defined WithM, = (1;,, Li,, .. ., 1;,) where -~ Note that this choice is not exactly optimal, but

i q 1n(2)
i = hi (). The union-equivalen® operation is defmed With a more detailed numerical analysis indicates that the @btim

o vy) & (wr w,) = (OR(v1,wy) OR(v,, w,)) ratio is already very close tb/ In(2) for n not larger than0.
ey Up ye ey Wp) = JWL)y e ps W

The result of the Theorem 2 can be interpreted withsfor

Based on the previous discussion, it's clear fidt @) verifies Corollary 1 (e-capacity of the HASHMATRIX sketch) Let
the union properties. The inclusion-equivalent test, bame M be aHASHMATRIX sketch withb bits allocated per item.
M is defined with The e-capacity ofM is greater than2b"(2)¢,

r<AM <& (AND(s1,14,),...,AND(sp,15,)) # My Proof: Immediate..]

The capacity bound of the A8HMATRIX sketch is much
better than hashing sketch’one becauis@) ~ 0.69 > 1/2.
Additionally, it should be noticed that this bound is not
tight, indeed we have used the following upper bound on the
collision probability

The inclusion-equivalent test is not strictly equivalertause
there is the possibility ofalse positivei.e. items not included
in S but declared as included iN. The following lemma
characterizes the false positive rate.

Lemma 2 (FPR of the HAsHM ATRIX sketch) Let 1 ﬁ
(M, @, <) be the a(p,q) sketch equivalent to(S,U, €)
a set withn elements. Them € S impliesz <S andx ¢ E

P(bIn(2),n1n(2),i)) > 1-n*xP(b1ln(2),n1n(2), n)

i=1

8Notice the similarity the FPR of the bloom filter that is equal t

8In comparison, a bloom filter is a single bit-vector of lengthassociated
to k hash functions (taking usual notations of the literatufée bit-matrix of 1\ kn k
the HASHMATRIX sketch can be viewed a single vector of length= p x g. (k,m,n) (1 - (1 - *) )

In both case, there are two parameters: the size of the steuahd the the m
number of hash functions.

“It has been emphasized in the literature that hash functiensaifree and 9The HASHMATRIX sketch factorln(2) = 0.69 is better that the factor
require memory as well (see [19] for recent work on that matiégyertheless, ﬁ = 0.62 associated to the bloom filters. The reason of this diffezenc
in the case of DGC applications, the total number of hash fonstrequired in  lies of the slight variation on the FPR formula obtained in Lem2nalhis
practice is very limited. Moreover hash functions can be eddand reused). result is actually equivalent, in terms of performance, torésults obtained
In practice, hash function costs are negligible in the c&$#GLC applications. in [18]. Nevertheless our approach is much more simple.



C. Incremental sketches a) Incremental set sketch global equalityf. a simple

In practice, the numbes of items to be added in the sketchf\)/'ltwIse sklft(t:hhcomp?trlson |sd51:f‘f_||c|e_nt 0 gheck fo?.&m'_ th

is not known initially. Additionally, even if this number ode . ATRIX Sketch equality (see €lalls In previous sec ion); the
: \}Q(r:remental case is more complicated. Indeed, since we have

not made any assumption on tbhaler of the item additions,

we cannot rely on a bitwise comparison of the two sketch
consists ofincrementally increasing the sketch siz€his sequences. Nevertheless, the global equality can be elitain

solution is very simple and natural for the hashing sket(}HrOUgh a_simple and very lightweight hash. The foIIowing_
but more delicate for the the ASHMATRIX sketch. In this €mma defines and quantifies the error rate of such set ggualit

the network after each addition, therefore a large iniation
defeats the sketch purpose. A simple solution to this iss

section, we will discuss how theA$HMATRIX sketch can be hash.
modified to perform the insertioriacrementally )
Formally, let us consider the sketch list Lemma 3 (FPR of the hash based set equalitylet S; C
E and Sy C E be two sets. Lek : E — {0,1}" be a random
M, = {Mp,My,..., M} (1) hash function. The set hash 61 is defined withi(S;) =

_ {(p, q); (p,alq); (p’ a2q); o (p’ akq)} (2) )ggsl?h(s) (|dem fOI’Sg). If S1 =55 then h(Sl) = h(SQ) (no

N ) false negative) and if; # Sy then h(S1) # h(S2) with a
The addition of a new element is always performed on the Iggjse positive probability o2—°.
HASHMATRIX sketchM,. The sketciM, is considered afill
when it's capacity is reached, i.e. aftef/In(2) additions. At~ The global equality operation can be made available for a
this point, a new empty sketdil,; is added (following the incremental ASHMATRIX sketch through the adjunction of a
exponential allocation pattern). The inclusion testi M., is set hash, as defined in Lemma 3. Since that false positive erro
defined with rate of Lemma 3 does not depend on the size of considered

] . sets, the practical cost (in bits) of the additional hash is
x<AMy|z <My|... |z <My (where] is the logical OR) negligible.

The choice ofb and « for an incremental sketch clearly
defines it's capacity The following theorem quantifies the Ill. SKETCH BASED DCDA

false positive error rate. Based on the approximate compact representations of iden-
tifier sets (introduced in the previous section), we will now

Theorem 3 (FPR of incremental HASHM ATRIX sketch) discuss how the sketching approach can be used to improve

With b bits allocated per item on average, the incrementdhe DCDA performance.

HASHMATRIX sketch provides a false positive rate lower

—bIn(2) > ] ]
than 2 2 log, (n). A. Veiga & Ferreira DCDA

Proof: Tips: ¢ ,af = a’;*jl—l, Consequence of Theo- Veiga and Ferreira present in [2] an asynchronous, com-
rem 20 plete DGC. Intuitively the DCDA proceeds by an initial
candidate selection that is followed by a sequence of CDMs
Numerical illustration: starting with a sketch smaller thagend petween the processes. CDMs are equivalent to the
200bits (single explicit identifier representation) and takinG aphSunmary data structure here below (note that the
o = 2, we can incrementally adth00 items, allocatingtObits  graph summary is already been optimized to avoid identifier
per item on average, with a false positive rate staying belqyyplicates). In this section, we propose to leverage the-com
5.107° at all ime. pactness of the sketch-based CDMs to quickly detect cycles
(with a risk of false positive detection) and to verify the
Corollary 2 (e-capacity of the incr. HASHM ATRIX sketch) detection correctness afterwards through explicit CDMss T
Let M* be an incrementaHASHMATRIX sketch withb bits approach has no virtually impact on the DCDA, only the CDM

allocated per item. The-capacity ofM* is greater than encoding is truly affected.
obln(2) 1t type graph_summary = {
— list of (
n Lta . .
w (2b1 @)% ) uni que_i d,
is_source_flag, is_target_flag,

WhereW is the Lambert W function (i.e, the inverseaof- ti mest anp) :
ze®, see [25]). } '

Asymptotlcally, thls_ capacity bound on _the incremental 10additionally, it can be noticed that if we are considering equality
HASHMATRIX sketch is better than the hashing sketch one. batweentwo incremental ASHMATRIX sketches, then onlpne hash is

practice witha = 1.1. the incremental HSHMATRIX sketch necessary. When a new item is added to one of two sketchesagfeis
’ ’ ated with a XOR between the previous hash value and timetigsh. The

. . . . upd
capacity gets higher than hashing sketch capacity for aggﬁality between the two sketches is then simply defined binpate hash
b > 15. equal to[1,1,...,1] (becauser XOR z = 1 for any bit-vectorz)



Upon CDM delivery, only a limited list of operations areC. Sketched DCDA performance analysis.

1 .
perfo_rmed_ on_ the graph summary. Tho_se 0peratmn_s are_ ~ The per-item cost for the explicit CDMs cost is estimated as
(a) insertion in the summary of a new timestamped identifier — 266bits (see discussion here above). In order, to estimate

either flagged as source or (exclusive) as target, the relative interest of the sketch-based approach, we aeed
(b) test of equality between one the summary timestamp agétimation of this cost when sketch-based and explicit CDM
an other timestamp for a specified identifier, s are mixed following the strategy described here above.
(c) setting the second flag of an identifierttae, The performance analysis of the mixed DCDA requires sev-
(d) testing global equality between the set of identifiergral additional hypotheses. L&, be thea priori probability
flagged as source and those flagged as target. of detecting a cycle for a DCDA initiative. In practice, the

In terms of CDM memory footprint, we will consider thevalue of P, is highly dependent of the candidate generation
identifier size equals t@00bits (see discussion in Section l).heuristics. The lack of widely used distributed object eyst
The two flags require naturally 2bits. In [2], it is suggestedroviding complete DGC is an obstacle to provide a rigor-
to code the timestamps &bits integers. Timestamps areous estimation ofP, at this time. Nevertheless, we believe
incremented on each object operation, sirée is already that a good tradeoff between DGC promptness and DGC
the order of magnitude the number of elementary operatioresource consumptions involve a majority of failures of DICD
performed per second by an common desktop processor, midiatives. This belief is motivated by the results of [14]
believe that32bits is too low to guarantee collision-freeconcerning the object age frequency distribution (no sampl
timestamps in future large scale distributed systems. Badwehavior seems to govern the object-lifetime). Additibpal
on empirical hardware consideration, we believe thiiiits is the availability of much cheaper CDM is, itself, a strongshia
a more realistic timestamps size. in the estimation off;. Indeed, the cheaper the DCDA, the
more detection initiatives can be started for a given amoéint
. : : network bandwidth dedicated to the DGC. Therefore cheaper
B. Veiga & Ferreira CDM sketching CDM enable the improvement of both the DGC promptness

We propose to sketch thgr aph_sunmary based on the and DGC bandwidth allocation by increasing the rate of cycle
set sketch previously introduced. The CDM becomes detection initiatives (consequently lowering the valueRyj.

For the purpose of the analysis, we will rely @ty = 10%

type graph_sketch = { in the following. We believe this estimate to be quite high,

li f - . .
st of ( empirical evaluations may provide a lower success ratePet
hash, be thea pri ori probability of DCDA interruption based on
i r flag, is_target flag); . . . . .
} ' s_source_tlag _target_flag) the timestamps matching. Actually, timestamps in the Véiga

Ferreira DCDA are used to prevent race conditions with local
The proposedr aph_sket ch is based on a hashing sketchmutator that would break the DCDA validity. If timestamps
and shares some similarities with the original graph surgmaare critical in term ofcorrectness we believe the DCDA
As detailed below, the timestamps are simply ignored. Tleterruptions based on timestamp matching is too'foto

sketch-equivalent operations are have any noticeable impact on performance in practice edide

(a) Insertion of the identifier hash flagged correspondingliace condition involve a complicated root displacement tha
Ignore timestamp. must occurs in a timely fashion with the DCDA execution.

(b) Always returntrue. Those elements lead us to strongly believe that< 1/1000

(c) Setting both flags of the identifier hashttae. (empirical evaluations may provide a bound one or two order

(d) Identical. of lower than that). Therefore, in the following of the arsity

Since, the set sketch has no false negative, in can eg’g)_se events will simply be ignored.

ily be proved that the detection errors caused by the €t £» be thea priori probability for an DCDA initia-

gr aph_sket ch are restricted to false positive cycle detectlve that the graph summary reachesitems at a point of

tions. Therefore we propose followingixedstrategy: when a its execution. As would suggest s.tatisti.cal con.sid_eratixbn
candidate is chosen for cycle detection, start a DCDA itita Sc@le-free graphs, the results provided in [14] indicates (

based on sketched CDMs. In case of cycle detection, st3ff considering the measurements of the size frequencies of
a new DCDA initiative based on explicit CDMs, taking the>t'ongly connected components of the considered graphs by

suspected object (from the cycle detection point) as inita [14]). _The val_ues ofP, are_importa_nt_ _because,_ they will be
candidat®’. Its easy to prove that this mixed strategy idised in practice to determine the initial capacity of 1 of the

correct (i.e. all garbage but only garbage is collected). ~ SKetch. , _ _ 3
Based on the previous considerations,¢ifis the false

\when an identifier is added to the CDM list, the local invoaatio POSitive cycle detection rate when relying on an allocatibh

counter timestamp must match, if present, its CDM counterpérisot, a  bits per item, the per-item,, cost for the whole mixed strategy

race condition has been encountered and the CDM is terminatedcycle : ; _ _ _ _
detection condition is defined as an equality between thasitlagged as can estimated witf,, = b +2+ (1 - (1 Pg)(l €)) * ce

source and the items flagged as targets.

1215 possible to exploit the information of the sketch CDM inder to L3caution: wedo not say that timestamps checking can be ignored for
speed up the explicit DCDA execution. Such discussion gegerid the scope performance. We say that race condition detections are tect@ampact the
of this paper. overall DCDA performance.



TABLE I TABLE Il

PER-ITEM COSTS OF HASHING SKETCHBASED CDM. PER-ITEM COSTS OFHASHLIST AND HASHMATRIX MIXED CDM.
by, € capacity cm br, by € capacity c¢m
20 0.009 10 51 22 15 0.009 10 47
26 0.012 100 58 30 20 0.007 100 52
32 0.015 1000 64 36 24 0.010 1000 58
40 0.009 10000 71 42 29 0.010 10000 63
46  0.011 100000 78 49 34 0.009 100000 69
52  0.014 1000000 84 57 40 0.014 1000000 74
Legend: Legend:
e by, is the number of bits allocated per item in the hashing sketch. e by (resp.bys) is the number of bits allocated per item for the hashing
e ¢ is an upper bound of the false positive cycle detection rate. sketch(resp. WISHMATRIX sketch).
e capacityis a lower bound on the maximal number of items that can be ¢ ¢ is an upper bound of the false positive cycle detection rate.
incrementally added. e capacityis a lower bound on the maximal number of items that can be
e ¢, is the average CDM footprint in bits. incrementally added.

e ¢, is the average CDM footprint in bits.

(sum of the sketch-based per-item cost plus the explicit per

item cost when it occurs). The Figure Il provides a list ofations. In this paper, we have introduce several sketthas,
numerical values forc,, depending on the various initialis approximate compact representations, of sets of idersifi

choices forb and o (those values have been computed baseathe properties, in particular the level of approximatioayé
on the results of Section II-A). Notice that the higheiis been rigourously quantified.

initially chosen, the higher the graph sketch capacity. Considering one the more recent DCDA at this date (see
[2]), the improvement brought by the sketch-based CDM is
D. Improved sketched DCDA roughly a factor 3 under limited (partly adversarial) aspum

In Section II-B, we have seen that thesBHMATRIX sketch tions. Since our approach is not specific of this algorithm,
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