Kähler Geometry and the Navier-Stokes Equations

Abstract : We study the Navier-Stokes and Euler equations of incompressible hydrodynamics in two and three spatial dimensions and show how the constraint of incompressiblility leads to equations of Monge--Amp\ère type for the stream function, when the Laplacian of the pressure is known. In two dimensions a K\\ähler geometry is described, which is associated with the Monge--Amp\ère problem. This K\\ähler structure is then generalised to `two-and-a-half dimensional\' flows, of which Burgers\' vortex is one example. In three dimensions, we show how a generalized Calabi--Yau structure emerges in a special case.
Liste complète des métadonnées

Contributeur : Secrétariat Math. Angers <>
Soumis le : mardi 31 janvier 2006 - 14:01:50
Dernière modification le : dimanche 20 janvier 2019 - 13:16:01

Lien texte intégral



Ian Roulstone, Bertrand Banos, John D. Gibbon, Vladimir Roubtsov. Kähler Geometry and the Navier-Stokes Equations. 215. Prebub. Math. Angers, 215. 2005. 〈hal-00009622〉



Consultations de la notice