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Hybrid Multicanonical Cluster Algorithm for Efficient Simu lations of Long-Range Spin Models

S. Reynal∗ and H.T.Diep
Laboratoire de Physique Théorique et Modélisation, CNRS-Université de Cergy-Pontoise (UMR 8089),

2 avenue A. Chauvin, F-95302 Cergy-Pontoise Cedex, France
(Dated: October 7, 2005)

An efficient, flat histogram Monte Carlo algorithm is proposed that simulates long-range spin models in the
multicanonical ensemble with very low dynamic exponents and drastically reduced computational effort. The
method combines a random-walk in energy space with cluster updates, where bond weights depend continuously
on the lattice energy. Application toq-state Potts chains with power-law decaying interactions is considered.
Lattice sizes as high as216 spins, unattainable with conventional flat histogram algorithms, are investigated.
Numerical results demonstrate the remarkable performanceof the method over a wide spectrum of model pa-
rameters.

PACS numbers: 05.10.Ln, 64.60.Cn, 75.10.Hk

I. INTRODUCTION

Amidst powerful methods dedicated to the study of long-
range spin models, Monte Carlo (MC) methods have now
gained a prominent role [1, 2, 3, 4]. Whether they rely on
single-spin or cluster updates,canonicalMC simulations of
long-range models still pose the same limitations as do nu-
merical studies of their short-range counterparts: (i) thecom-
putation of free energies is cumbersome, rendering e.g., a pre-
cise determination of the order of the transition intractable;
(ii) for models exhibiting complicated energy landscapes or
first-order phase transitions, the dynamics of the Markovian
chain often sticks to local free energy minima, making it nec-
essary to carry out simulations over exceedingly long times
[5]. Efficient algorithms that work out these limitations are
flat histogram algorithms, which operate in the multicanon-
ical ensemble [5, 6, 7, 8], and engender a random-walk in
energy space. The Markovian chain is thus weighed by a
multicanonicalweight w(E) ∼ 1/n(E), wheren(E) is an
estimate of the density of states. In the last decade, several
efficient schemes have been devised that computen(E) in the
course of the simulation itself, e.g., Wang-Landau’s algorithm
[6] or the transition matrix method [8].

Local-update implementations of these algorithms were
shown to reduce tunneling times from an exponential- to a
power-law of the lattice sizeτe ∼ Lz [7], yet with dynamic
exponentsz being still substantially higher than the ideal
valuez ∼ D expected from a random-walk argument. For
long-range spin models, the need to compute the lattice energy
anew at every MC sweep brings about an additional hurdle,
since of orderL2D operations are involved. This yields a total
CPU load per independent measurement scaling asL2D+z,
and limits studies to modest lattice sizes [4], where strong
finite-size effects constitute a serious hindrance.

Conversely, cluster algorithms [1, 9] are known to dras-
tically reduce dynamic exponents, owing to their ability to
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minimize correlations by updating spins in a collective way.
Because such algorithms hinge on particular symmetries of
the model, and the multicanonical weightw(E) does not keep
track of them, embedding collective updates in a multicanon-
ical algorithm is not straightforward. The purpose of the
present work is to develop a hybrid method which success-
fully tackles this challenge in an efficient and versatile way.
In the case of long-range interactions, the method also dras-
tically reduces the simulational effort through an optimized
computation of the lattice energy.

II. ALGORITHM

Our method is primarily based on the observation that, in
local-update multicanonical algorithms, it is the microcanoni-
cal temperature which governs the dynamics of the Markovian
chain [4]. Indeed, a single spin is flipped, and the move is ac-
cepted with the acceptance rateW = min[1, n(E)/n(E+ǫ)],
whereE andǫ denote the initial energy and the energy varia-
tion respectively. Carrying out a series expansion inǫ yields
W ∼ min[1, exp(−β(E)ǫ)], whereβ(E) = d ln n(E)/dE is
an estimate of the inverse microcanonical temperature; hence
a multicanonical dynamics islocally equivalent to a canoni-
cal dynamics at inverse temperatureβ(E). We therefore pro-
pose to build clusters of spins by placing bonds between spins
with the same probability as given by a canonical cluster al-
gorithm operating atβ(E). To be specific, we consider a fer-
romagnetic long-range Potts model whose Hamiltonian reads
E = −

∑

i<j J(|i − j|)δσi,σj
. Theσi variables take on in-

teger values between1 andq, andJ(|i − j|) > 0. We write
the multicanonical weight asw(E) = φ(E) exp[−β(E)E]
and, taking guidance from Swendsen-Wang’s algorithm [9],
expand the Boltzmann-like exponential term as a trace over
the bonds of a random-bond cluster. This yields

w(E) = φ(E)
∑

[b]

∏

i<j

p|i−j|(E)δσi,σj
δbij ,1 + δbij ,0,

where the trace is over all lattice bonds, a bond is active (inac-
tive) wheneverbij = 1 (0), andp|i−j|(E) = exp[β(E)J(|i −
j|)] − 1 is interpreted as the statistical weight of a bond link-
ing spinsi andj. As opposed to Swendsen-Wang’s algorithm,
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FIG. 1: Inverse microcanonical temperatureβ(E) and mean accep-
tance rate〈Wflip〉 as a function of the energy per spin, for the long-
range Potts chain withq = 6, σ = 0.7, andL = 1024 spins.Eo and
Ed denote the energy of the histogram peaks corresponding to the
ordered and disordered phase, respectively. The finite sizetransition
temperatureTc and the100% line are shown for convenience.

bond weights thus vary continuously with the lattice energy.
A simple way of constructing clusters may then consider each
pair of spins in turn for bond activation, and activate a bond
with a probability1 − exp[−β(E)J(|i − j|)]. For interac-
tions decaying with the interparticle distance, however, alarge
number of bonds have a negligible activation probability; a
more efficient approach [1] consists, for each spin, in draw-
ing at random the index of the next spin to beprovisionally
added to it using a cumulative probability, and then to placea
bond if both spins match. This method was shown to reduce
the number of operations per cluster construction fromL2D to
roughlyLD. Finally, each cluster is assigned a random spin
value, and the new configuration at energyE + ǫ is accepted
with the following acceptance rate,

Wflip = min

(

1,
φ(E + ǫ)

φ(E)

∏

l>0

[

pl(E + ǫ)

pl(E)

]B(l)
)

, (1)

whereB(l) refers to the number of active bonds of length
l. The computation of the lattice energy is obviously a cru-
cial part of the update procedure, yet its complexity scalesas
O(L2D). This can be efficiently cut down toO(LD lnLD) by
relying on an FFT implementation of the convolution theorem
[10]. Noteworthy enough, such a reduction is of benefit only
because a whole lattice update is carried out at a time.

III. NUMERICAL RESULTS

In order to investigate the efficiency of our algorithm,
we have conducted simulations onq-state Potts chains with
q = 3, 6 and12, and power-law decaying interactions, i.e.,
1/|i− j|1+σ. The density of statesn(E) was estimated using
Wang-Landau’s method [6], and the microcanonical temper-
atureβ(E) was periodically updated from it using a spline
interpolation. It also proved advantageous to rely on a tran-
sition matrix scheme [8, 11] to bootstrap the computation of
β(E) during the very first iterations of Wang-Landau’s algo-
rithm. We briefly discuss some of our estimates of transition
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FIG. 2: Tunneling times for the long-range Potts chain. Triangles
and squares refer to the local-update and to our algorithm, respec-
tively.

temperatures, which we computed in two distinct ways:Teqh,
corresponding to peaks of the reweighted histogram having
equal height; andTW , defined from the intersections of the
ratio Wo/Wd at successive lattice sizes, whereWo andWd

denote the histogram weights of the ordered and disordered
phases respectively [12]. Infinite-size temperatures werede-
termined from a fit toT (L) = T (∞) + a/Lb. For q = 3
and σ = 0.5, for instance, we foundTeqh = 1.6877(2)
andTW = 1.68744(2), with a perfect fit fromL = 29 to
L = 216. These estimates are far more precise than the value
of 1.686(4) obtained recently with a local-update approach
[4]. For the sake of completeness, we performed simulations
of the two-dimensional nearest-neighbor Potts model for sizes
up to 256 × 256 andq = 7 and10, and obtained transition
temperatures matching the exact results with a five-digits pre-
cision [11].

How fast does our algorithm explore the configuration
space? A relevant indicator here is the mean acceptance
rate, since by construction the acceptance rate in Eq. 1 is
not equal to unity. Interestingly, a series expansion shows
that 1 − 〈Wflip〉 is proportional to|β′(E)ǫ|. As sketched
in Fig. 1, β(E) varies smoothly between the energy peaks
of the disordered and the ordered phase, andWflip remains
well above90% inside this energy range, incidentally the en-
ergy range of primary interest where analysis of first order
transitions is concerned. Other values ofq andσ correspond-
ing to the first-order regime yielded an acceptance rate which
never fell below80%. Let alone the benefit of the cluster dy-
namics itself, which we consider below, this already repre-
sents an improvement of a factor3 over a single-spin-update
implementation [4]. In terms of correlations between suc-
cessive configurations, a convenient indicator is the so-called
tunneling time[13, 14] defined as one quarter of the num-
ber of MC steps needed to travel from one histogram peak to
the other, and back. Shown in Fig. 2 are fits to the power
law τe ∼ Lz, giving z = 0.89(1) and z = 1.11(1) for
q = 3, σ = 0.4 andσ = 0.6, andz = 1.05(1) for q = 6,
σ = 0.7. This represents a strong reduction with respect to
the local-update implementation where we obtained, respec-
tively, z = 1.13(2), z = 1.48(2) andz = 1.35(3); more-
over, prefactors clearly favor our method even at small lattice
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FIG. 3: CPU time per MC step and per spin for the long-range Potts
chain. Triangles indicate typical CPU times for the local-update al-
gorithm, irrespective ofq andσ. Filled squares refer to our algo-
rithm, where forq = 3 estimates were obtained by averaging over
σ = 0.4, 0.5 and0.6.

sizes. For the nearest-neighbor model, we foundz = 1.82(2)
for q = 7 andz = 2.23(1) for q = 10. These exponents
are comparable with those obtained with the multibond ap-
proach [14]. Our exponents lie thus systematically closer to
— and in some cases even below — the ideal valuez ∼ D
expected from a random-walk argument than those obtained
with a local-update algorithm.

Restraining the rest of the discussion to the long-range case
exclusively, we now consider the gain in CPU time introduced
by the FFT accelerated computation of the energy. Figure 3
shows averages of the CPU (user) time per MC step and per

spin as measured over a series of one-hour long simulations on
various Intel-based CPU architectures. Clearly, the FFT ac-
celeration cuts down the CPU load from a linear to a roughly
constant one, with however small fluctuations owing to CPU
caches differing in size. For higherq, a slight overhead can be
witnessed; this is accounted for by the correspondingly higher
number of FFT’s to be computed, for the use of the convo-
lution theorem forq > 3 requires first mapping the Potts
Hamiltonian to anO(q − 1) vector model, and then carry-
ing out an FFT for each vector component separately. The
local-update implementation is outperformed already at sizes
of several hundreds spins; chains containing up to216 spins
were simulated in a few days, whereas challenging such huge
sizes with local updates would have demanded several months
of intensive computation.

In conclusion, we have developed a new Monte Carlo
method which combines in an efficient and straightforward
way the benefits of flat histogram algorithms with the fast-
decorrelating capabilities of cluster updates. We have shown
that this method proves remarkably powerful when applied to
long-range spin models, where the algorithm complexity re-
duces to that of a short-range model having the same number
of spins. Our formulation is nonetheless versatile, and the
method can be applied to any spin model for which a random-
bond representation can be devised, and to a variety of density
of states estimation schemes.

S. R. is greatly indebted to Prof. R. H. Swendsen for fruit-
ful discussions regarding the estimation of the microcanonical
temperature.
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Computing, Jühlich, 2002), vol. 10 ofNIC Series, pp. 423–445.

[14] W. Janke and S. Kappler, Phys. Rev. Lett.74, 212 (1995).


