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Q-state Potts model with power-law decaying interactions: along the tricritical line

S. Reynal∗ and H.T.Diep
Laboratoire de Physique Théorique et Modélisation,

Université de Cergy-Pontoise (CNRS UMR 8089), 5 mail Gay-Lussac,
Neuville sur Oise, 95031 Cergy-Pontoise Cedex, France

By relying on a recently proposed multicanonical algorithm adapted to long-ranged models, we
shed new light on the critical behavior of the long-ranged q-state Potts model. We refine the
controversial phase diagram by an order of magnitude, over a large range of q values, by applying
finite-size scaling arguments to spinodal curves. We further offer convincing evidence that the phase
transition on the line of inverse-square interactions is not of the first-order, by virtue of a very
unusual, previously unnoticed finite-size effect. Finally, we obtain estimates of critical couplings
near the mean-field region which clearly reinforce Tsallis conjecture.

PACS numbers: 05.10.Ln, 64.60.Cn, 75.10.Hk

Since the work of Kihara et al. [1] in the early 1950’s,
the Potts model with short-ranged (SR) interactions has
been the object of extensive study. A prominent feature
of this model is the dependence of the nature of the tran-
sition, either of the first- or second-order type, on both
the number of states of the model and the dimensional-
ity (see [2] for a review). Although its long-ranged (LR)
counterpart exhibits much richer thermodynamical be-
havior as a result of the nonlocality of interactions, only
very recently has it received increasing interest. This fea-
ture may be accounted for by the difficulty to implement
standard analytical methods, e.g. renormalization-group
(RG) approaches, and by the higher cost of numerical
methods in terms of computer resources, as opposed to
the SR case.

In this paper, we consider a q-state Potts model defined
by the following Hamiltonian:

H = −
∑

i<j

1

|i − j|1+σ
δsi,sj

where the σ parameter allows to set the interaction range,
the spin variable si can take on integer values between 1
and q, and the sum runs over all the spins of the lattice.
The mean-field (MF) regime corresponds to σ → −1,
where all interactions have equal strength.

This model is known from rigorous proof to undergo a
phase transition when σ ≤ 1.0 ([3]), the nature of which
is still, for given q and σ, a matter of intense debate. For
σ above a so-called tricritical value σc(q), the transition
has been shown to change from a first- to a second-order
one, yet numerical estimates of σc(q) reported by previ-
ous works are fairly imprecise, and show strikingly high
discrepancies [4, 5, 6, 7, 8]. A further unsettled issue is
whether σc(q) crosses the line σ = 1.0 corresponding to
inverse square interactions, and if in the affirmative, at
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which value of q this crossing occurs (see Fig. 1). Cardy
has shown, using a real-space RG analysis, that the line
σ = 1.0 is the locus of Kosterlitz-Thouless (KT) transi-
tions, whatever the number of states [9], an assertion that
is convincingly supported, at least for q = 2 and q = 3, by
Monte-Carlo (MC) simulations [10]. Conversely, it was
claimed in [7] that the transition becomes discontinuous
above q = 8, and the finite value of the correlation length
in this latter case is obviously incompatible with the KT
transition found by Cardy.

The present article addresses both of these issues by re-
sorting to MC simulations based on a recently proposed,
enhanced version of the multicanonical algorithm stream-
lined for LR models [11, 12]. This class of algorithms has
been widely proven to efficiently overcome supercritical
slowing-down in the case of first-order transitions. Our
approach relies on the finite-size scaling (FSS) properties
of spinodal curves, and allows us to considerably improve
the precision of the phase diagram. A similar FSS anal-
ysis further demonstrates that, although the transition
may appear discontinuous at finite lattice size for σ = 1.0,
the thermodynamical limit clearly corresponds to a con-
tinuous transition. Finally, we show that our numerical
estimates of critical couplings are in striking agreement
with Tsallis conjecture [13], according to which the in-
verse critical coupling scales as σ whenever σ → 0+, i.e.

when the system approaches the non-extensive thermo-
dynamic region.

Our multicanonical method resorts to two key-
principles: i) an iterative scheme allows to compute an
estimate of the density of state n(E) from successive his-
tograms of the energy; ii) the usual Boltzmann weight
e−E/kT is being replaced by a multicanonical weight
w(E) ∝ 1/n(E), whereby a flat energy distribution span-
ning an increasingly large energy range is sampled. This
in turn allows the dynamics to easily cross free-energy
barriers, as witnessed in the case of discontinuous tran-
sitions. The iteration process stops whenever the his-
togram has become sufficiently flat over the range of in-
terest, a long production run is carried out, then thermo-
dynamical averages shall be computed using a reweight-
ing procedure. For instance, the partial partition func-
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tion Z(β, m) at inverse temperature β is estimated from a
trace restricted to samples having a given magnetization
m, Z(β, m) =

∑
i exp(−βEi)/w(Ei)δm,mi

, from where
on we readily derive the partial free-energy F (β, m) =
− logZ(β, m)/β.

We have conducted MC simulations for numerous q
and σ values, using lattice sizes between L = 50 and
L = 400, and statistics of roughly 5.104 independent sam-
ples per production run. We first focus on the location
of the tricritical line σc(q). Due to the cluster size diver-
gence as σ → σc(q), traditional estimators, e.g. latent
heats or Binder cumulants [14], become impracticable.
We rather resort to the observation that spinodal points,
which define the limit of metastability, merge when ap-
proaching the tricritical point. We thus compute the par-
tial free-energy F (β, m) over a large range of temperature
and magnetization: metastable states, if any, are then ob-
tained from the condition that dF/dm = d2F/dm2 = 0.
This yields two finite-size metastability temperatures,
namely T1(L) and T2(L), which — mimicking the FSS
theory of first-order transitions proposed in [15] — we
assume to scale as a power-law of the lattice size L, e.g.
T1(L) = T1 + a/Lb, where T1 is the infinite-size temper-
ature. As illustrated in Fig. 2 for q = 3, both spinodal
points merge around σ = 0.7. In order to reach a higher
precision, we found it convenient to fit ratios T1/Tc and
T2/Tc to a polynomial. Here, Tc denotes the infinite-
size transition temperature, and is determined by first
computing finite-size transition temperatures Tc(L) from
both the location of peaks of the specific heat and the
crossing-point of Binder cumulants of the energy [14],
then fitting these temperatures to a power-law of the
same form as that used for metastability temperatures,
and eventually averaging over both values. The tricriti-
cal value may then be determined from the intersection
of each polynomial with the horizontal line at ordinate
unity (see inset in Fig. 2). As the T2/Tc ratio turns out
to produce far more precise estimates, a feature which
is accounted for by the strongly asymmetric shape of
F (β, m) with respect to m, we in effect discard the esti-
mate obtained from T1/Tc. This yields σc(3) = 0.72(1), a
value which is perfectly consistent with the lower bound
of 0.7 obtained in [8], and lies slightly above the interval
of (0.6, 0.7) reported in [4]. The same approach yields
σc(5) = 0.88(2), which is in agreement with σc(5) > 0.8
in [5], σc(7) = 0.94(2), which is at least consistent with
the qualitative phase diagram sketched in [7], and fi-
nally σc(9) = 0.965(20). This latter estimate comes in
strong contrast with the result reported in [7], whereby
the transition at σ = 1.0 becomes discontinuous above
q = 8 (see Fig. 1). In order to scrutinize this latter
issue, we now turn to a detailed study of the FSS be-
havior of spinodal points at σ = 1.0. We concentrated
our computation efforts on q = 8 and q = 9, i.e. at and
just above the change of regime reported in [7]. As il-
lustrated in Fig. 3, T2(L) → T1(L) as L → ∞ for both
q = 8 and q = 9, within error bars, and this accounts
for the continuous nature of the transition in the ther-
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FIG. 1: Filled squares sketch our own estimate of the tri-
critical line σc(q) above which the transition changes from a
first-order to a second-order one (dotted lines are guides to
the eyes). The horizontal dashed line at σ = 1.0 corresponds
to inverse square interactions; according to Cardy [9], it is
the locus of KT transitions for all q’s, while it was claimed
in [7] that σc(q) crosses this line at q = 8 and that first-order
transitions set in for q ≥ 8 (rightmost solid line).
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FIG. 2: Spinodal curve for q = 3. Metastability temperatures
T1 and T2, as well as the transition temperature Tc, were
obtained by a fit of finite-size estimates to a power-law of
the lattice size. The inset shows a plot of the third-order
polynomial fitted to the ratio T2/Tc. Lines are guides to the
eyes.

modynamic limit. At finite size, however, the transition
appears as a first-order one, with metastability temper-
atures being noticeably distinct already below L = 400.
This fairly unusual FSS behavior, which has been so far
unnoticed, markedly contradicts the traditional picture
of first-order transitions in SR models, whereby the fi-
nite cluster size imposes that continuous transitions may
be observed only as long as the lattice size is smaller than
the (fixed) correlation length. We feel strongly that this
behavior may be accounted for by the truncation of the
LR potential at finite size: in our view, this results in
the whole array of spins being more rigidly tied at small
lattice sizes than at higher ones, thus artificially bringing
the model closer to the MF regime and possibly favoring
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FIG. 3: Metastability temperature differences T2(L) − T1(L)
on the line σ = 1.0 for q = 8 and q = 9, compared with
the corresponding linear fits (solid lines). For the sake of
clarity, the size of the error for each lattice size is shown as a
bar; the error shown corresponds to the largest of both errors
computed for q = 8 and q = 9.
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FIG. 4: Critical couplings for q = 3, 5, 7, 9, from top to bot-
tom (solid lines). MF predictions are shown for comparison
(dotted lines).

the onset of a first-order transition. The latter feature
should be especially apparent at higher q since, accord-
ing to our estimates of σc(q), we expect σc(q) → 1.0
whenever q → ∞ (see Fig. 1), hence the artificial shift

towards the MF regime makes the system wade across
the thin second-order region far more easily. This inter-
pretation is in effect supported by a comparison of our
results at q = 8 and q = 9 as illustrated in Fig. 3, and
has been confirmed by our simulations at q = 3, where
the transition appears continuous at all sizes.

Finally, we shortly consider the agreement of our crit-
ical couplings estimates with MF predictions. Accord-
ing to MF theory, the transition temperature is given
by kTc = ζ(1 + σ) q−2

(q−1) log(q−1) , where ζ(1 + σ) is the

Riemann zeta function [2]. Tc is thus expected to scale
as 1/σ when σ → 0+ (see also [13]). Our results are
plotted in Fig. 4 for q = 3, 5, 7, 9 and 0.2 ≤ σ < 1.0,
together with MF predictions. The agreement with
MF results at low σ is exceptionally good, thus lend-
ing strong support to Tsallis conjecture [13]. It is also
markedly better than most previous studies [4, 5, 16],
with e.g. the ratio between Tc and the correspond-
ing MF prediction amounting to 98.7%, 95.9%, 93.3% for
q = 3, σ = 0.2, 0.3, 0.4, and 97.4%, 93.5% for q = 5,
σ = 0.3, 0.5, whereas two previous MC studies [4, 5] led
to 91.7%, 95.2%, 92.9%, 95.6%, 91.8% respectively. It is
important to mention, however, that a cluster mean-field
approach yielded estimates very similar to ours [17].

To sum up, we have obtained a refinement of the phase
diagram of the LR Potts model by an order of magnitude,
with numerical estimates of σc(q) supporting a two-digit
precision. Near the MF region, the observed scaling be-
havior of transition temperatures as 1/σ lends clear sup-
port to Tsallis conjecture. Finally, our detailed FSS anal-
ysis along the line σ = 1.0 shows that the observation of
discontinuous transitions at finite size may be viewed as
an artefact due to the truncation of the LR potential.
We therefore strongly expect σc(q) to approach the line
of square interactions in the high-q limit, and the tran-
sition to be continuous along the whole line σ = 1.0, in
agreement with Cardy’s conjecture. Whether this tran-
sition is characterized by exponentially diverging rather
than power-law correlation lengths, is still an open ques-
tion however, and we think this would deserve extensive
studies at higher lattice sizes.
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