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Abstract. In this paper we consider the following nonlinear parabolic equation



ut  at urr 

r ur  Fr,u  fr, t, 0  r  1, 0  t  T,

r0

lim r/2urr, t  , ur1, t  ht u1, t  u0  0,

ur, 0  u0r,

where   0, u0 are given constants, at, ht, Fr,u, fr, t are given functions. In section
III, we use the Galerkin and compactness method in appropriate Sobolev spaces with weight to
prove the existence of a unique weak solution of the problem (*) on 0,T, for every T  0. In
section IV, we prove that if the initial condition is bounded, then so is the solution. In section
V, we study asymptotic behavior of the solution as t  . In section VI we give numerical
results.

Keywords: Nonlinear parabolic equation, Galerkin method, Sobolev spaces with weight,
Asymptotic behavior of the solution.
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I. INTRODUCTION

In this paper we will consider the following initial and boundary value problem

1.1 ut  at urr 

r ur  Fr,u  fr, t, 0  r  1, 0  t  T,

1.2
r0

lim r/2urr, t  , ur1, t  ht u1, t  u0  0,

1.3 ur, 0  u0r,

where   0, u0 are given constants, at, ht, Fr,u, fr, t, are given functions satisfying
conditions specified later.
The equation (1.1) can be rewritten in the form

1.4 u
t  at

r

r r u

r  Fr,u  fr, t, 0  r  1, 0  t  T.

For   1 with F  0, the problem describes the radial axisymmetric heat flow in a
cylinder.
With   2 and always F  0, the problem (1.2)-(1.4) represents in polar coordinates in 3 the
mass fraction of a liquid fuel droplet in the case of his evaporation inside an infinite vessel, the
boundary condition (1.2) being associated to the Rankine-Hugoniot condition on the surface of
the droplet after a changing of the scale [8].
In [6], Minasjan studied a special case of the problem (1.1), (1.2) associated with the following
T-periodic condition

1.5 ur, 0  ur,T,

with

1.6   1, Fr,u  0, u0  0.

and the functions at, ht, fr, t are T-periodic in time t. The physical interpretation of the
problem (1.1), (1.2), (1.5), (1.6) is that of a periodic heat flow in an infinite cylinder with the
assumption that the cylinder is subjected to convective heat transfer (periodic in time) at the
boundary surface r  1 at zero temperature. Inside the cylinder, there are circular symmetric
sources of heat that change periodically. Minasjan[6] gave for this problem a classical solution
using Fourier transforms. This method leads to an infinite pseudoregular system of linear
algebraic equations. However, the solvability of this system is not proved in detail in [6].
In [3] Lauerova has proved that with T-periodic data, the problem (1.1), (1.2), (1.5), (1.6) has a
T-periodic weak solution in t.
In the case of
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1.7   1, u0  0, f  0, F  Fu, F  C1, F/u  ,

  0 small enough), we have proved [4] that the problem (1.1), (1.2 ), (1.5) has a T-periodic
unique weak solution in appropriate Sobolev spaces with weight. Furthermore, the solution
also depends continuously on the functions at and ht.

The paper consists of three sections. In section III, under appropriate conditions of at,
ht, Fr,u, fr, t we prove the existence of a unique solution on 0,T, for every T  0.
Theses results generalize relatively the ones in [3, 4, 6].
In section IV, we shall show that if the initial condition is bounded, then so is the solution u.
More precisely if u0  L0,1 then the solution u  L0,1  0,T. This last result
generalizes to the nonlinear case the same result obtained in the linear case [8]. In section V,
we study asymptotic behavior of the solution as t tends to infinity: assuming some asymptotic
exponential decay on the data, we show that ut converges as t   to the solution u of the
corresponding steady state equation, with an exponential decay to 0 of the difference ut  u.

The aim of this paper is mainly to get some integral inequalities via various assumptions
on the nonlinear term Fr,u in order to have some a priori estimates for ut, tut and his
respectives derivatives in appropriate Sobolev spaces with weight. The hypotheses on Fr,u
are sufficiently large to include a class enough great of nonlinear problems. For instance if we
consider   2 ( radial Laplace in polar coordinates in 3) all the functions F of the kind
Fu  sgnu|u|,   0,2. In section VI we give numerical results.

II. PRELIMINARY RESULTS, NOTATIONS, FUNCTION SPACES

We omit the definitions of the usual function spaces Cm0,1, Lp0,1, Hm0,1,
Wm,p0,1. For any function v  C00,1 we define v0 as

2.1 v0  v0, 
1

0

 rv2rdr
1/2

and define the space V0 as completion of the space C00,1 with respect to the norm 0.
Similarly, for any function v  C10,1 we define v1 as

2.2 v1  v1,  v0
2  v /0

2 1/2

and define the space V1 as completion of the space C10,1 with respect to the norm 1.
Note that the norms 0 and 1can be defined, respectively, from the inner products

2.3

u,v 
1

0

 rurvrdr and

u,v  u/,v / 
1

0

 rurvr  u/rv /rdr.

It is then easy to prove that V0 and V1 are Hilbert spaces, with V1 continuously and densely
embedded into V0. Identifying V0 with its dual V0

/ we have V1  V0  V0
/  V1

/ . On the other
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hand, the notation ,  is used for the pairing between V1 and V1
/ .

We then have the following lemmas, the proofs of which can be found in [5].

Lemma 1. For every v  C10,1,   0,   0, and r  0,1 we have

2.4 v0
2  1

 v /0
2  v21,

2.5 |v1|  K1v1,

2.6 r/2|vr|  K2v1,

2.7 v21  v /0
2  Cv0

2,
where
2.8 K1    2 , K2    3 , C  1    1/.

Lemma 2. The embedding V1  V0 is compact.

Remark 1. The result of (2.4), (2.5) proves that v21  v /0
2 1/2

and v1 are two
equivalent norms on V1 and
2.9 

1 v1
2  v21  v /0

2    3v1
2, for all v  V1.

We also note that

2.10
r0

lim r/2vr  0, for all v  V1.

(See [1], Lemma 5.40, p.128).
On the other hand, by H1, 1  C0, 1, 0    1, and

2.11 /2vH1,1  v 1, for all v  V1, 0    1.

It follows that

2.12 v|,1  C0, 1, for all , 0    1.

From (2.10), (2.12) we deduce that

2.13 r/2v  C00,1, for all v  V1.

We denote by X the norm in the Banach space X. We call X / the dual space of X. We denote
by Lp0,T;X, 1  p   for the Banach space of the real functions u : 0,T  X
measurable, such that

uLp0,T;X 
T

0

 utX
p dt

1/p

 , for 1  p  ,

and
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uL0,T;X 
0tT

ess sup utX, for p  .

Let ut, u/t  utt, urt  ut, urrt denote ur, t, u
 t r, t,

u
 r r, t,

 2u
 r2 r, t,

respectively.

III. THE EXISTENCE AND UNIQUENESS THEOREM

We form the following assumptions

H1 u0  V0, u0  ;

H2 a, h  W1,0,T, at  a0  0;

H3 f  L20,T;V0;

F : 0,1     satisfies the Caratheodory condition, i.e.,

F1 F,u is measurable on 0,1 for every u  ,
and Fr,  is continuous on  for a.e., r  0,1.

F2 There exist positive constants C1, C1
/ , C2 and p, 1  p  2  2/

such that

i
2i

uFr,u  C1|u|p  C1
/ ,

|Fr,u|  C21  |u|p1.

The weak formulation of the initial and boundary value problem (1.1)-(1.3) can be make in the
following manner:

Find ut defined in the open set 0,T such that ut satisfies the following variational
problem

3.1
d
dt ut,v  aturt,vr  athtu1, tv1  Fr,ut,v

 ft,v  u0athtv1, for all v  V1,

and the initial condition
3.2 u0  u0.

We then have the following theorem.

Theorem 1. Let T  0 and H1  H3, F1, F2 hold. Then, there exists a solution u of
problem (3.1)- (3.2) such that

3.3
u  L20,T;V1  L0,T;V0, r/pu  LpQT,
tu  L0,T;V1, tut  L20,T;V0.
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Furthermore, if F satisfies the following condition, in addition,

F3 Fr,u  Fr,vu  v  |u  v|2 , for all u,v  ,
for a.e. , r  0,1, with   0 sufficiently small,

then the solution is unique.

Proof. The proof consists of several steps.

Step1. The Galerkin method. Denote by wj, j  1,2, . . . an orthonormal basis in the separable
Hilbert space V1. We find umt of the form

3.4 umt 
m

j1
 cmjtwj,

where cmj satisfy the following system of nonlinear differential equations

3.5
um

/ t,wj  at umrt,wjr  athtum1, twj1  Fr,umt,wj

 ft,wj 
u0athtwj1, 1  j  m,

3.6 um0  u0m,
where

3.7 u0m  u0 strongly in V0.

It is clear that for each m there exists a solution umt in form (3.4) which satisfies (3.5)
and (3.6) almost everywhere on 0  t  Tm for some Tm, 0  Tm  T. The following estimates
allow one to take Tm  T for all m.
Step 2. A priori estimates.
a) The first estimate. Multiplying the jth equation of the system (3.5) by cmjt and summing up
with respect to j, we have

3.8

d
dt umt0

2  2atumrt0
2  2um

2 1, t  2Fr,umt,umt

 21  athtum
2 1, t  2ft,umt

2u0athtum1, t.

By the assumptions H2, F2, i, and the inequalities (2.5), (2.7), (2.9), it follows from (3.8),
that
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3.9

d
dt umt0

2  2C3umt1
2  2C1

1

0

 r|umr, t|pdr

 2C1


1  1
21

|u0 |2K1
2 ahL0,T

2  ft0
2

 21 2  ahL0,T umt1
2

 1  2C11  ahL0,T umt0
2,

for all 1  0. Choosing 1  0 such that

3.10 212  ahL0,T  
1 min1,a0  C3.

Hence, from (3.9), (3.10) we obtain

3.11

d
dt umt0

2  C3umt1
2  2C1

1

0

 r|umr, t|pdr

 2C1
/

1  1
21

|u0 |2K1
2 ahL0,T

2  ft0
2

 1  2C11  ahL0,T umt0
2.

Integrating (3.11) and by means of (3.7), we have

3.12

umt0
2  C3

t

0

 ums1
2ds  2C1

t

0

 ds
1

0

 r|umr, s|pdr

 MT
2  MT

1
t

0

 ums0
2ds,

where MT
1, MT

2are the constants depending only on T, with

MT
1  1  2C11  ahL0,T,

MT
2  u0m0

2  2C1
/

1  1
21

|u0 |2K1
2 ahL0,T

2 T 
T

0

 fs0
2ds,

for all m.

By the Gronwall’s lemma, we obtain from (3.12), that
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3.13
umt0

2  C3

t

0

 ums1
2ds  2C1

t

0

 ds
1

0

 r|umr, s|pdr

 MT
2 exptMT

1  MT,

for all m, for all t, 0  t  Tm  T, i.e., Tm  T.

b) The second estimate. Multiplying the jth equation of the system (3.5) by t2cmj
/ t and

summing up with respect to j, we have

3.14

2 tum
/ t

0

2
 d

dt attumrt0
2  athtt2um

2 1, t

2 d
dt t2

1

0

 rFr,umr, tdr

 umrt0
2 d

dt t
2at  um

2 1, t d
dt t

2atht

4t
1

0

 rFr,umr, tdr  2tft, tum
/ t

 2u0
d
dt t

2athtum1, t  2u0um1, t d
dt t

2atht,

where

3.15 Fr, 


0

 Fr, sds.

Integrating (3.14) with respect to time variable from 0 to t, we shall have, after some
rearrangements

3.16 2
t

0

 sum
/ s

0

2ds  attumrt0
2  t2um

2 1, t
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 1  athtt2um
2 1, t 

t

0

 s2as/umrs0
2ds


t

0

 s2ashs/um
2 1, sds

4
t

0

 sds
1

0

 rFr,umr, sdr  2t2
1

0

 rFr,umr, tdr

2
t

0

 sfs, sum
/ sds  2u0t2athtum1, t

2u0

t

0

 s2ashsum1, sds.

By means of the assumption H2 and the inequality (2.9), we have

3.17 attumrt0
2  t2um

2 1, t  C3tumt1
2

for all t  0,T, for all m, where C3 is constant defined by (3.10).
Using the inequalities (2.5), (2.7), and with 1  0 as in (3.10), we estimate without difficulty
the following terms in the right-hand side of (3.16) as follows

3.18 1  athtt2um
2 1, t  1  ahL0,T 1tumt1

2  C1 t2MT ,

3.19

t

0

 s2as/umrs0
2ds 

t

0

 s2ashs/um
2 1, sds

 t2a/L0,T  K1
2t2ah/L0,T MT/C3,

3.20 2 u0

t

0

 s2ashs/um1, sds  2|u0 |t2ah/L0,TK1 t MT/C31/2,

3.21 2|u0t2athtum1, t|  1tumt1
2  1

1 K1
u0tahL0,T

2,

3.22 2
t

0

 sfs, sum
/ sds 

t

0

 sfs0
2ds 

t

0

 sum
/ s

0

2ds.

On the other hand, from the assumptions F1, F2, we have

3.23
m0  

0

0

 |Fr, s|ds  Fr, 


0

 Fr, sds

 C2||  | |p
p , for all   ,
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where 0  C1
/ /C1

1/p.

Using the inequalities (2.6), (3.13), (3.23), we obtain

3.24

4
t

0

 sds
1

0

 rFr,umr, sdr  2t2
1

0

 rFr,umr, tdr

 4C2K2
1/2

t

0

 sums1ds

 4C2t
p MT/2C1  2m0t2

1 .

Hence, we deduce from (3.16) - (3.22), and (3.24) that

3.25

t

0

 sum
/ s

0

2ds  1
2 C3tumt1

2

 MT
3  4C2K2

1/2

t

0

 sums1ds  MT
4 

t

0

 sums1
2ds,

where MT
3, MT

4are the constants depending only on T.
By the Gronwall’s lemma, we obtain from (3.25), that

3.26
t

0

 sum
/ s

0

2ds  1
2 C3tumt1

2  MT
4 expt  MT

5.

On the other hand, by using (3.13), and assumption F2 we have

3.27

t

0

 ds
1

0

 r/p/Fr,umr, s
p/

dr

 2p/1C2
p/ T

1 
t

0

 ds
1

0

 r|umr, s|pdr  MT
6,

where MT
6 is a constant depending only on T.

Step 3. The limiting process.

By (3.13), (3.26), (3.27) we deduce that, there exists a subsequence of um, still denoted
by um such that
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3.28 um  u in L0,T;V0 weak*,

3.29 um  u in L20,T;V1 weak,

3.30 r/pum  r/pu in LpQT weak,

3.31 tum  tu in L0,T;V1 weak*,

3.32 tum/  tu/ in L20,T;V0 weak.

Using a compactness lemma ( [2], Lions, p.57) applied to (3.31), (3.32), we can extract from
the sequence um a subsequence still denotes by um, such that

3.33 tum  tu strongly in L20,T;V0.

By the Riesz- Fischer theorem, we can extract from um a subsequence still denoted by um,
such that

3.34 umr, t  ur, t a.e. r, t in QT  0,1  0,T.

Because F is continuous, then

3.35 Fr,umr, t  Fr,ur, t a.e. r, t in QT.

We shall now require the following lemma, the proof of which can be found in [2].
Lemma 3. Let Q be a bounded open set of N and Gm, G  LqQ, 1  q  , such that,

GmLqQ  C, where C is a constant independent of m

and
Gm  G a.e. r, t in Q.

Then Gm  G in LqQ weakly.

Applying Lemma 3 with N  2, q  p/, Gm  r/p/Fr,um, G  r/p/Fr,u, we deduce
from (3.27), (3.35) that in

3.36 r/p/Fr,um  r/p/Fr,u in Lp/QT weakly.

Passing to the limit in (3.5), (3.6) by (3.7), (3.28), (3.29), (3.36) we have satisfying the
equation
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3.37
d
dt ut,v  aturt,vr  athtu1, tv1  Fr,ut,v

 ft,v  u0athtv1, for all v  V1,

3.38 u0  u0.

Step 4. Uniqueness of the solutions.

First, we shall need the following Lemma.

Lemma 4. Let w be the weak solution of the following problem

3.39 wt  atwrr 

r wr 


f r, t, 0  r  1, 0  t  T,

3.40
r0

lim r/2wrr, t  , wr1, t  htw1, t  0,

3.41 wr, 0  0,

3.42
w  L20,T;V1  L0,T;V0, r/pw  LpQT,
tw  L0,T;V1, twt  L20,T;V0.

Then

3.43

1
2 wt0

2 
t

0

 aswrs0
2  hsw21, sds


t

0

 

f s,wsds  0, a.e. t  0,T.

The lemma 4 is a slight improvement of a lemma used in [8] ( see also Lions’s book [2]).
Now, we will prove the uniqueness of the solutions. Let u and v be two weak solutions of
(1.1)- (1.3). Then w  u  v is a weak solution of the following problem (3.39)- (3.42) with the
right hand side function replaced by


f r, t  Fu  Fv. Using Lemma 4 we have equality

3.44

1
2 wt0

2 
t

0

 aswrs0
2  hsw21, sds

 
t

0

 Fr,u  Fr,v,wsds.

Using the monotonicity of Fr,u  u, we obtain
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3.45
t

0

 Fr,u  Fr,v,wsds  
t

0

 ws0
2ds.

It follows from (3.44), (3.45) and Gronwall’s Lemma that w  0.
Therefore, Theorem 1 is proved.

IV. THE BOUNDEDNESS OF THE SOLUTION

Now we make the following assumptions

H1
/  u0  L0,1, u0  , max|u0r|, |u0 |  M a.e. r  0,1.

H2
/  a, h  W1,0,, at  a0  0, ht  h0  0;

H3
/  f  L20,T;V0, fr, t  0 a.e. r, t  QT.

F1
/  uFr,u  0 u  , |u|  u0L0,1, for a.e. , r  0,1.

We then have the following theorem.

Theorem 2. Let H1
/   H3

/ , F1  F3, F1
/  hold. Then the unique weak solution of the

initial and boundary value problem (3.1) - (3.2), as given by theorem 1, belongs to

LQT.

Remark 3. Assumption H1
/  is both physically and mathematically natural in the study of

partial differential equation of the kind of (1.1)-(1.3), by means of the maximum principle.
Proof of Theorem 2. First, let us assume that u0r  M and u0. Then z  u  M satisfies the
initial and boundary value

4.1 zt  atzrr 

r zr  Fr, z  M  fr, t, 0  r  1, 0  t  T,

4.2 r0

lim r/2zrr, t  ,

zr1, t  ht z1, t  M  u0  0,

4.3 zr, 0  u0r  M.

Multiplying equation (4.1) by rv, for v  V1 integrating by parts with respect to variable
r and taking into account boundary condition (4.2), one has after some rearrangements
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4.4

1

0

 rztvdr  at
1

0

 rzrvrdr  athtz1, tv1


1

0

 rFr, z  Mvdr


1

0

 rfvdr  u0  Mathtv1, for all v  V1.

Noticing from assumption H1
/  we deduce that the solution of the initial and boundary

value problem (3.1) - (3.2) belongs to L20,T;V1  L0,T;V0, so that we are allowed to
take v  z  1

2 |z|  z in (4.4). Thus, it follows that

4.5

1
2

d
dt

1

0

 r|z |2dr  at
1

0

 r|zr |2dr  atht|z1, t|2


1

0

 rFr, z  Mzdr


1

0

 rfzdr  u0  Mathtz1, t  0,

since
1

0

 rztzdr 
1

0, z0

 rzt zdr  1
2

d
dt

1

0, z0

 r|z |2dr

 1
2

d
dt

1

0

 r|z |2dr  1
2

d
dt zt0

2,

and on the domain z  0 we have z  z and zr  zr.
On the other hand, by the assumption H2

/  and the inequality (2.9), we obtain

4.6
at

1

0

 r|zr |2dr  atht|z1, t|2

 a0
1 min1,h0zt1

2  C0zt1
2.

Using the monotonicity of Fr,u  u and F1
/  we obtain
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4.7

1

0

 rFr, z  Mzdr 
1

0

 rFr, z  M  Fr,Mzdr 
1

0

 rFr,Mzdr

 
1

0

 r|z |2dr 
1

0

 rFr,Mzdr  zt0
2.

Hence, it follows from (4.5)-(4.7) that

4.8 d
dt zt0

2  2C0zt1
2  2zt0

2.

Integrating (4.8), we get

4.9 zt0
2  z00

2  2
t

0

 zs0
2ds.

Since z0  ur, 0  M  u0r  M  0, hence, using Gronwall’s Lemma, we obtain
zt0

2  0. Thus z  0 and ur, t  M for a.e. r, t  QT.
The case M  u0r and M  u0 can be dealt with, in the same manner as above, by

considering z  u  M and z  1
2 |z|  z, we also obtain z  0 and hence

ur, t  M for a.e. r, t  QT.
From all above, one obtains |ur, t|  M a.e. r, t  QT and this ends the proof of Theorem
2.

V. ASYMPTOTIC BEHAVIOR OF THE SOLUTION AS t  .

In this part, let T  0, H1  H3, and F1  F3 hold. Then, there exists a unique
solution u of problem (3.1) - (3.2) such that

u  L20,T;V1  L0,T;V0, r/pu  LpQT,

tu  L0,T;V1, tu/  L20,T;V0.

We shall study asymptotic behavior of the solution ut as t  .
We make the following supplementary assumptions on the functions a, h, f.

H3
// f  L0,;V0;

H4
There exist the positive constants Ca, Ch, Cf, a, h, f, a, h

and a function f  V0 such that
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i
ii
iii

|at  a |  Caeat, t  0,
|ht  h |  Cheht, t  0,
ft  f0  Cfeft, t  0.

First, we consider the following stationary problem

5.1 a u
// r  

r u
/ r  Fr,ur  fr, 0  r  1,

5.2
r0

lim r/2u
/ r  , u

/ 1  hu1  h
u0.

The weak solution of problem (5.1)-(5.2) is obtained from the following variational problem.

Find u  V1 such that

5.3
au

/ ,v /  ahu1v1  Fr,u,v

 f,v  u0ahv1, for all v  V1.

We then have the following theorem.

Theorem 3. Let F1, F2, H4 hold. Then there exists a solution u of the variational
problem (5.3) such that

u  V1 and r/pu  Lp0,1.

Furthermore, if F satisfies the following condition, in addition,

F4
Fr,u  u is nondecreasing with respect to variable u,

with 0    a

1 min1,h.

Then the solution is unique.

Proof. Denote by wj, j  1,2, . . . an orthonormal basis in the separable Hilbert space V1. Put

5.4 ym 
m

j1
 dmjwj,

where dmj satisfy the following nonlinear equation system:
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5.5
aym

/ ,wj
/  ahym1wj1  Fr,ym,wj

 f,wj 
u0ahwj1, 1  j  m.

By the Brouwer’s lemma( see Lions [2], Lemma 4.3, p.53), it follows from the hypotheses
F1, F2, H4 that system (5.4), (5.5) has a solution ym.
Multiplying the jth equation of system (5.5) by dmj, then summing up with respect to j, we have

5.6
a ym

/
0

2
 ahym

2 1  Fr,ym,ym

 f,ym 
u0ahym1.

By using the inequalities (2.5), (2.9) and by the hypotheses F1, H4, we obtain

5.7
C0ym1

2  C1

1

0

 r|ymr|pdr

 f0  |u0 |ahK1ym1 
C1


1 ,

where C0  a

1 min1,h.

Hence, we deduce from (5.7) that

5.8 ym1  C,

5.9
1

0

 r|ymr|pdr  C,

C is a constant independent of m.
By means of (5.8), (5.9) and Lemma 2, the sequence ym has a subsequence still denoted by
ym such that

5.10 ym  u in V1 weakly,

5.11 ym  u in V0 strongly and a.e. in 0,1,

5.12 r/pym  r/pu in Lp0,1 weakly.

On the other hand, by (5.11) and the hypothesis F1, F2 we have
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5.13 Fr,ym  Fr,u a.e. in 0,1,

We also deduce from the hypothesis F2 and from (5.9) that

5.14
1

0

 r/p/Fr,ymr
p/

dr  2p/1C2
p/
1 

1

0

 r|ymr|pdr  C,

where C is a constant independing of m.
Applying Lemma 3 with N  1, q  p/, Gm  r/p/Fr,ym, G  r/p/Fr,u, we deduce

from (5.13), (5.14) that

5.15 r/p/Fr,ym  r/p/Fr,u in Lp/0,1 weakly.

Passing to the limit in Eq.(5.5), we find without difficulty from (5.10), (5.15) that u satisfies
the equation

5.16 au
/ ,wj

/  ahu1wj1  Fr,u,wj  f,wj 
u0ahwj1.

Equation (5.16) holds for every j  1,2, . . . , i.e., (5.3) holds.
The solution of the problem (5.3) is unique; that can be showed using the same arguments as in
the proof of Theorem 1.

Remark 4. The result of Theorem 3 is similar to one in [7].

Now we consider asymptotic behavior of the solution ut as t  .

We then have the following theorem.

Theorem 4. Let F1, F2, F4, H1, H2
/ , H3

//, H4 hold. Then we have

ut  u0
2  u0  u0

2  C2
210

e20t, t  0,

where

C2  1
 C

2Ca
2  Cf

2  K1
2|u0 |  CK12Cah  Cha2,

  1
4

a0
1 min1,h0   ,

0 is a constant depending only on the constants 1  mina,h,f and
C1  a0

1 min1,h0  .

Proof. Put Zmt  umt  ym. Let us subtract (3.5) with (5.5) to obtain
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5.17

Zm
/ t,wj  atZmrt,wjr  at  aymr,wjr

 athtZm1, twj1  atht  ahym1wj1

Fr,umt  Fr,ym,wj

 ft  f,wj 
u0atht  ahwj1, 1  j  m,

Zm0  u0m  ym.

By multiplying (5.17) by cmjt  dmj and summing up in j, we obtain

5.18

1
2

d
dt Zmt0

2  atZmrt0
2  at  aymr,Zmrt

 athtZm
2 1, t  atht  ahym1Zm1, t

 Fr,umt  Fr,ym,Zm

 ft  f,Zm 
u0atht  ahZm1.

From the assumption H2
/  and the inequality (2.9), it follows that

5.19 atZmrt0
2  athtZm

2 1, t  C0Zmt1
2,

where C0  a0
1 min1,h0.

By F4, we get
5.20 Fr,umt  Fr,ym,Zm  Zmt0

2.

It follows from (5.18)-(5.20), and (2.5), that

5.21

d
dt Zmt0

2  2C0Zmt1
2  2|at  a |ymr0Zmrt0

 2|atht  ah |K1
2ym1Zmt1  2Zmt0

2

 2ft  f0Zmt0  2|u0 ||atht  ah |K1Zmt1.

Note that ym1  C, we obtain from (5.21) that
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5.22

d
dt Zmt0

2  2C0Zmt1
2

 2C|at  a |Zmt1  2Zmt1
2  2ft  f0Zmt0

2K1|u0 |  CK1|atht  ah |Zmt1.

Choose   0 such that 3  C0    C1, then we have from (5.22)

5.23

d
dt Zmt0

2  C1Zmt1
2

 1
 C2|at  a |2  1

 ft  f0
2

 1
 K1

2|u0 |  CK12|atht  ah |2.

Put 1  mina,h,f, we deduce from (5.23) and H4 that

5.24

d
dt Zmt0

2  C1Zmt1
2

 1
 C

2Ca
2  Cf

2  K1
2|u0 |  CK12Cah  Cha2e21t

 C2e21t, for all t  0.

Put 0  1
2 min1,C1. Hence, we obtain from (5.24) that

5.25

Zmt0
2  e20tZ0m1

2  C2e20t
t

0

 e210sds

 e20tZ0m1
2  C2

210
e20t1  e210t

 Z0m1
2  C2

210
e20t.

Letting m   in (5.25) we obtain

5.26
ut  u0

2 
m

lim inf umt  ym0
2

 u0  u0
2  C2

210
e20t, for all t  0.

This completes the proof of Theorem 4.

VI. NUMERICAL RESULTS

First, we present some results of numerical comparison of the approximated representation
of the solution of a nonlinear problem of the type (1.1)-(1.3) and the corresponding exact
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solution of this problem.
Let the problem

6.1 ut  urr  2
r ur  Fu  0,

6.2 ur1, t  u1, t  0, ur0, t  0,

6.3 ur, 0  0,

where

fr, t  er1  rcos t  2er sin t3  r  e 3
2 r1  r3/2sgnsin t,

Fu  |u|3/2sgnu;

  1 5
2 , and the domain D  r, t : 0  r  1, 0  t  1.

The exact solution of the problem (6.1)-(6.3) is vr, t  er1  r sin t.
To solve numerically the problem (6.1)-(6.3), we consider the nonlinear differential

system for the unknowns ukt  urk, t, rk  kh, h  1/N.

6.4

duk
dt  1

h2 1  2
k uk1  2

h2
1
k  1 uk 

uk1

h2  Fuk  frk, t,

u1  u0, uN  uN1
h1 ,

uk0  0, k  1,2, . . . ,N  1.

To solve the nonlinear differential (6.4) at the time t, we use the following linear recursive
scheme generated by the nonlinear term Fuk:

6.5
duk,n

dt  1
h2 1  2

k uk1,n  2
h2

1
k  1 uk,n 

uk1,n

h2  Fuk,n  frk, t,

uk,n0  0, k  1,2, . . . ,N  1.

The linear differential system (6.5) is solved by searching the associated eigenvalues and
eigenfunctions. With a spatial step h  1

10 on the interval 0,1 and for t  0,2, we have
drawn the corresponding approximate surface solution t, t  ur, t in figure 1, obtained by
successive re-initializations in t with a time step t  1

50 . For comparison in figure 2, we have
also drawn the exact surface solution t, t  vr, t.

Now consider the following problem

6.6 ut  urr  2
r ur  |u|3/2sgnu  0,

6.7 ur1, t  u1, t  0, ur0, t  0,

6.8 ur, 0  1
4 .

Using the same method as previously we have drawn in figure 3 the approximate surface
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solution t, t  ur, t which decreases exponentially to 0 as t tends to infinity, 0 being the
unique solution ot the corresponding steady state problem

6.9 urr  2
r ur  |u|3/2sgnu  0,

6.10 ur1  u1  0, ur0  0.

Notice, since the function Fu  |u|3/2sgnu has a derivative positive the solution of the
problem (6.6)-(6.8) is bounded and unique according section IV.

Figure 1.Approximate solution
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Figure 2. Exact solution

Figure 3. Asymptotic behavior
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