
HAL Id: hal-00009279
https://hal.science/hal-00009279

Preprint submitted on 3 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Expressiveness of the Ambient Logic
Daniel Hirschkoff, Etienne Lozes, Davide Sangiorgi

To cite this version:
Daniel Hirschkoff, Etienne Lozes, Davide Sangiorgi. On the Expressiveness of the Ambient Logic.
2005. �hal-00009279�

https://hal.science/hal-00009279
https://hal.archives-ouvertes.fr

cc
sd

-0
00

09
27

9,
 v

er
si

on
 1

 -
 3

 O
ct

 2
00

5

On the Expressiveness of the Ambient Logic∗†

Daniel Hirschkoff

LIP - ENS Lyon

Étienne Lozes

PPS - Université Paris 7

Davide Sangiorgi

Università di Bologna

Abstract

The Ambient Logic (AL) has been proposed for expressing properties of process mobility in the
calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data.

In this paper, we study the expressiveness of AL. We define formulas for capabilities and for com-
munication in MA. We also derive some formulas that capture finitess of a term, name occurrences and
persistence. We study extensions of the calculus involving more complex forms of communications, and
we define characteristic formulas for the equivalence induced by the logic on a subcalculus of MA. This
subcalculus is defined by imposing an image-finiteness condition on the reducts of a MA process.

Contents

1 Introduction 2

2 Background 4
2.1 Syntax of Mobile Ambients . 4
2.2 Operational Semantics . 5
2.3 The Ambient Logic . 6

3 Formulas for capabilities and communications 7
3.1 Preliminary formulas: counting components and comparing names 7
3.2 Formulas for capabilities . 8
3.3 Formulas for communication . 11

4 Other intensional properties 13
4.1 Capturing finiteness . 14
4.2 Formula for name occurrence . 15
4.3 Formulas for persistence . 16

5 Characteristic formulas 19
5.1 Intensional bisimilarity . 19
5.2 The sub-calculus MAIF . 20

6 Extensions of the calculus 23
6.1 Capabilities in messages . 23
6.2 Synchronous Ambients . 27
6.3 Other Extensions . 30

6.3.1 Name restriction and revelation . 30
6.3.2 Strong sometimes modality . 30
6.3.3 Recursion . 30

∗Work supported by european project FET-Global computing PROFUNDIS.
†This work is a revised and extended version of parts of [San01] and [HLS02] (precisely, those parts that deal with expres-

siveness issues).

1 Introduction

The Ambient Logic, AL, [CG00] is a modal logic for expressing properties of processes in the calculus of
Mobile Ambients, MA [CG98a, CG99]. In MA the unit of movement is an ambient, which, intuitively, is
a named location. An ambient may contain other ambients, and capabilities, which determine the ambient
movements. The primitives for movement allow: an ambient to enter a sibling ambient; an ambient to exit
the parent ambient; a process to dissolve an ambient boundary. MA has a replication operator to make a
process persistent, that is, to make infinite copies of the process available.

An ambient can be thought of as a labelled tree. The sibling relation on subtrees represents spatial
contiguity; the subtree relation represents spatial nesting. A label may represent an ambient name or a
capability; moreover, a replication tag on labels indicates the resources that are persistent.1 The trees are

unordered: the order of the children of a node is not important. As an example, the process P
def
= !a[in c] |

open a. b[0] is represented by the tree:

!aւ ցopen a

in c ↓ b ↓

The replication !a indicates that the resource a[in c] is persistent: unboundedly many such ambients can be
spawned. By contrast, open a is ephemeral: it can open only one ambient.

Syntactically, each tree is finite. Semantically, however, due to replications, a tree is an infinite object. As
a consequence, the temporal developments of a tree can be quite rich. The process P above (we freely switch
between processes and their tree representation) has only one reduction, to in c | !a[in c] | b[0]. However, the
process !a[in c] | !open a. b[0] can evolve into any process of the form

in c | . . . | in c | b[0] | . . . | b[0] | !a[in c] | !open a. b[0] .

In general, a tree may have an infinite temporal branching, that is, it can evolve into an infinite number of
trees, possibly quite different from each other (for instance, pairwise behaviourally unrelated). Technically,
this means that the trees are not image-finite.

In summary, MA is a calculus of dynamically-evolving unordered edge-labelled trees, and AL is a logic for
reasoning on such trees. The actual definition of satisfaction of the formulas of AL is given on MA processes
quotiented by a relation of structural congruence, which equates processes with the same tree representation.
(This relation is similar to Milner’s structural congruence for the π-calculus [Mil99].)

AL has also been advocated as a foundation of query languages for semistructured data [Car01]. Here, the
laws of the logic are used to describe query rewriting rules and query optimisations. This line of work exploits
the similarities between dynamically-evolving edge-labelled trees and standard models of semistructured
data.

AL has a connective that talks about time, that is, how processes can evolve: the formula 3 A is satisfied
by those processes with a future in which A holds. The logic has also connectives that talk about space, that
is, the shape of the edge-labelled trees that describe process distributions: the formula n[A] is satisfied by
ambients named n whose content satisfies A (read on trees: n[A] is satisfied by the trees whose root has just
a single edge n leading to a subtree that satisfies A); the formula A1 | A2 is satisfied by the processes that
can be decomposed into parallel components P1 and P2 where each Pi satisfies Ai (read on trees: A1 | A2

is satisfied by the trees that are the juxtaposition of two trees that respectively satisfy the formulas A1 and
A2); the formula 0 is satisfied by the terminated process 0 (on trees: 0 is satisfied by the tree consisting of
just the root node).

AL is quite different from standard modal logics. First, such logics do not talk about space. Secondly,
they have more precise temporal connectives. The only temporal connective of AL talks about the many-step
evolution of a system on its own. In standard modal logics, by contrast, the temporal connectives also talk
about the potential interactions between a process and its environment. For instance, in the Hennessy-Milner
logic [HM85], the temporal modality 〈µ〉.A is satisfied by the processes that can perform the action µ and
become a process that satisfies A. The action µ can be a reduction, but also an input or an output. The lack
of temporal connectives in the ambient logic is particularly significant because in MA interaction between
a process and its environment can take several forms, originated by the communication and the movement

1We are using a tree representation different from that of Cardelli and Gordon, but more convenient to our purposes.

2

primitives. (There are 9 such forms; they appear as labels of transitions in a purely SOS semantics of MA
[CG98b, LS00].)

This paper is essentially devoted to the study of the expressiveness of AL. The results we present show
that AL is actually a very expressive formalism. In particular, we are able to derive formulas expressing
capabilities of processes for movement and for communication, as well as the persistence of processes (as
given by the replication operator), and free occurrences of names in processes. The ability to derive such
constructions is surprising, considering that there is no connective in the logic that is directly related to
such properties: no construct mentions the capabilities of the calculus, nor does the logic include infinitary
operators, or operators that talk about resources with infinite multiplicity.

Our results are established using nontrivial technical developments, and the methods we exploit are of
interest in their own. More precisely, the general approach to derive expressiveness formulas is to exploit
adjunct connectives to introduce a form of contextual reasoning, together with the temporal modality to
make it possible to observe the desired properties. It can be noted that related constructions have been
introduced in the setting of Separation Logic [Rey02] in order to express weakest preconditions for pointer
manipulation instructions in an imperative language.

The expressive power of AL that we thus prove has several consequences. The first consequence is that we
are able to define characteristic formulas for image-finite Ambient processes, i.e., formulas that capture the
equivalence class of a process with respect to the induced logical equivalence. This is in contrast with usual
results in modal logics. Typically, the definition of characteristic formulas exploits fixed-point operators, and
the characterised processes are finite-state [GS86, SI94]. As mentioned above, AL has no fixed-point operator;
moreover the image-finiteness condition on processes is weaker than finite-state. (‘Image-finite’ expresses
finiteness on internal reductions, whereas ‘finite-state’ also takes into account computations containing visible
actions such as input and output actions.)

Another major consequence of our results is to show that AL is an intensional logic. Informally, this holds
because the logic allows one to inspect the structure of processes, not only by separating subcomponents of a
process, but also by capturing its interaction capabilities. More formally, intensionality of the Ambient Logic
is expressed by showing that the equivalence induced by the logic coincides with structural congruence on
processes. This result, that is established using the constructions we have discussed above (and, in particular,
characteristic formulas), says that AL is a very fine grained logic.

Structure of the paper. Section 2 introduces the calculus and the logic we study in this paper. Sections 3
and 4 present two main contributions in terms of expressiveness of AL: we define some formulas capturing
respectively some syntactical constructions of the calculus (capabilities for movement and communication)
and some nontrivial properties of processes (finiteness, occurrences of free names, and persistence). In
Section 5, we exploit these constructions to define characteristic formulas for logical equivalence. Intensional
bisimilarity, which, for the purposes of the present work, is a technical device that is needed to reason
about characteristic formulas, is presented in Subsection 5.1. The proofs of the main properties enjoyed
by intensional bisimilarity are not provided, and can be found in a companion paper [HLS05]. Finally, in
Section 6, we study extensions of the calculus we work with, and show our results can be adapted to the
corresponding settings.

The results of this paper come from the two conference papers [San01] and [HLS02]: in [San01], the
author presented the encoding of the modalities for capabilities and communications (Sections 3 and 6) and
the definition of intensional bisimilarity, whereas the formulas capturing finiteness, name occurrence, and
persistence (Section 4) and the characteristic formulas (Section 5) come from [HLS02]. This paper focuses
on the expressiveness results coming from these two conference papers, whereas a companion paper [HLS05]
presents the separability results.

Developments. By the time the writing of the present paper was completed, a few works have appeared
that make use of results or methods presented here. We discuss them below.

The ‘contextual games’ we have discussed above have been exploited in several settings. Along the lines
of the derivation of formulas capturing Mobile Ambients capabilities, [HLS03] extends and develops this line
of research in the setting of a sub-logic of AL, that is applied to reason about MA and π-calculus processes.

3

h, k, . . . n, m Names

η Names ∪ Variables

Expressions

M, N ::= cap (capability)

Capabilities

cap ::= in η (enter)

| out η (exit)

| open η (open)

Processes

P, Q, R ::= 0 (nil)

| P | Q (parallel)

| !P (replication)

| M . P (prefixing)

| η[P] (ambient)

| {η} (message)

| (x) P (abstraction)

Table 1: The syntax of finite MA

Other interesting properties can be derived using this approach. An example is quantifiers elimination [CL04].
Another study [Hir04] demonstrates that in some sense, contextual games represent the logical counterpart
of ‘contextual testing’ as in barbed equivalence [SW01].

Our expressiveness results also allow us to bring to light redundancies in spatial logics for concurrency.
For example, an operator to express occurrences of free names in processes is analysed in related works [CG01,
HLS03]. In the setting of the present work, such an operator is encodable in AL.

This kind of encodability results allow one to compare different versions of spatial logics for concurrency,
and are useful to assess minimality properties of the logics.

2 Background

This section collects the necessary background for this paper. It includes the MA calculus [CG98a] (semantic
and syntax), and the Ambient Logic [CG00].

2.1 Syntax of Mobile Ambients

We recall here the syntax of MA [CG98a] (we sometimes call this calculus the Ambient calculus). We first
consider the calculus in which only names, not capabilities, can be communicated; this allows us to work in
an untyped calculus. We analyse extensions of the calculus in Section 6.

As in [CG00, Car99, CG04], the calculus has no restriction operator for creating new names. The
restriction-free calculus has a more direct correspondence with edge-labelled trees and semistructured data.

Table 1 shows the syntax. Both the set of names and that of variables are infinite. Letters n, m, h range
over names, x, y, z over variables; η ranges over names and variables. The expressions in η, out η, and open η
are the capabilities, and are ranged over using cap. Messages and abstractions are the input/output (I/O)
primitives. The metavariables M, N , for messages, will become usefull when considering extensions of the
language (see Section 6). A closed process has no free variables. We ignore syntactic differences due to alpha
conversion, and we write P{n/x} for the result of substituting x with n in P . In the paper, all definitions
and results are given only for closed processes, unless otherwise stated.

Given an integer n > 0, we will write Pi, (1 ≤ i ≤ n) for a (finite) sequence of processes P1, . . . , Pn.
Processes having the same internal structure are identified. This is expressed by means of the structural

congruence relation, ≡, the smallest congruence such that:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ !P | P !0 ≡ 0 !(P | Q) ≡ !P | !Q !!P ≡ !P

4

open n. P | n[Q] −→ P | Q
Red-Open

n[in m. P1 | P2] | m[Q] −→ m[n[P1 | P2] | Q]
Red-In

m[n[outm. P1 | P2] | Q] −→ n[P1 | P2] | m[Q]
Red-Out

{M} | (x) P −→ P{M/x}
Red-Com

P −→ P ′

P | Q −→ P ′ | Q
Red-Par

P −→ P ′

n[P] −→ n[P ′]
Red-Amb

P ≡ P ′ P ′ −→ P ′′ P ′′ ≡ P ′′′

P −→ P ′′′
Red-Str

Table 2: The rules for reduction

As a consequence of results in [DZ00], that studies a richer calculus than the one we study, we have:

Theorem 2.1 Relation ≡ is decidable.

The two following syntactic notions will be useful below.

Definition 2.2 (Finite and single processes)

• A closed process P is finite if there exists a process P ′ with no occurrence of the replication operator
such that P ≡ P ′.

• A closed process P is single if there exists P ′ such that either P ≡ cap. P ′ for some cap, or P ≡ n[P ′]
for some n, or P ≡ (x)P for some x.

Unless otherwise stated, all results and definitions we state in the sequel are on closed terms.

2.2 Operational Semantics

The operational semantics of the calculus is given by a reduction relation −→, defined by the rules presented
in Table 2.2. The reflexive and transitive closure of −→ is written =⇒.

Lemma 2.3 If P −→ Q then there is a derivation of the reduction in which Red-Str is applied, if at all,
only as the last rule.

Lemma 2.3 shows that every reduction P −→ P ′ has a normalised derivation proof. As a consequence,
we have:

Lemma 2.4 If P −→ Q then either

1. P ≡ R | m[n[outm. P1 | P2] | P3] and Q ≡ R | n[P1 | P2] | m[P3], or

2. P ≡ R | n[in m. P1 | P2] | m[P3] and Q ≡ R | m[n[P1 | P2] | P3], or

3. P ≡ R | open n. P1 | n[P2] and Q ≡ R | P1 | P2, or

4. P ≡ R | {n} | (x) P1 and Q ≡ R | P1{n/x}, or

5. P ≡ R | n[P1], Q ≡ R | n[Q1] and P1 −→ Q1.

We now introduce some forms of labelled transitions that we will use to give the interpretation of some
of our logical constructions.

5

A ::= ⊤ (true)

| ¬A (negation)

| A ∨ B (disjunction)

| ∀ x . A (universal quantification over names)

| 3 A (sometime)

| 0 (void)

| η[A] (edge)

| A | B (composition)

| A@η (localisation)

| A ⊲ B (guarantee)

Table 3: The syntax of logical formulas

Definition 2.5 (Labelled transitions) Let P be a closed process. We write:

• P
cap
−→ P ′, where cap is a capability, if P ≡ cap. P1 | P2 and P ′ = P1 | P2.

• P
{n}
−→ P ′ if P ≡ {n} | P ′.

• P
?n
−→ P ′ if P ≡ (x) P1 | P2 and P ′ ≡ P1{n/x} | P2.

• P
µ

=⇒ P ′, where µ is one of the above labels, if P =⇒
µ
−→ =⇒ P ′ (where =⇒

µ
−→ =⇒ is relation

composition).

• (stuttering) P
(cap

1
,cap

2
)⋆

========⇒P ′ if there is i ≥ 1 and processes P1, . . . , Pi with P = P1 and P ′ = Pi

such that Pr
cap

1=⇒
cap

2=⇒ Pr+1 for all 1 ≤ r < i.

• Finally,
〈cap〉
=⇒ is a convenient notation for compacting statements involving capability transitions. We

let
〈in n〉
=⇒ stand for

(out n,in n)⋆

=========⇒; similarly
〈out n〉
=⇒ is

(in n,out n)⋆

=========⇒; and
〈open n〉
=⇒ is =⇒.

2.3 The Ambient Logic

The logic has the propositional connectives, ⊤,¬A,A∨B, and universal quantification on names, ∀x. A, with
the standard logical interpretation. The temporal connective, 3A has been discussed in the introduction.
The spatial connectives, 0, A | B, and η[A], are the logical counterpart of the corresponding constructions
on processes. A⊲B and A@η are the logical adjuncts of A | B and η[A] respectively, in the sense of being
roughly their ‘contextual inverse’, as expressed in Definition 2.6 below.

The logic in [CG00] has also a somewhere connective, that holds of a process containing, at some arbitrary
level of nesting of ambients, an ambient whose content satisfies A. We do not consider this connective in
the paper because we find it less fundamental than the other operators; in any case, its addition would not
affect the results in the paper and has been seldomly considered in other works. (Further, we discuss in the
final section a “strong” version of the sometimes modality.)

6

Definition 2.6 (Satisfaction) The satisfaction relation between closed processes and closed formulas, writ-
ten P |= A, is defined as follows:

P |= ⊤
def
= always true

P |= ∀ x . A
def
= for any n, P |= A{n/x}

P |= ¬A
def
= not P |= A

P |= A1 | A2
def
= ∃P1, P2 s.t. P ≡ P1 | P2

and Pi |= Ai, i = 1, 2

P |= A ∨ B
def
= P |= A or P |= B

P |= n[A]
def
= ∃P ′ s.t. P ≡ n[P ′] and P ′ |= A

P |= 0
def
= P ≡ 0

P |= 3A
def
= ∃P ′ s.t. P=⇒P ′ and P ′ |= A

P |= A@n
def
= n[P] |= A

P |= A ⊲ B
def
= ∀R, R |= A implies P | R |= B

By definition, satisfaction is closed by structural congruence:

Lemma 2.7 If P ≡ Q and P |= A, then also Q |= A.

We give ∨ and ∧ the least syntactic precedence, thus A1⊲A2∧A3 reads (A1⊲A2)∧A3, and A1⊲(3A2∧
3A3) reads A1⊲((3A2) ∧ (3A3)). We shall use the dual of some connectives, namely the duals of linear
implication (A◮B), of the sometime modality (�A), of the parallel operator (‖), and the standard duals of
universal quantification (∃ x . A) and disjunction (A ∧ B); we also define (classical) implication (A → B):

A ∧ B
def
= ¬(¬A ∨ ¬B) �A

def
= ¬3¬A A → B

def
= ¬A ∨ B ∃ x . A

def
= ¬∀ x . ¬A

A◮B
def
= ¬(A⊲¬B) ⊥

def
= ¬⊤

Thus P |= A◮B iff there exists Q with Q |= A and P | Q |= B, and P |= 2A iff P ′ |= A for all P ′ such
that P =⇒ P ′.

We now define the induced equivalence between processes induced by the logic:

Definition 2.8 (Logical equivalence) For processes P and Q, we write P=LQ if for any closed formula
A it holds that P |= A iff Q |= A.

3 Formulas for capabilities and communications

In this section, we show that we can capture at a logical level prefixes of the language, both for movement
and for communication.

3.1 Preliminary formulas: counting components and comparing names

We start by recalling some formulas from [CG00] that will be useful for some constructions presented below.
The Ambient Logic allows one to count the number of parallel components of a process. The formula

below is true of a process that has exactly one parallel component that is different from 0.

1comp
def
= ¬ (¬ 0 | ¬ 0) ∧ ¬ 0

Lemma 3.1 It holds that P |= 1comp iff P is single.

7

Similarly we define

2comp
def
= 1comp | 1comp

We may impose a given formula A to be satisfied by all single parallel components of a process, using
the following definitions:

A∀ def
= ¬(¬A | ⊤)

Aω def
= (1comp → A)∀

Lemma 3.2

• P |= A∀ iff for any Q, R such that P ≡ Q | R, it holds that Q |= A.

• P |= Aω iff all single parallel components of P satisfy A.

We shall use later the following derived formula, from [CG00], that expresses equality between names:

m = n
def
= (n[⊤])@m

Lemma 3.3 P |= m = n iff names m and n are equal.

3.2 Formulas for capabilities

The two formulas below are true of a process that is (structurally congruent to) an ambient and (to) an
empty ambient, respectively.

1amb
def
= ∃ x . x[⊤]

1amb0
def
= ∃ x . x[0]

Lemma 3.4

• P |= 1amb iff P ≡ n[Q], for some n and Q.

• P |= 1amb0 iff P ≡ n[0], for some n.

To help understanding the definitions of the capability formulas, we first discuss some simpler formulas,
which do not talk about the process underneath the prefix. We define, for names n 6= h:

〈〈open n〉〉
def
= n[h[0]] ⊲ 3 (h[0] | ⊤)

∧ 1comp

∧ ¬ 1amb

〈〈out n〉〉
def
= (3 (h[⊤] | n[0]))@n@h

∧ 1comp

∧ ¬ 1amb

It holds that P |= 〈〈open n〉〉 iff P ≡ open n. P ′ for some P ′. We sketch the proof. The sub-formula
1comp ∧ ¬ 1amb says that P is single and is not an ambient. Thus, modulo ≡, process P can only be 0,
open m. P ′, inm. P ′, outm. P ′, (x) P ′, or {m}, for some m. The sub-formula n[h[0]] ⊲ 3 (h[0] | ⊤) says that
P | n[h[0]] can reduce to a process with an empty ambient h at the outermost level. From these requirements,
we conclude that P ≡ open n. P ′, for some P ′.

8

Similarly we prove that P |= 〈〈out n〉〉 iff P ≡ outn. P ′, for some P ′. By the sub-formula 1comp∧ ¬ 1amb,
process P is single and is not an ambient. By the sub-formula (3 (h[⊤] | n[0]))@n@h,

n[h[P]] |= 3 (h[⊤] | n[0])

hence P ≡ out n. P ′, for some P ′, otherwise h[P] could not exit n.
To obtain the full capability formulas we add some quantification on names. Formula 〈〈open n〉〉.A is

thus defined as follows:

〈〈open n〉〉.A
def
= ∀ y . n[y[0]] ⊲ 3 (y[0] | A)

∧ 1comp

∧ ¬ 1amb

1open
def
= ∃ x . ∀ y . x[y[0]] ⊲ 3 (y[0] | ⊤)

∧ 1comp

∧ ¬ 1amb

Remark 3.5 (Formulas containing free variables) It will often be the case in the remainder of the
paper that we define a formula involving a name, say n, and need the corresponding logical construction
where a variable x is used instead of n. For instance, the formula 1open above could be defined as as “
∃ x . 〈〈open x〉〉.⊤”, which is not correct because 〈〈open n〉〉.A has been defined but 〈〈open x〉〉.A has not.
In the sequel, when clear from the context, we shall allow ourselves to adopt nevertheless this abuse of
notation, that should be understood as ‘rewrite the definition of the corresponding formula using x instead of
n’ (see in particular the formulas to capture name reception, and their interpretation, in Lemma 3.17, and
characteristic formulas for input guarded processes in Section 5).

Satisfaction being defined only between closed processes and closed formulas, the important point in doing
so is to avoid reasoning about the satisfaction of formulas containing free variables: we shall therefore only
write formulas containing an ‘x’ under the scope of a variable quantification.

Lemma 3.6 P |= 〈〈open n〉〉.A iff P ≡ openn. P ′, for some P ′ such that P ′ =⇒ P ′′ and P ′′ |= A.
P |= 1open iff P ≡ openn. P ′ for some n and P ′.

Proof: We only consider the first property, from which the second follows easily. The implication from right
to left is easy.

For the reverse implication, we set

G
def
= n[h[0]] ⊲ 3 (h[0] | A)

where h 6∈ n(P). Since P |= 1comp, we have P ≡ Q, for some Q that is not a parallel composition. Since
also P |= ¬ 1amb, we infer that Q is not an ambient. Finally since P |= G, process Q cannot be of the form
0, inn. Q′, outn. Q′, (x)Q′, {p}. For the same reason, Q cannot be a prefix openm. Q′ with m 6= n. The only
possibility left is Q = openn. Q′, for some Q′.

Moreover, we have
n[h[0]] | openn. Q′ =⇒ R and R |= h[0] | A

for some R. The first step of this reduction must be

n[h[0]] | openn. Q′ −→ h[0] | Q′

(up to ≡). Since h is fresh, h[0] cannot interact with Q′. Hence

R ≡ h[0] | Q′′

for some Q′′ such that Q′ =⇒ Q′′. 2

9

Along the lines of our construction for the open prefix, we can define characteristic formulas for the in

and out prefixes.

〈〈out n〉〉.A
def
= ∀ x .

(
(3 (x[A] | n[0]))@n@x

)

∧ 1comp

∧ ¬ 1amb

1out
def
= ∃ x . 〈〈out x〉〉

〈〈in n〉〉.A
def
= ∀ x .

(
(n[0] ⊲ 3 n[x[A]])@x

)

∧ 1comp

∧ ¬ 1amb

1in
def
= ∃ x . 〈〈in x〉〉

Lemma 3.7 P |= 〈〈out n〉〉.A iff P ≡ outn. P ′, for some P ′ such that P ′ (in n,out n)⋆

=========⇒P ′′ and P ′′ |= A.

Proof: Similar to the proof for the open prefix. The formula 1comp ∧ ¬ 1amb forces P to be single and
not an ambient. Therefore P ≡ Q, for some Q whose outermost operator is not a parallel composition or an
ambient. Then we should have

n[h[Q]] |= 3 (h[A] | n[0])

This can only happen if Q is of the form outn. Q′, for some Q′ such that Q′ (in n,out n)⋆

========⇒Q′′ and Q′′ |= A. 2

Lemma 3.8 P |= 〈〈in n〉〉.A iff P ≡ in n. P ′, for some P ′ such that P ′ (out n,in n)⋆

=========⇒P ′′ and P ′′ |= A.

Proof: Similar to the previous proofs. The formula 1comp ∧ ¬ 1amb forces P to be single and not an
ambient. Therefore P ≡ Q, for some Q whose outermost operator is not a parallel composition or an
ambient. Then we should have

h[Q] | n[0] |= 3 n[h[A]]

where h is fresh. As by previous arguments, this can only happen if Q is of the form inn. Q′, and Q′ reduces
(with suttering) to Q′′ satisfying A. 2

Given a capability cap, we may define the ‘necessity’ version of the ‘possibility’ formulas we have just
introduced as follows:

[[cap]].A
def
= 〈〈cap〉〉.⊤ ∧ ¬〈〈cap〉〉.¬A

Lemma 3.9 For any capability cap, formula A and term P , P |= [[cap]].A iff there is P ′ such that

P ≡ cap. P ′, and, for any P ′′ such that P ′ 〈cap〉
=⇒ P ′′, P ′′ |= A.

Note that necessity formulas are not the dual of the possibility formulas, as in standard modal log-
ics, because of the spatial aspects of AL. For instance, [[in n]].⊤ does not have the same interpretation as
¬〈〈in n〉〉.¬⊤, the latter being actually equivalent to ⊤.

Remark 3.10 We could think of deriving formulas for modalities
cap
=⇒ , as in standard modal logics for

concurrency [HM85], instead of capturing the syntactical prefixes corresponding to a capability cap. More

precisely, we could look for a formula 〈〈cap〉〉A capturing processes P for which there is P ′ such that P
cap
=⇒ ¶′

and P ′!|= A. It turns out that spatial logics are more intensional, and make actions more difficult to express
than connectives. In particular, we do not know how to express directly a modality corresponding to action
open n
=⇒ .

10

3.3 Formulas for communication

The first step to characterise I/O processes (i.e., messages or abstractions) is to get rid of other possible
constructs for single terms, as follows:

1comm
def
= 1comp ∧ ¬ 1amb ∧ ¬ 1open ∧ ¬ 1out ∧ ¬ 1in

Lemma 3.11 P |= 1comm iff (P ≡ {p} or P ≡ (x) P ′), for some p and P ′.

The following formula, that holds of a process that is the parallel composition of two I/O processes, will
also be useful:

2comm
def
= 1comm | 1comm .

The difficult part, however, is the definition of the I/O formulas for separating messages from abstractions,
and also, within the messages and the abstractions, messages with different contents and abstractions with
different behaviours.

The capability formulas are easier to define than the I/O formulas because capabilities act on ambients,
and the logic has a connective, n[A], for talking about ambients. By contrast, the I/O primitives act on
themselves. To define the I/O formulas, we proceed as follows:

1. We define a formula, TestComm, that characterises the special abstraction (x) x[0].

2. We use TestComm to define the formula for messages:

F{n}
def
= 1comm ∧ (TestComm ⊲ 3 n[0])

It holds that P |= F{n} iff P ≡ {n}.

3. We then use F{n} to define the formulas for abstractions:

〈〈?n〉〉.A
def
= 1comm ∧ (¬∃ x . F{x}) ∧ (F{n} ⊲ 3 A)

It holds that P |= 〈〈?n〉〉.A iff P ≡ (x) Q and {n} | P =⇒ P ′ with P ′ |= A.

Lemma 3.12 Given (x) R, suppose there is q such that

{q} | (x) R |= 2(2comm ∨ 1amb0)

and R contains no abstractions. Then R ≡ η[0], for some η.

We call ambient abstraction any closed abstraction described by the following grammar:

P ::= (x) η[0] | (x) ({η} | P)

The following lemma shows how to characterise ambient abstractions using formulas.

Lemma 3.13 Given an abstraction (x) R, suppose there is q such that

{q} | (x) R |= 2(2comm ∨ 1amb0) (1)

and
{q} | (x) R |= 3 1amb0. (2)

Then (x) R is an ambient abstraction.

11

Proof: By induction on the number of nested abstractions in R. If this number is 0 then by Lemma 3.12
we derive R ≡ η[0].

Suppose the number is greater than 0. From (1) and

{q} | (x) R −→ R{q/x}

we derive
R{q/x} |= 2comm∨ 1amb0

Since R should contain an abstraction, the formula 1amb0 is not satisfied, hence

R{q/x} |= 2comm

Using this, the fact that R{q/x} should contain an abstraction, and (2) we infer that

R{q/x} ≡ {p} | (y) Q

for some p, y, Q. By induction hypothesis, we deduce that (y)Q is an ambient abstraction. From this, R{q/x}
is an ambient abstraction too, and this induces that R itself is an ambient abstraction. 2

We say that an ambient abstraction P is simple if P =β (x) x[0], where =β is the least congruence that
is closed under the rule

{M} | (x) P = P{M/x} .

We recall that the operator ◮, used in the following lemma, has been introduced at the end of Section 2.

Lemma 3.14 Suppose (x) Q is an ambient abstraction, and

(x) Q |= 1comm◮ 3 n[0]

(x) Q |= 1comm◮ 3 m[0]

with m 6= n. Then (x) Q is simple.

Proof: From the hypothesis, there are p and q such that

{p} | (x) Q |= 3 n[0] and

{q} | (x) Q |= 3 m[0] .

If (x) Q were not simple, then the name of the ambient to which it reduces to would not depend on the
argument x. (Note that any ambient abstraction is =β to an abstraction of the form (x) η[0], for some x, η.
The hypothesis of the lemma implies that η = x.) 2

As hinted above, the key step is the definition of the formula below, which is the characteristic formula
of simple ambient abstractions.

TestComm
def
= 1comm

∧ 1comm ⊲ 2(2comm∨ 1amb0) (3)

∧ 1comm◮3 n[0] (4)

∧ 1comm◮3 m[0] (5)

where n, m are different names.

Lemma 3.15 P |= TestComm iff P is a simple ambient abstraction and is closed.

Proof: The implication from right to left is easy. We consider the opposite.
Process P must be an I/O, since P |= 1comm. Also, P cannot be a message, otherwise it would not satisfy

the formula
1comm ⊲ 2(2comm ∨ 1amb0)

12

since a message in parallel with (x) 0 can reduce to 0, which does not satisfy 2comm ∨ 1amb0.
We conclude that P should be an abstraction, say (x) Q. Now, from (3) and (4), we get that there are

messages p, q such that
{p} | (x) Q |= 2(2comm∨ 1amb0)

{q} | (x) Q |= 3 n[0]

From Lemma 3.13 we infer that (x) Q is an ambient abstraction. Moreover, by (4), (5) and Lemma 3.14,
(x) Q must be simple. 2

Now we are finally in the position of defining the characteristic formula for a message {n}:

F{n}
def
= TestComm ⊲ 3 n[0]

∧ 1comm

and, then, the characteristic formula for a message is

1mess
def
= ∃ x . F{x}

Lemma 3.16 P |= F{n} iff P ≡ {n}, and P |= 1mess iff P ≡ {n} for some n.

Proof: The right to left direction is easy. For the converse, we observe that P must be an I/O, and that
P cannot be an abstraction (otherwise, when adding a process satisfying TestComm, we could not obtain an
ambient). Hence P ≡ {m}, for some m.

Given a simple ambient abstraction Q, we have that

Q | {m} |= 3 n[0] iff m = n .

This allows us to deduce that P ≡ {n}. 2

We can now define the two modalities for the input connective:

〈〈?n〉〉.A
def
= 1comm ∧ (¬∃ x . F{x}) ∧ (F{n} ⊲ 3 A)

[[?n]].A
def
= 〈〈?n〉〉.⊤ ∧ ¬〈〈?n〉〉.¬A

1input
def
= ∃x. 〈〈?x〉〉.⊤

Lemma 3.17

• P |= 〈〈?n〉〉.A iff there are P ′, P ′′ such that P ≡ (x)P ′, (x)P ′ | {n}=⇒P ′′, and P ′′ |= A.

• P |= [[?n]].A iff there is P ′ with P ≡ (x)P ′, and for all P ′′ such that (x)P ′ | {n}=⇒P ′′, P ′′ |= A.

4 Other intensional properties

As we have just seen, AL can capture several syntactical constructions of the calculus. We now further
explore the expressiveness of AL, going beyond the results we have established about capabilities and com-
munications.

We first define a formula φfin that characterises finite terms, using a form of contextual reasoning. The
same method is applied to derive a formula c©n that characterises the terms containing n as a free name.
We then introduce formulas that characterise in a restricted sense persistent single terms of the calculus.
These formulas will be used in Section 5 to establish characteristic formulas for a sub-calculus of MA.

13

4.1 Capturing finiteness

We now present a formula that is satisfied by all and only the finite processes. Detecting replication seems
a priori unfeasible in the present version of AL, as it does not provide a recursion operator. We capture
the ‘finite’ character of a term using the fact that a replicated process is persistent, i.e., it is always present
along the reductions of a term.

The characterisation of finiteness relies on the existence of a scenario which guarantees reachability of 0,
as expressed by the two following lemmas:

Lemma 4.1 Let P, Q be two terms such that P =⇒Q. Then P is finite iff Q is finite.

Proof: By induction over the length of the =⇒ derivation, then induction over the structure of the proof
of the −→ transition. 2

Lemma 4.2 P is finite iff there are Q, R, n such that n[P | Q] | R =⇒ 0.

Proof:

• Let us first assume that P is finite. We prove by induction on the size of P that there exist Q and R
such that for any P ′,

n[P | P ′ | Q] | R =⇒ n[P ′]

The left to right implication can then be obtained using this property with P ′ = 0 and adding open n
in parallel with R.

1 For P = 0, take Q = R = 0.

2 For P ≡ m[P1], we have by induction Q1, R1 such that n[P1 | P ′ | Q1] | R1 =⇒n[P ′] for any P ′.
Now we set Q = open m | Q1 and R = R1. Then it is clear that n[m[P1] | P ′ | Q] | R =⇒ n[P ′]
for any P ′.

3 For P ≡ P1 | . . . | Pr (with no replicated component), we use the induction hypothesis to obtain
Qi and Ri, and then set Q = Q1 | . . . | Qr, R = R1 | . . . | Rr such that for any P ′,

n[P | P ′ | Q] | R =⇒ n[P2 | . . . | Pr | P ′ | Q2 | . . . | Qr] | R2 | . . . | Rr

=⇒ . . .=⇒ n[P ′]

reasoning inductively on r.

4 For P ≡ cap. P1, we use the induction hypothesis to get Q1 and R1, and we define Q and R
according to the shape of cap as follows:

∗ cap = in m. Then we set Q = Q1 and R = m[0] | open m | R1. Then for any P ′:

n[P | P ′ | Q] | R −→ m[n[P1 | P ′ | Q]] | open m | R1

−→ n[P1 | P ′ | Q1] | R1

=⇒ n[P ′]

∗ cap = out m. We set Q = in m | Q1 and R = m[0] | open m | R1, so that we can conclude.

∗ cap = open m. We set Q = m[0] | Q1 and R = R1.

– For P ≡ {m}, we set Q = (x)0, and R = 0.

– For P ≡ (x)P1: by induction hypothesis applied to P1{n/x}, we get Q1 and R1; then we set
Q = {n} | Q1 and R = R1.

The first implication is thus established.

• Let us now assume P is not finite. Then for any n, Q, R, n[P | Q] | R is also infinite, and by the
previous lemma, it is also the case for any of its reducts, and hence it cannot reduce to 0.

2

14

We can now define:

φfin
def
= ∃x.

(
⊤ ◮ (⊤◮30)@x

)

Theorem 4.3 For any P , P |= φfin iff P is finite.

Proof: From Definition 2.6, P |= φfin holds if there are n, Q, R such that n[P | Q] | R=⇒0. We then
conclude with Lemma 4.2. 2

4.2 Formula for name occurrence

Our aim is now to define a formula corresponding to the connective c©n, defined by:

P |= c©n iff n ∈ fn(P) .

For this, we exploit Lemma 4.4 together with the ability, using the formulas for capabilities, to detect
unguarded occurrences of names.

We say that a process P is flat if it has no inputs and the only process underneath all capabilities,
and inside all ambients of P is 0. We say that a process P has an occurrence of name n at top level if
P ≡ cap. P ′ | P ′′ with cap = in n, out n or open n, P ≡ n[P ′] | P ′′ or P ≡ {n} | P ′.

For the proof of the next lemma, we would also need a more general notion. The occurrence depth of a
name n in an open term is given by a function depthn : P−→N ∪ {∞}, stable by ≡E, inductively defined as
follows:

- depthn(0) = ∞.

- depthn(n[P1]) = 0, and for n 6= η, depthn(η[P1]) = depthnP1 + 1.

- depthn((!)P1 | . . . | (!)Pr) = min1≤i≤r depthn(Pi) (here (!)Q stands for Q or !Q).

- depthn(cap. P) = 0 for cap ∈ {in n, out n, open n}, and depthn(cap. P) = depthn(P) + 1 otherwise.

- depthn((x)P) = depthn(↓β P) + 1, where ↓β P stands for the smallest term such that P =β↓β P

- depthn({n}) = 0 and depthn({η}) = ∞ for η 6= n.

Lemma 4.4 For all P, n, we have n ∈ fn(P) iff for any name m, there exist some flat processes Q, R, in
which n does not occur free, and a process S with an occurrence of n at top level such that m[P | Q] | R =⇒ m[S].

Proof:
Note that the property of S having an occurrence of n at top level is equivalent to depthn(S) = 0. We

are now ready to prove the lemma:

• We first consider the implication from left to right. Let us assume that depthn(P) < ∞. We consider
a name m, and prove by induction on depthn(P) that there exist Q, R, S satisfying the conditions of
the lemma.

– if depthn(P) = 0, we take Q = R = 0 and S = P .

– if depthn(P) = i + 1, we first consider the case where P ≡ in m1. P1 | P2 with depthn(P1) = i.
By induction hypothesis, there are Q1, R1, S1 and m satisfying the conditions of the lemma for
P1 | P2. We then can set for P : Q = Q1, R = m1[0] | open m1 | R1 and S = S1 | P2, then
Q, R, S can be chosen for P .

The other cases are treated similarly: we define processes that allow us to trigger a capability in
order to decrease the occurrence depth of n in the term. The definition of these processes follows
the ideas in the proof of Lemma 4.2.

The first implication is proved.

15

• For the implication from right to left, we assume that n 6∈ fn(P). We consider m 6= n, and some
Q, R as in the statement of the lemma. Then n 6∈ fn(m[P | Q] | R), so that for any T such that
m[P | Q] | R =⇒ T , n 6∈ fn(T).

2

We can now define the formula c©n to capture the set of free names of a process, together with the two
auxiliary formulas flat and c©1n needed in the definition of c©n. These formulas are given in Table 4.

flat
def
= (∃x. [[in x]]. 0 ∨ [[out x]]. 0 ∨ [[open x]]. 0 ∨ x[0] ∨ F{x})

ω

c©1n
def
=

(
〈〈in n〉〉.⊤ ∨ 〈〈out n〉〉.⊤ ∨ 〈〈open n〉〉.⊤ ∨ n[⊤] ∨ F{n}

) ∣∣ ⊤

c©n
def
= ∀x. (flat ∧ ¬ c©1n) ◮

(
(flat ∧ ¬ c©1n) ◮ 3 x[c©1n]

)
@x

Table 4: Formulas for free names

Formula c©n detects whether name n occurs in a process, while c©1n detects whether n occurs at top
level (i.e. P satisfies this formula iff depthn(P) = 0).

Theorem 4.5 (Name occurrence) P |= c©n iff n ∈ fn(P).

Proof: Consequence of the previous lemma. 2

4.3 Formulas for persistence

We now move to the definition of formulas that characterise persistence, which is given by the replication
operator in MA. In other words, we investigate the possibility of defining formulas !A that detect replicated
term !P such that P satisfies A. However, we cannot hope to define arbitrary formulas with precisely this
property. First, the form !P is too restrictive: as P=LQ implies !P=L!P | Q (see [HLS05]), a formula !A
would not distinguish between a uniquely replicated process !P , and a replicated process ”with admissible
garbage” !P | Q or !P | !Q. Second, if we want to express that the process holds something replicated, one
has to reject formulas satisfied by the process 0.

We hence restrict our attention to the case of formulas A whose models are single processes only. For
these formulas, !A characterizes replicated processes, in the sense that

P |= !A ⇔ ∃P1, . . . , Pn s.t.

{
1) P ≡ !P1 | (!)P2 | . . . | (!)Pn

2) ∀i ∈ 1 . . . n, Pi |= A

where (!) denotes an optional replication. In the sequel, we show how to define the formula !A when A
characterizes a guarded process and has some extra conditions. For the purpose of defining characteristic
formulas, this will be sufficient. However, it remains an open question how to define !A on a larger language.

The definition of !A has two parts. The first part says that if P |= !A then all parallel components in
P that are single and at top level satisfy A. This is expressed by the formula Aω. The second part of the
definition of !A addresses persistence, by saying that there are infinitely many processes at top level that
satisfy A in the sense that we may not consume all copies by some finite sequence of reduction. Definitions
are given in Table 5: there is one formula for each possible topmost constructor (recall that we are considering
a single process).

Formula F!{n} is actually a characteristic formula, since it is satisfied only by the process !{n}. For
this reason, we anticipate the notation FP of the characteristic formula of P (see Section 5). For the other
formulas, we express the replication of a process satisfying A; the interpretation of these formulas hence
relies on the actual meaning of A.

To illustrate the point, consider formula Repopen n(〈〈open n〉〉.⊤). This formula only specifies that any
number of capabilities open n should be present at top-level, and thus holds for process !open n.0, but also
for open n. !open n.0. On the other hand, 〈〈open n〉〉.⊤ can be replaced by the more discriminating formula
[[open n]]. 0: then we obtain a formula that only accepts process !open n.0.

In light of these observations, we define the following measures on terms:

Definition 4.6 (Sequentiality degree, sd) The sequentiality degree of an open term is defined as follows:

16

Repin n(A)
def
= Aω ∧ ∀m. (¬ c©m) →

([[out n]]. 0)ω ⊲
(

n[0] ⊲ �3 (n[m[A | ⊤]])
)
@m

Repout n(A)
def
= Aω ∧ ∀m. (¬ c©m) →

([[in n]]. 0)ω ⊲
(

n[0] ⊲ � 3(m[A | ⊤] | n[0])
)
@m

Repopen n(A)
def
= Aω ∧ (n[0])ω ⊲ � (A | ⊤)

Repn[](A)
def
= (n[A])ω ∧ ([[open n]]. 0)ω

⊲ � (n[A] | ⊤)

F!{n}
def
= F{n}

ω ∧ TestCommω ⊲ � (F{n} | ⊤)

Repinput(A)
def
= Aω ∧ 1messω ⊲ � (A | ⊤)

Table 5: Formulas for persistent single terms

• sd(0) = 0, sd(P | Q) = max
(
sd(P), sd(Q)

)
;

• sd(η[P]) = sd(!P) = sd(P);

• sd(cap. P) = sd(P) + 1.

• sd({η}) = 1 and sd((x)P) = sd(↓β P) + 1

Definition 4.7 (Depth degree) The depth degree of a process is given by a function dd from MA processes
to natural numbers, inductively defined by:

• dd(0) = 0, dd(cap. P) = dd((x)P) = dd({η}) = 0;

• dd(η[P]) = dd(P) + 1;

• dd((!)P1 | . . . | (!)Pr) = max1≤i≤r dd(Pi).

Lemma 4.8 For any processes P and Q, P ≡ Q implies sd(P) = sd(Q) and dd(P) = dd(Q).

Definition 4.9 (Selective and expressive formulas) A formula is sequentially (resp. depth) selective
if all processes satisfying it have the same sequentiality (resp. depth) degree.

For any capability cap (resp. name n) and formula A, A is cap-expressive (resp. n-expressive, input-
expressive) if all terms satisfying it are of the form cap. P (resp. n[P],(x)P).

Example 1 〈〈in n〉〉. n[0] is in n-expressive but not sequentially selective: it admits both in n. n[0] and in n. (n[0] |
open n. n[0]) as models. On the other hand, [[in n]]. n[0] is both sequentially selective and in n-expressive. As
we will see below (Subsection 5.2), the combination of 〈〈cap〉〉 and [[cap]] modalities allows us to define se-
quentially selective formulas.

These two forms of selectivity are useful for the characterisation of persistence. Indeed, the sequentiality
(resp. depth) degree of a single prefixed (resp. ambient) term is strictly decreasing when consuming the
prefix (resp. opening the ambient). This property is needed in order to detect the presence of replication at
top-level in a process, and interpret the formulas introduced above.

Lemma 4.10 Let P, Q be two terms of MA. If P −→Q or P
µ
−→ Q for some µ, then sd(P) ≥ sd(Q).

Proof: The property for
µ
−→ follows from the definition of sd(P). For P −→Q, one reasons by induction

and case analysis (using Lemma 2.4). 2

Corollary 4.11 For all cap, if P
〈cap〉
=⇒ Q, then sd(P) ≥ sd(Q).

In the sequel, Π1≤i≤tQi abbreviates Q1 | . . . | Qt.

Lemma 4.12 (Characterisation of replication of single processes)

17

1. Given a capability cap, and a sequentially selective and cap-expressive formula A, define

!A
def
= Repcap(A).

Then P |= !A iff there are r ≥ 1, s ≥ r, Pi (1 ≤ i ≤ s) such that P ≡ Π1≤i≤r !cap. Pi | Πr+1≤i≤scap. Pi,
and cap. Pi |= A for all 1 ≤ i ≤ s.

2. For any name n and depth selective and n-expressive formula A, define

!A
def
= Repn[](A).

Then P |= !A iff there are r ≥ 1, s ≥ r, Pi (1 ≤ i ≤ s) such that P ≡ Π1≤i≤r!n[Pi] | Πr+1≤i≤sn[Pi],
and n[Pi] |= A for all 1 ≤ i ≤ s.

3. For any formula A that is sequentially selective and input expressive, define

!A
def
= Repinput(A).

Then P |= !A iff there are r ≥ 1, s ≥ r, Pi (1 ≤ i ≤ s) such that P ≡ Π1≤i≤r !(x)Pi | Πr+1≤i≤s(x)Pi,
and (x)Pi |= A for all 1 ≤ i ≤ s.

Proof:
Case 1, cap = in n. Assume there exist some terms P1, . . . , Ps satisfying the condition expressed in 1. Then
the first part of !A is satisfied, i.e. P |= Aω.

To establish the second part, we have to show that for any Q ≡ out nω (where ω ∈ N
∗∪{∞}), any fresh

name m, and any term R such that m[P | Q] | n[0] =⇒ R, there is a further reduction R =⇒n[m[R1 | R2]]
for some R1, R2 such that R1 |= A, which entails in particular R1 ≡ in n. R′

1. Since ambient n does not
contain any active process, and since there is no active process at top-level in m[P | Q] | n[0], ambient n
remains at top-level in all evolutions of this term. Moreover, we have that m is fresh for P and Q; therefore,
no ambient may get out of m, so for any reduct R, there exists R′ such that either (i) R ≡ m[R′] | n[0],

and P | Q
(in n,out n)⋆

========⇒R′, or (ii) R ≡ n[m[R′]], and P | Q
in n
−−−→

(out n,in n)⋆

========⇒R′. In the first case, because

of the shape of P , we may perform one more step of reduction to reach a situation like (ii), and then, since

P | Q
in n
−−−→

(out n,in n)⋆

========⇒R′, there exists R′′ such that R′ ≡ !in n. P1 | R′′. The first implication is thus

proved.
Conversely, let us assume that P |= Repin n(A). Then according to the first part of the formula, there

exist some Pi’s satisfying P ≡ (!)in n. P1 | . . . | (!)in n. Pr and in n. Pi |= A. Suppose now by absurd
that no component is replicated. We exploit the sequential selectivity hypothesis to obtain a contradiction.
Indeed, we have the reduction m[P | (out n)r] | n[0] =⇒ R = n[m[P1 | . . . | Pr]] and R is a term whose
sequentiality degree is strictly smaller than sd(P). Then it is also the case for any of its reducts, and therefore
the same reasoning holds for any R1, R2 such that R =⇒ n[m[in n. R1 | R2]], in n. R1 has a sequentiality
degree too small to satisfy A because of sequential selectivity. Thus, P cannot satisfy Repin n(A), and we
obtain a contradiction. Hence, at least one of the Pi’s is replicated, and the reverse implication is proved.
The proofs for Case 1, other capabilities, and Case 3 follow from similar arguments.

Case 2. Assume that P ≡ !n[P1] | . . . | (!)n[Pr], with the Pi’s such that Pi |= A. Then P satisfies Repn[](A)
iff for any Q ≡ open nω, and any R such that P | Q=⇒R, there are Ri’s such that R ≡ n[R1] | R2 with
n[R1] |= A. Since for any R, R ≡ !n[P1] | R′, the first implication is established.

Conversely, suppose P satisfies Repn[](A). Then P ≡ (!)n[P1] | . . . | (!)n[Pr]. Moreover, if no Pi is
replicated, P | !open n =⇒ P1 | . . . | Pr | !open n, and if in some Pi there are Pi,j (j = 1, 2) such that
Pi ≡ n[Pi,1] | Pi,2, then the depth degree of Pi,1 is too small for n[Pi,1] to satisfy A, which gives us the
second implication. 2

The formulas for persistence, together with the constructions of Section 3, will be used to derive charac-
teristic formulas with respect to =L for a sub-calculus of MA in Section 5.

18

5 Characteristic formulas

In this section we establish the existence of characteristic formulas for a large class of processes. Given a
process P , a characteristic formula for P is a formula FP such that:

∀Q. Q |= FP iff Q =L P ,

where =L is logical equivalence (i.e., P =L Q iff P and Q satisfy the same formulas).
The definability of characteristic formulas is an interesting property, though for now only a purely the-

oretical result. The effectiveness and efficiency of the construction of characteristic formula are beyond
the scope of this paper, though we strongly believe that our definition gives an algorithm for constructing
formulas on the semi-decidable fragment MAIF. Having such constructive characteristic formulas, would
have some practical impact, since we could relate the logical equivalence and model-checking problem to the
validity problem. Interestingly, we may also recall that validity reduces to model-checking the other way
round when the spatial logic considered has the guarantee (⊲) connective.

To be able to carry out our programme, we have first to understand what =L represents. For this, we
use a co-inductive characterisation of =L, as a form of labelled bisimilarity. Then, making an intensive use
of the formulas for the connectives of the calculus previously defined, we derive the characteristic formulas.

5.1 Intensional bisimilarity

Note for this subsection only. The results presented in this subsection have appeared previously
in [San01, HLS02] and therefore are not a contribution of the present paper. Their complete proofs, which are
rather long and complex, can be found in a companion paper [HLS05]. We will use the notion of intensional
bisimilarity and all the properties that are recalled in this subsection only in the proof about characteristic
formulas for AL (Theorem 5.8), which is one of our main expressiveness results.

We use the labelled transitions (Definition 2.5) to define a notion of intensional bisimilarity in order to
capture =L.

Definition 5.1 Intensional bisimilarity is the largest symmetric relation ≃int on closed processes such that
P ≃int Q implies:

1. If P ≡ P1 | P2 then there are Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ≃int Qi, for i = 1, 2.

2. If P ≡ 0 then Q ≡ 0.

3. If P −→ P ′ then there is Q′ such that Q =⇒ Q′ and P ′ ≃int Q′.

4. If P
in n
−→ P ′ then there is Q′ such that Q

in n
=⇒

(out n,in n)⋆

=========⇒Q′ and P ′ ≃int Q′.

5. If P
out n
−−→ P ′ then there is Q′ such that Q

out n
=⇒

(in n,out n)⋆

=========⇒Q′ and P ′ ≃int Q′.

6. If P
open n
−−−→ P ′ then there is Q′ such that Q

open n
=⇒ Q′ and P ′ ≃int Q′.

7. If P
{n}
−→ P ′ then there is Q′ such that Q

{n}
=⇒ Q′ and P ′ ≃int Q′.

8. If P
?n
−→ P ′ then there is Q′ such that Q | {n} =⇒ Q′ and P ′ ≃int Q′.

9. If P ≡ n[P ′] then there is Q′ such that Q ≡ n[Q′] and P ′ ≃int Q′.

The definition of ≃int has (at least) two intensional clauses, namely (1) and (2), which allow us to
observe parallel compositions and the terminated process. These clauses correspond to the intensional con-
nectives ‘|’ and ‘0’ of the logic. The clause (8) for abstraction is similar to the input clause of bisimilarity
in asynchronous message-passing calculi [ACS98]. This is the case because communication in MA is asyn-
chronous. Another consequence of this is that the logic is insensitive to the following rewrite rule (modulo
associativity-commutativity of |):

(x)
(
{x} | (x)P

)
−→η (x)P .

This rule induces a notion of normal form of processes, that we shall call the eta-normalised form.

19

Definition 5.2 (Eta-equivalence) We will note P ≡E Q if the normal forms of P and Q for −→η are
related by ≡.

Lemma 5.3 ([HLS02, HLS05]) For any closed process P, Q in MA, P ≡E Q implies P ≃int Q.

By Theorem 5.4 below, this result says that the logic is insensitive to −→η. We shall thus reason using
normalised processes with respect to −→η in the proof of Theorem 5.8.

The most peculiar aspect of the definition of ≃int is the use of the stuttering relations. Although they
can be avoided on finite processes, they cannot in the full calculus. By contrast, stuttering does not show up
in Safe Ambients [LS00], where movements are achieved by means of synchronisations involving a capability
and a co-capability.

We now state some results about ≃int that are proved in [HLS02, HLS05].

Theorem 5.4 For any P , Q, P ≃int Q implies P =L Q.

The latter result establishes correctness of ≃int with respect to =L. Given a process P , we try and
characterise the equivalence class of P with respect to ≃int with a formula FP . The definability of such a
formula will actually entail that =L ⊆ ≃int (completeness), and hence that FP actually characterises the
=L-equivalence class of P .

We now mention a useful induction principle that allows us to reason ‘almost inductively’ on the structure
of a process when checking relation ≃int. This principle is given by the following inductive order:

Definition 5.5 We write P > Q if either sd(P) > sd(Q) or Q is a sub-term of P .

This order allows us, using the following result, to derive an inductive characterisation of ≃int [HLS02,
HLS05].

Proposition 5.6 Let P, P1, P2, Q be processes of MA. Then

1. 0 ≃int Q iff Q ≡ 0.

2. n[P] ≃int Q iff there exists Q′ such that Q ≡ n[Q′] and P ≃int Q′.

3. P1 | P2 ≃int Q iff there exist Q1, Q2 such that Q ≡ Q1 | Q2 and Pi ≃int Qi for i = 1, 2.

4. !P ≃int Q iff there exist r ≥ 1, s ≥ r, Qi (1 ≤ i ≤ s) such that Q ≡ Π1≤i≤r !Qi | Πr+1≤i≤sQi, and
P ≃int Qi for i = 1 . . . s.

5. cap. P ≃int Q iff there exists Q′ such that Q ≡ cap. Q′ with P
〈cap〉
=⇒ ≃int Q′ and Q′ 〈cap〉

=⇒ ≃int P .

6. {n} ≃int Q iff Q ≡ {n}.

7. (x)P ≃int Q iff there exists P ′, Q′, Q′′ and n 6∈ fn(P) ∪ fn(Q) such that Q ≡ (x)Q′, Q | {n}=⇒Q′′,
↓β P{n/x} ≃int Q′′, (x)P | {n}=⇒P ′ and P ′ ≃int Q′{n/x}.

5.2 The sub-calculus MAIF

As we mentioned above, characteristic formulas and completeness for an algebraic characterisation of logical
equivalence are two related problems. In fact, the existence of characteristic formulas is a stronger result than
completeness of ≃int with respect to =L: while we establish completeness in [HLS05] on the whole calculus,
we are only able to derive characteristic formulas on a sub-calculus of MA. To introduce the necessity of
restricting the class of processes we consider, and to illustrate the basic ideas behind the construction of
characteristic formulas, we examine some examples.

Example 2 We first introduce the following processes: P1 = !open n. n[0], P2 = open n | n[0], P3 =
!open n. P2, and P4 = open n. P2.

20

A characteristic formula for P1 is easy to define since the continuation term n[0] has no reducts. Hence
the formula [[open n]]. n[0], using a formula for necessity, satisfies the conditions of Lemma 4.12, and a
characteristic formula for P1 is

F1
def
= ![[open n]]. n[0] .

In order to define a characteristic formula for P3, we first look for a characteristic formula for P2. We can
set

F2
def
= [[open n]]. 0 | n[0] .

F2 is indeed a characteristic formula for P2. However, [[open n]].F2 is not a characteristic formula for P4,
nor for P3. The reason is that the continuation process (P2) is not static, as it may reduce to 0. Hence
[[open n]].F2 does not satisfy the conditions of Lemma 4.12, so that we need to add the possibility to reduce
to 0, yielding the formula [[open n]]. (F2 ∨ 0). But then we also accept the term open n.0, which shows why
we are led to add a possibility condition to the formula, and we finally define the following characteristic
formula for P3:

F3
def
= Repopen n(〈〈open n〉〉.F2 ∧ [[open n]]. (F2 ∨ 0)) .

We see on this example that characterising the continuation of a process starting with a capability or an
input requires to enumerate also all the possible reducts after consuming the topmost constructor. Therefore,
the definition of characteristic formulas relies on the actual feasibility of such an enumeration, which leads
us to the definition of a subclass of MA processes.

In the definition below, we use the following notation: given a set S of processes, S/≃int
will stand for

the quotient of S with respect to ≃int (which is, technically, a set of ≃int-equivalence classes of processes).

Definition 5.7 (Sub-calculus MAIF) A process P is image-finite iff any sub-term of P of the form cap. P ′

(resp. (x)P ′) is such that the set {P ′′ : P ′ 〈cap〉
=⇒ P ′′}/≃int

(resp. {P ′′ : P ′{n/x} =⇒ P ′′}/≃int
, for some

n 6∈ fn(P)) is finite.
MAIF is the set of image-finite MA processes.

MAIF is only a semi-decidable fragment of MA. A stronger restriction is considered in [HLS05], whose
definition involves decidable syntactic conditions. We however stick to this larger fragment for the sake of
generality.

For example, process in n. !(n[0] | open n.0) is in MAIF, but in n. !(n[0] | open n. a[0]) is not.
To construct a characteristic formula FP for a closed MAIF process P , we can suppose (up to ≡E) that

replication only appears above single terms and that P is eta normalised. We then define the characteristic
formula FP of P by induction using the order of Definition 5.5 (this defines a valid induction by Lemma 4.10).
The defining formulas are given in Table 6. Two technical remarks should be made regarding the definition
of F(x)P . First, in the disjunction over the quotiented set {P ′ : P{nx/x}=⇒P ′}/≃int

, it is intended that we
pick a representative in each equivalence class. Second, to avoid reasoning about processes containing free
variables (characteristic formulas are defined only for closed processes), we introduce the auxiliary name nx,
that is used as a placeholder for x, to be replaced by x again once the characteristic formula of process P ′

has been computed (see the defining clause of F(x)P). So FP ′{x/nx} is a slight abuse of notation that denotes
the operation consisting of (i) alpha-converting FP ′ so that no bound variable is named x, and (ii) textually
replacing nx with x in the resulting formula.

Theorem 5.8 (Characteristic formulas for MAIF) For any closed term P , define FP according to Ta-
ble 6. Then

Q |= FP iff P ≃int Q.

Proof: The proof is by induction, using the order of Definition 5.5.

• F0 characterises 0: this holds by Proposition 5.6.

• F{n} characterises {n} and F!{n} characterises !{n}: by Lemma 3.16, Lemma 4.12 and Proposition 5.6.

• if FP characterises P , then Fn[P] characterises n[P]: by Proposition 5.6.

21

F0

def
= 0 FP |Q

def
= FP | FQ

Fn[P]
def
= n[FP] Fcap.P

def
= 〈〈cap〉〉.FP ∧ [[cap]].

∨
{P ′, P

〈cap〉
=⇒ P ′}/≃int

FP ′

F!n[P]
def
= Repn[](FP) F!cap.P

def
= Repcap(Fcap.P)

F(x)P
def
= ∃x. ¬ c©x ∧ 〈〈?x〉〉.FP ∧ (nx /∈ fn(P))

[[?x]]
((

F{x} | (1input∧ ¬ c©x)
)

∨
∨

{P ′: P{nx/x}=⇒P ′}/≃int

FP ′{x/nx}
)

F{n}
def
= cf. Lemma 3.16 F!{n}

def
= cf. Table 5 F!(x)P

def
= Repinput(F(x)P)

Table 6: Characteristic formulas in MAIF

• if FP1
characterises P1 and FP2

characterises P2, then FP1|P2
characterises P1 | P2: by Proposition 5.6.

• Suppose now that for every P ′ such that sd(P ′) ≤ sd(P), FP ′ is a characteristic formula for P ′. We
then have:

– Fcap.P characterises cap. P .

By Lemma 4.10, sd(P ′) ≤ sd(P) for any P ′ such that P
〈cap〉
=⇒ P ′, so FP ′ is a characteristic

formula for such processes. We examine each of the two implications. In one direction, cap. P |=
〈〈cap〉〉.FP , and by Lemma 3.9, cap. P |= [[cap]].

∨
{P ′, P

〈cap〉
=⇒ P ′}/≃int

FP ′ , so cap. P |= Fcap.P . Con-

versely, if Q |= FP , then from Q |= 〈〈cap〉〉.FP we deduce the existence of Q′, Q′′ such that

Q ≡ cap. Q′, Q′ 〈cap〉
=⇒ Q′′, and Q′′ |= FP . Moreover, from Q |= [[cap]].

∨
{P ′, P

〈cap〉
=⇒ P ′}/≃int

FP ′ , we

deduce that there is P ′ such that P
〈cap〉
=⇒ P ′ and Q′ |= FP ′ , so Q′ ≃int P ′, and by Proposition 5.6,

Q ≃int cap. P .

– F(x)P characterises (x)P .

We first prove that (x)P |= F(x)P . We pick n0 fresh for P . We can apply the induction hypothesis
for P{n0/x} and for all of its reducts P ′. Then the implication from right to left follows from
Lemma 3.17.

For the other direction, let Q be such that Q |= F(x)P . We assume first that Q is eta normalised.
Let n0 be a name that can be used to satisfy formula F(x)P . Then n0 6∈ fn(Q), and there are
Q′, Q′′ such that Q ≡ (x)Q′, {n0} | (x)Q′=⇒Q′′, and Q′′ |= FP{n0/x}, that is, by hypothesis,
Q′′ ≃int P{n0/x}. Moreover, since Q is eta normalised, Q′{n0/x} is not of the form {n0} | (x)R
with n0 6∈ fn((x)R), and hence this process does not satisfy the formula (F{n0} | (1input∧¬ c©n0)).
Therefore, there exists P ′ such that P{n0/x}=⇒P ′ and Q′{n0/x} |= FP ′ , that is, by induction,
Q′{n0/x} ≃int P ′. Using Proposition 5.6, we deduce Q ≃int (x)P .

We consider now the case when Q is not eta normalised. Let Q0 be the eta normal form of Q.
Then by Lemma 5.3 and Theorem 5.4, Q=LQ0. Since by hypothesis Q |= F(x)P , Q0 |= F(x)P and
by the previous arguments, (x)P ≃int Q0. Finally, by Lemma 5.3, (x)P ≃int Q.

– F!cap.P characterises !cap. P and F!(x)P characterises !(x)P : these results follow from the repli-
cation case in Proposition 5.6 and from Lemma 4.12. In particular, the requirements in terms
of sequential (or depth) selectiveness, and cap (or n, input) expressiveness are satisfied because
the formulas we are using in our constructions are characteristic formulas, which, by induction,
satisfy such requirements.

2

Corollary 5.9 On the sub-calculus MAIF, we have ≃int = =L.
For any closed processes P and Q of MAIF, we have

Q |= FP iff P =L Q .

22

6 Extensions of the calculus

In this section, we study extensions of MA with different forms of communication: we first examine the
possibility to emit capabilities (in addition to names) in messages, and then consider synchronous commu-
nication. We only show how to capture the modifications brought to the language, without porting all the
constructions seen in the previous sections. We however believe that our approach would go through without
any major modification.

We start by pointing out that Lemmas 3.6,3.8,3.7 about the interpretation of formulas 〈〈cap〉〉.A hold
in the extensions we consider, since their proofs are insensitive to the presence of communication in the
calculus.

6.1 Capabilities in messages

In the original MA calculus [CG98a], messages can also carry paths of capabilities. To accommodate this in
the grammar of Table 1, all occurrences of η are replaced by M , and the path productions

M ::= cap | M1. M2 | ǫ ,

are added to those for expressions, where ǫ stands for the empty path. Thus a capability can be a path,
such as open n. inm. openh. Also, the rules

ǫ. P ≡ P (M1. M2). P ≡ M1. M2. P

are added to those of ≡. Since messages can now carry names or capabilities, a type system is intro-
duced [CG99] to avoid run-time errors. We shall assume that all processes are well-typed (according to the
basic Ambient types), which means in particular that in the interpretation of a formula of the form A⊲B,
processes that are added in parallel are of the right type. Moreover, we will say that the argument of an
abstraction (x)P is of capability type whenever the typing ensures that capabilities, and not names, can be
sent to instantiate x.

Our main focus will be on the characterisation of these new forms of messages. For this, we need a
formula TestCap, the analogous of the formula TestComm of Section 3.3, satisfied by all abstractions that
are eta-congruent to (x) m[x.0], where m is some fixed name.

We also need a formula LMM, for any closed capability M , that identifies those processes that are struc-
turally congruent to M .0. We first discuss an example, namely the formula Lin n. openmM. For this,
〈〈in n〉〉. 〈〈open m〉〉. 0 is not enough: this formula is satisfied by inn. openm.0 but also, for instance, by
processes such as in n. ({M} | (x) open m), which has some additional I/O, or in n. outn. inn. openm.0,
which stutters. A formula F for Lin n. openmM could thus be (the actual definition of Linn. openmM will be
different; the formula below is easier to read and semantically equivalent):

F
def
= 〈〈in n〉〉. 〈〈open m〉〉. 0

∧ ¬ 〈〈in n〉〉.¬ 1comp

∧ ¬ 〈〈in n〉〉. 〈〈out n〉〉.⊤

∧ ¬ 〈〈in n〉〉. 〈〈open m〉〉.¬ 0

In the definition of F , the second, third and fourth conjuncts take care of the problems with I/O and
stuttering mentioned above.

23

Here is the complete definition of LMM for any path M :

Lopenn. MM
def
= 〈〈open n〉〉. LMM

∧ ¬〈〈open n〉〉. (¬1comp ∨ 1amb)

Loutn. MM
def
= 〈〈out n〉〉. LMM

∧ ¬〈〈out n〉〉. (¬1comp ∨ 1amb)

∧ ¬〈〈out n〉〉. 〈〈in n〉〉. 〈〈out n〉〉. LMM

Lin n. MM
def
= 〈〈in n〉〉. LMM

∧ ¬〈〈in n〉〉. (¬1comp ∨ 1amb)

∧ ¬〈〈in n〉〉. 〈〈out n〉〉. 〈〈in n〉〉. LMM

Lǫ. MM
def
= LMM

L0M
def
= 0

In the definition of LMM, sub-formula ¬1comp∨1amb is used to control process reductions, see Lemma 6.1.
We now define TestCap:

TestCap
def
= 1comm

∧ 1comm ⊲ 2(2comm ∨ m[1comp])

∧ 1comm◮ 3 m[LinnM]

∧ 1comm◮ 3 m[0]

where (n, m) is any pair of different names.

The correctness of this definition is proved along the lines of that of TestComm. The formula F{M}, where
M is any closed capability, is then

F{M}
def
= 1comm ∧

(
TestCap ⊲ 3 m[LMM]

)

We now give the key steps that allow us to derive the interpretation of the formulas presented above.

Lemma 6.1 Suppose P −→ P ′. Then P |= ¬1comp ∨ 1amb.

Lemma 6.2 Suppose M, P are closed. Then P |= LMM iff P ≡ M .0.

Proof: By induction on the size of M . If the size is 0 then M = 0 and the result follows easily. For the
inductive case, we proceed by a case analysis.

• M = inn. N . We have P |= 〈〈in n〉〉. LMM, therefore by Lemma 3.8 P ≡ inn. P ′ for some P ′ such that

P ′ (in n,out n)⋆

========⇒P ′′ and P ′′ |= LMM.

However P ′ cannot stutter, otherwise P |= 〈〈in n〉〉. 〈〈out n〉〉. 〈〈in n〉〉. LMM. Also, it cannot be P ′ −→
P ′′′ =⇒ P ′′ otherwise by Lemma 6.1 P ′ |= ¬1comp ∨ 1amb, hence P |= 〈〈in n〉〉. (¬1comp ∨ 1amb).

• M = in n. N : similar.

• M = openn. N : similar (without any stuttering phenomenon).

• M = ǫ. N . In this case, we also have P |= LNM, hence by induction P ≡ N , hence P ≡ M .
2

We now adapt the notion of ambient abstraction, introduced in Section 3.3, in order to define a class of
processes that will be used to give the interpretation of formula TestCap.

24

Definition 6.3 (ambient abstraction and ambient semi-abstraction) The ambient abstractions are
the subset of processes defined by the following grammar:

P ::= (x) m[x.0] | (x) ({N} | P) .

The ambient semi-abstractions are the subset of processes defined by the following grammar:

P ::= (x) m[Q] | (x) ({N} | P)

where Q is single.

Lemma 6.4 Given an abstraction (x)R whose argument is of capability type and R contains no abstractions,

suppose there are messages M, N and substitutions {L̃/̃z}, {L̃′/̃z} such that

{M} | (x) (R{L̃/̃z}) |= 2(2comm∨ m[1comp])

and
{N} | (x) (R{L̃′/̃z}) |= 3 m[1comp].

Then (x) R is an ambient semi-abstraction (i.e., R ≡ m[P] where P is single).

Lemma 6.5 Given an abstraction (x) R whose argument is of capability type,

suppose there are messages M, N and substitutions {L̃/̃z}, {L̃′/̃z} such that

{M} | (x) (R{L̃/̃z}) |= 2(2comm∨ m[1comp])

and
{N} | (x) (R{L̃′/̃z}) |= 3 m[1comp].

Then (x) R is an ambient semi-abstraction.

Proof: By induction on the number of nested abstractions in R. If this number is 0 then use Lemma 6.4.
Suppose the number is greater than 0. From

{M} | (x) (R{L̃/̃z}) −→ R{L̃/̃z}{M/x}

we derive
R{L̃/̃z}{M/x} |= 2comm∨ m[1comp]

Since R should contain an abstraction, the formula m[1comp] is not satisfied, hence

R{L̃/̃z}{M/x} |= 2comm

Using this, the fact that R should contain an abstraction, and the other judgement in the hypothesis of the
lemma we infer that

R ≡ {M ′} | (y) Q

for some M ′, y, Q. This information on R and the judgements in the hypothesis of the lemma imply:

{M ′{L̃/̃z}{M/x}} | (x) (Q{L̃/̃z}{M/x}) |= 2(2comm ∨ m[1comp])

and
{M ′{L̃/̃z}{N/x}} | (x) (Q{L̃/̃z}{N/x}) |= 3 m[1comp].

We can now conclude, using the inductive hypothesis on Q. 2

25

Lemma 6.6 Suppose (x)R is an ambient semi-abstraction, whose argument is of capability type, and suppose

there are messages M, N and substitutions {L̃/̃z}, {L̃′/̃z} such that

{M} | (x) (R{L̃/̃z}) |= 3 m[Lin Mn]

and
{N} | (x) (R{L̃′/̃z}) |= 3 m[0].

Then (x) R is an ambient abstraction.

Proof: By induction on the number of abstractions in R. The case when this number is 0 is easy: if R 6≡ x.0
then R does not satisfy the given formulas.

If the number of abstractions is greater than 0 then Q ≡ ({O} | P), for some message O and process P
and then we derive:

{M} | (x) (O{L̃/̃z} | (y) P{L̃/̃z}) −→ O{L̃/̃z}{M/x} | (y) P{L̃/̃z}{M/x} |= 3 m[Lin Mn]

and similarly

O{L̃′/̃z}{N/x} | (y) P{L̃′/̃z}{N/x} |= 3 m[0]

and then we conclude using induction. 2

We say that an ambient abstraction P is simple if P =β (x) m[x. 0] where =β is the least congruence
that is closed under the rule

{M} | (x) P = P{M/x} .

Lemma 6.7 Suppose (x) Q is an ambient abstraction, and that we have

(x) Q |= 1comm◮3 m[Lin Mn] and (x) Q |= 1comm◮3 m[0] .

Then (x) Q is simple.

Proof: Any ambient abstraction is equivalent with respect to ≡E (structural equivalence plus the eta law –
see Definition 5.2) (x) m[M .0]. 2

Lemma 6.8 P |= TestCap iff P is a simple ambient abstraction.

Proof: We observe that P has to be an I/O, and cannot be a message (otherwise by adding (x)0 in parallel
with P we could violate the definition of TestCap).

Hence P is an abstraction, and there are M, N such that

{M} | P |= 3 m[Lin nM] ∧ 2(2comm ∨ m[1comp])

{N} | P |= 3 m[0] ∧ 2(2comm∨ m[1comp])

By Lemma 6.5, P must be an ambient semi-abstraction (note that 0 implies 1comp). Now Lemma 6.6 shows
that P must be an ambient abstraction, which by Lemma 6.7 is simple. 2

F{M}
def
= 1comm∧ TestCap ⊲ 3 m[LMM]

Lemma 6.9 P |= F{M} iff P ≡ {M}.

26

6.2 Synchronous Ambients

Since the modal logic does not talk about the I/O primitives, it is interesting to examine variations of these
primitives, to see the effect on the equality induced by the logic. In MA communication is asynchronous:
since a message has no continuation, no process is blocked until the message is consumed. The most natural
variation consists in making communication synchronous. For this the production {η} for messages in the
grammar of MA in Table 1 is replaced by the production {η}. P . Reduction rule Red-Com becomes:

{M}. Q | (x) P −→ Q | P{M/x}
Red-Com

The communication act liberates, at the same time, both the continuation P of the abstraction and the
continuation Q of the message. We write MAsync for the resulting synchronous calculus.

Synchrony leads to some important modifications in the assertions and in the proofs of the results in
the paper. In MAsync, the eta law fails in the sense that the logic can separate eta equivalent terms (cf.
Definition 5.2). Indeed, we will define a formula 〈〈{n}〉〉.A whose models are processes {n}. P with P=⇒ |= A.
Then, returning to the eta law, formula 1input ∧ (〈〈{n}〉〉. n[0])◮2¬3Comp is satisfied by (x)

(
{x} | (y)0),

and not by (x)0, where by 3Comp we mean the formula 1Comp | 1Comp | 1Comp.
We will focus now on the characterisation of this new form of communication. In asynchronous MA, our

separation of messages from abstractions exploited their asymmetry: abstractions, but not messages, have a
continuation. In the synchronous case the asymmetry disappears, therefore we have to use a different route
for the proof, which makes it a bit more involved.

Again, the most delicate point is to find a replacement for the formula TestComm. We sketch how the
new definition is obtained.

• We first define a formula, OnlyCom, that is satisfied only by abstractions (x) P and messages {M}. P
in which capability prefixes and ambients do not appear in the continuation P and, moreover, no
sub-term of P contains more than two non-trivial parallel components.

• Using OnlyCom we define a formula, ComAmb, that is satisfied only by processes defined as those that
satisfy OnlyCom except that the innermost operator is an ambient η[x[0]].

• We then define a formula that characterises the abstraction (x) h[x[0]]; we write 3comm for 1comm |
1comm | 1comm:

Immh
def
= ComAmb

∧ OnlyCom ⊲ (2¬ 1comm ∧ 2¬ 3comm)

∧ OnlyCom◮ 3 h[n[⊤]]

∧ OnlyCom◮ 3 h[m[⊤]] ,
where n and m are different names.

Roughly, the first ∧-component implies that a process that satisfies Immh has an abstraction or a
message as its outermost operator, and an ambient η[x[0]] as the innermost. The second ∧-component,
call it F , ensures that the process does not have any other operators; that is, the ambient η[x[0]] is

reached immediately after the initial communication. For instance, the process R
def
= {M}. (x) h[x[0]]

does not satisfy F because R | (x) 0 =⇒ (x) h[x[0]] and (x) h[x[0]] satisfies 1comm. Finally, the third
and fourth ∧-components rule out the messages and the abstraction (x) x[x[0]].

Once we have defined formulas to capture primitives for synchronous communication, the other expres-
siveness results in the paper also hold for synchronous MA. The corresponding proofs follow closely the
arguments in the previous sections.

We now move to the formal definition and analysis of the formulas we alluded to above.

Modifications between Lemma 3.12 and 3.16

To define a formula that captures synchronous outputs (Lemma 6.15 below), we introduce tester processes
of the form (x) h[x[0]], for a given name h. The logical characterisation of these (Lemma 6.14) is slightly

27

more complicated than the corresponding result in the asynchronous case (Lemma 3.15), and is based on
four grammars describing communicating processes, that are defined as follows.

OnlyCom
def
= 1comm◮ (2(2comm ∨ 0) ∧ 3 0)

To interpret formula OnlyCom, we introduce the following grammars:

H ::= {η}.0 | (x) 0 | {η}. (H | H) | (x) (H | H) | {η}. H | (x) H

K ::= {η′}. η[y[0]] | (x) η[y[0]] | {η′}. (H | K) | (x) (H | K) | {η′}K | (x) K

H⋆ ::= H | 0

K⋆ ::= {η′}. η[η′′[0]] | (x) η[η′′[0]] | {η′}. (H | K) | (x) (H | K) | {η′}K | (x) K | η[η′[0]]

We write

• GH for the set of terms described by H ,

• GK for those described by K,

• GH⋆ for those described by H⋆, and

• GK⋆ for those described by K⋆.

(The grammar for K⋆, with respect to that for K, has the additional production for η[η′[0]], and has η[η′[0]]
in place of η[y[0]] in the other productions.)

Lemma 6.10 Suppose P is a MAsync process. P{n/x} ∈ GH iff P ∈ GH.

Lemma 6.11 Suppose P is a MAsync process and P |= OnlyCom. Then P ≡ P ′ for some P ′ ∈ GH.

Proof: Suppose P1 |= OnlyCom. Then there is a process P2 with P2 |= 1comm such that

P1 | P2 |= (2(2comm ∨ 0) ∧ 3 0).

In particular, it holds that P1 | P2 |= 2comm, hence P1 |= 1comm.
We show that if Q1, Q2 are processes that satisfy 1comm and such that

Q1 | Q2 |= (2(2comm ∨ 0) ∧ 3 0),

then Q1, Q2 ∈ GH.
The proof is by induction on the maximal depth of Q1, Q2. The case when this depth is 1 is easy. If this

depth is greater than 1, then Q1 | Q2 −→ Q′
1 | Q′

2, using the com rule, where Qi is the continuation of Qi.
We have three cases:

• Q′
1 ≡ 0, Q′

2 ≡ R1 | R2 for some non-trivial R1, R2;

• the symmetric case;

• none of Q′
1 and Q′

2 is structurally congruent to 0.

In the first two cases, we deduce that R1, R2 satisfy 1comm, and then use induction to infer R1, R2 ∈ GH.
Then using the first 4 productions of the grammar, and Lemma 6.10, Q1, Q2 ∈ GH. In the third case, use
induction to infer Q′

1, Q
′
2 ∈ GH. Hence also Q1, Q2 ∈ GH, using the last 2 productions of the grammar and

Lemma 6.10. 2

Lemma 6.12 Suppose P is a MAsync process, and P |= 2(2comm ∨ h[n[0]]) ∧ 3 h[n[0]], where h, n are any
names. Then P ≡ P1 | P2 with P1 ∈ GH and P2 ∈ GK⋆.

28

Proof: By induction on the size of P , where the size is the number of operators in P . The size cannot be 0

or 1. If the size is 2 then P = h[n[0]], and P ≡ 0 | h[n[0]], hence the assertion of the lemma, for P1
def
= 0.

Suppose the size if greater than 2. Call

F
def
= 2(2comm ∨ h[n[0]]) ∧ 3 h[n[0]]

Then
P ≡ P1 | P2 where, for i = 1, 2,we have Pi |= 1comm

Since P must reduce,
P1 | P2 ≡ {m}. Q1 | (x) Q2

and
Q1 | Q2{m/x} |= F .

The size of Q1 | Q2{m/x} is smaller.
It can be that Q1 or Q2 are 0, or none is 0 (they cannot both be 0). In both cases we can conclude by

referring to the appropriate grammar productions and by using the inductive hypothesis. 2

Define now:

ComAmb
def
= ∃ x .

(
OnlyCom◮

(
2(2comm∨ x[n[0]]) ∧ 3 x[n[0]]

)

∧ OnlyCom◮3 x[m[0]]
)

where n and m are different names.

Lemma 6.13 Suppose P is a MAsync process, and P |= ComAmb. Then P ≡ P ′ for some P ′ ∈ GK.

Proof: Suppose P1 |= ComAmb. Then there is a process P2 and some h with P2 |= OnlyCom such that
P1 | P2 |= 2(2comm ∨ h[n[0]]) ∧ 3 h[n[0]]. By Lemma 6.11, P2 ≡∈ GH. By Lemma 6.12, P1 ∈ GK⋆.
Moreover, since P1 |= 1comm, it holds that P1 6≡ h[n[0]]; from this and P1 |= OnlyCom◮3 h[m[0]], we deduce
P1 ∈ GK.

2

Define

Immh
def
= ComAmb∧

OnlyCom ⊲ (2¬ 1comm ∧ 2¬ 3comm)

OnlyCom◮3 h[n[⊤]]

OnlyCom◮3 h[m[⊤]]
where m 6= n.

Lemma 6.14 Suppose P |= Immh. Then P ≡ (x) h[x[0]].

Proof: By Lemma 6.13, P ≡ P ′ ∈ GK. One then shows that (x) h[x[0]] satisfies Immh, whereas the other
terms in GK do not (choosing the appropriate OnlyCom). 2

Now we can define the formula:

〈〈{n}〉〉.A
def
= 1comm

∧ ∀ x . (Immx ⊲ 3 (x[n[0]] | A))

Lemma 6.15 Suppose P is a MAsync process. It holds that P |= 〈〈{n}〉〉.A iff P ≡ {n}. Q and Q =⇒ Q′

and Q′ |= A.

Proof: Take h fresh. Then by Lemma 6.14,

P | (x) h[x[0]] |= 3 (h[x[0]] | A) .

From this, and P |= 1comm, we deduce P ≡ {m}. P ′, for some m, P ′. We also deduce that

P ′ | h[m[0]] |= 3 (h[m[0]] | A) .

Since h is fresh, P ′ cannot interact with h. Hence m = n, and moreover P ′ =⇒|= A. 2

29

Lemma 6.16 Suppose P is a MAsync process. It holds that P |= 〈〈?n〉〉. A iff P ≡ (x) P ′ and P ′{n/x} =⇒
P ′′ |= A.

6.3 Other Extensions

6.3.1 Name restriction and revelation

Usually [CG98a, CG99], the syntax of MA also has the restriction operator. In [CG01], Cardelli and Gordon
propose an extension of AL with logical connectives to describe restriction. In particular, the operator of
name revelation allows one to derive c©n (Subsection 4.2). In presence of restriction in the calculus, we
cannot adapt our construction to capture finiteness of processes, intuitively because our approach consists in
exhibiting a context that allows a finite process to reduce to 0, which is not possible in general in presence of
restriction. However, characteristic formulas can be derived, by enriching our constructions with a formula
that says that a process has no restriction (which is definable using name revelation).

6.3.2 Strong sometimes modality

One could consider a “strong” version of the sometimes (3) modality, where −→ replaces =⇒ in the definition
of |=. This variant is easier to study, and less interesting in a sense. We explain the effects it would have.
The only drawback is that with a strong version of 3 we could not derive the formulas of Section 4, and as a
consequence characteristic formulas can be given for finite processes only. On the other hand, the formulas
for capabilities and communications would become much simpler; we would not have to consider stuttering
and eta conversions; logical equivalence would coincide with structural congruence.

6.3.3 Recursion

In a different direction, a variant of MA can be considered in which a recursion operator is used instead of
replication (see for example [LS03]). Recursion gives trees with infinite depth; this prevents us from defining
the measures sd(P) and dd(P) up to structural congruence. Moreover, the constructions in Subsection 4.3
are based on the characterisation of persistence (that provides a form of ‘recursion in width’) of replicated
processes. We do not think that they could be easily adapted to a calculus with recursion.

Acknowledgments

We thank the anonymous referees for their careful reading of the paper, and for their comments and sugges-
tions, which resulted in a number of improvements for the paper.

References

[ACS98] R. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus.
Theoretical Computer Science, 195:291–324, 1998.

[Car99] L. Cardelli. Semistructured computations. Proc. 7th Intl. workshop on Data Base Programming
Languages (DBPL’99), invited talk (accompanying paper available from the author’s web page),
1999.

[Car01] L. Cardelli. Describing Semistructured Data. SIGMOD Record, Database Principles Column, 30(4),
2001.

[CG98a] L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. FoSSaCS ’98, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer Verlag, 1998.

[CG98b] L. Cardelli and A.D. Gordon. Technical annex to [CG98a]. Unpublished notes, 1998.

[CG99] L. Cardelli and A.D. Gordon. Types for mobile ambients. In Proc. 26th POPL, pages 79–92. ACM
Press, 1999.

30

[CG00] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile Ambients. In Proc. of
27th POPL, pages 365–377. ACM Press, 2000.

[CG01] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In Proc. of TLCA’01, volume
2044 of LNCS. Springer Verlag, 2001.

[CG04] L. Cardelli and G. Ghelli. A query language for semistructured data based on the ambient logic.
Mathematical Structures in Computer Science, 14(3), pages 285–327, 2004.

[CL04] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial Logics for Con-
currency. In Proc. of CONCUR’04, volume 3170 of LNCS, pages 240–257. Springer Verlag, 2004.

[DZ00] S. Dal-Zilio. Structural Congruence for Ambients is Decidable. In Proc. of ASIAN’00, volume 1961
of LNCS. Springer Verlag, 2000.

[GS86] S. Graf and J. Sifakis. A modal characterization of observational congruence on finite terms of
CCS. Information and Control, 68:125–145, 1986.

[Hir04] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. In Proc. of CONCUR’04, volume
3170 of LNCS, pages 325–339. Springer Verlag, 2004.

[HLS02] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decidability in the
Ambient Logic. In 17th IEEE Symposium on Logic in Computer Science, pages 423–432. IEEE
Computer Society, 2002.

[HLS03] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Minimality Results for the Spatial Logics. In Proc. of
FSTTCS’03, volume 2914 of LNCS, pages 252–264. Springer Verlag, 2003.

[HLS05] D. Hirschkoff, E. Lozes, and D. Sangiorgi. On the separability of the ambient logic. in preparation,
2005.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of the
ACM, 32:137–161, 1985.

[LS00] F. Levi and D. Sangiorgi. Controlling interference in ambients. Short version appeared in Proc.
27th POPL, ACM Press, 2000.

[LS03] F. Levi and D. Sangiorgi. Mobile Safe Ambients. ACM Trans. Program. Lang. Syst., 25(1):1–69,
2003. Short version appeared in Proc. 27th POPL, ACM Press.

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, 1999.

[Rey02] J. Reynolds. Separation logic: a logic for shared mutable data structures. In 17th IEEE Symposium
on Logic in Computer Science. IEEE Computer Society, 2002.

[San01] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In Proc. of 28th POPL,
pages 4–17. ACM Press, 2001.

[SI94] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with divergence. Information
and Computation, 110(1):149–163, 1994.

[SW01] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University
Press, 2001.

31

