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A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY

A LÉVY PROCESS

By Fabien Panloup
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We study some recursive procedures based on exact or approx-
imate Euler schemes with decreasing step to compute the invariant
measure of Lévy driven SDEs. We prove the convergence of these
procedures toward the invariant measure under weak conditions on
the moment of the Lévy process and on the mean-reverting of the dy-
namical system. We also show that an a.s. CLT for stable processes
can be derived from our main results. Finally, we illustrate our results
by several simulations.

1. Introduction.

1.1. Objectives and motivations. This paper is devoted to the computa-
tion of the invariant measure (denoted by ν) of ergodic stochastic processes
which obey a stochastic differential equation (SDE) driven by a Lévy pro-
cess. Practically, we want to construct a sequence of empirical measures
(ν̄n(ω,dx))n≥1 which can be recursively simulated and such that ν̄n(ω,f)→
ν(f) a.s. for a range of functions f containing bounded continuous functions.

In the case of Brownian diffusions, some methods have already been de-
veloped by several authors to approximate the invariant measure (see Sec-
tion 1.3), but this paper seems to be the first one that deals with this problem
in the case of general Lévy driven SDEs. The motivation for this general-
ization is the study of dynamical systems that are widely used in modeling.
Indeed, there are many situations where the noise of the dynamical system
is discontinuous or too intensive to be modeled by a Brownian motion. Let
us consider an example that comes from the fragmentation-coalescence the-
ory. In situations such as polymerization phenomenons, when temperature
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2 F. PANLOUP

is near to its critical value, molecules constantly break-up and recombine.
This situation has been modeled by Berestycki [2] through what he terms
EFC (Exchangeable Fragmentation-Coalescence) process. The mass of the
dust generated by this process (see [2] for more details) is a solution to a
mean-reverting SDE for which the noise component is driven by a subordi-
nator (an increasing Lévy process). We come back to this example in Section
7.

For other examples of situations where models that use a Lévy driven
SDE are adapted, we refer to Barndorff-Nielsen et al. [1] for examples in
financial modeling (where ergodic Lévy driven SDEs are usually used to
model the volatility of a financial market), Protter–Talay [23] for examples in
finance, electrical engineering, . . . or Deng [8], who models the spot prices of
electricity by a mean-reverting Brownian diffusion perturbed by a compound
Poisson noise.

1.2. The stochastic differential equation. According to the Lévy–Khintchine
decomposition (for this result and for introduction to Lévy processes, see,
e.g., Bertoin [4], Protter [22] or Sato [25]), an R

l-valued Lévy process (Lt)
with Lévy measure π admits the following decomposition: Lt = αt+

√
QWt+

Yt +Nt, where α ∈ R
l, Q is a symmetric positive l × l real matrix, (Wt) is

a l-dimensional standard Brownian motion, (Yt) is a centered l-dimensional
Lévy process with jumps bounded by 1 and characteristic function given for
every t≥ 0 by

E{ei〈u,Yt〉}= exp

[

t

(
∫

{|y|≤1}
ei〈u,y〉 − 1− i〈u, y〉π(dy)

)]

and (Nt) is a compound Poisson process with parameters λ = π(|y| > 1)
and µ(dy) = 1{|y|>1}π(dy)/π(|y|> 1) (λ denotes the parameter for the wait-
ing time between the jumps of N and µ, the distribution of the jumps).
Moreover, (Wt), (Yt) and (Nt) are independent Lévy processes.

Following this decomposition, we consider an R
d-valued cdlg process (Xt)

solution to the SDE

dXt = b(Xt−)dt+ σ(Xt−)dWt + κ(Xt−)dZt,(1)

where b :Rd 7→ R
d, σ :Rd 7→ Md,l (set of d × l real matrices) and κ :Rd 7→

Md,l are continuous with sublinear growth and (Zt) is the sum of the jump
components of the Lévy process: Zt = Yt +Nt.

In most papers dealing with Lévy driven SDEs, the SDE reads dXt =
f(Xt−)dLt, where (Lt)t≥0 is a Lévy process. Here, we separate each part of
the Lévy process because they act differently on the dynamical system. We
isolate the drift term because it usually produces the mean-reverting effect
(which in turn induces the ergodicity of the SDE). The two other terms are
both noises, but we distinguish them because they do not have the same
behavior.
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Remark 1. In (1) we chose to write the jump component by compen-
sating the jumps smaller than 1, but it is obvious that, for every h > 0, (Xt)
is also solution to

dXt = bh(Xt−)dt+ σ(Xt−)dWt + κ(Xt−)dZh
t(2)

with bh = b+
∫

{|y|∈(1,h]} yπ(dy) if h > 1, bh = b− ∫{|y|∈(h,1]} yπ(dy) if h < 1,

and Zh
t = Y h

t +Nh
t , where the characteristic function of Y h

t is given for every
t≥ 0 by

E{ei〈u,Y h
t 〉}= exp

[

t

(
∫

{|y|≤h}
ei〈u,y〉 − 1− i〈u, y〉π(dy)

)]

and (Nh
t ) is a compound Poisson process with parameters λh = π(|y| > h)

and µh(dy) = 1{|y|>h}π(dy)/π(|y| > h). By this remark, we want to empha-
size that the formulation (1) is conventional and that the coefficient b in
(1) is dependent on this choice. We will come back to this remark when
we introduce the assumptions of the main results where we want, on the
contrary, that they be intrinsic (see Remark 4).

Let us recall a result about existence, uniqueness and Markovian structure
of the solutions of (1) (see [22]).

Theorem 1. Assume that b, σ and κ are locally Lipschitz functions
with sublinear growth. Let (Ω,F , (Ft),P) be a filtered probability space sat-
isfying the usual conditions and let X0 be a random variable on (Ω,F ,P)
with values in R

d. Then, for any (Ft)-Brownian motion (Wt)t≥0, for any
(Ft)-measurable (Zt)t≥0 as previously defined, the SDE (1) admits a unique
càdlàg solution (Xt)t≥0 with initial condition X0. Moreover, (Xt)t≥0 is a
Feller and Markov process.

Remark 2. Lévy driven SDEs are the largest subclass of SDEs driven by
semimartingales such that the solutions have a Markovian structure. Indeed,
a result due to Jacod and Protter (see [13]) shows that, under appropriate
conditions on the coefficients, a stochastic process solution to a homogeneous
SDE driven by a semimartingale is a strong Markov process if, and only if,
the driving process is a Lévy process.

1.3. Background on approximation of invariant measures for Brownian
diffusions. This problem has already been studied by several authors when
(Xt) is a Brownian diffusion, that is, when κ= 0. In [28] Talay approximates
ν(f) by ν̄γ

n(f) = 1/n
∑n

k=1 f(X̄γ
k−1), where (X̄γ

n)n denotes the Euler scheme
with constant step γ. Denoting by νγ the invariant distribution of the homo-

geneous Markov chain (X̄γ
n)n, he shows that ν̄γ

n
n→+∞
=⇒ νγ and that νγ γ→0

=⇒ ν,
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under some uniform ellipticity and Lyapunov-type stability assumptions. (A
Markov process (Xt) with infinitesimal generator A satisfies a Lyapunov as-
sumption if there exists a positive function V such that V(x) → +∞ and
limsupAV (x) = −∞ when |x| → +∞. Then, V is called a Lyapunov func-
tion for (Xt). Under this assumption, (Xt) admits a stationary, often ergodic
when unique, distribution. The existence of such a Lyapunov function de-
pends on the mean-reversion of the drift and on the intensity of the diffusions
term (see, e.g., [5, 7, 12] and [19] for literature on Lyapunov stability).) In
this procedure, γ and n correspond to the two types of errors that the dis-
cretization of this long time problem generates. Practically, one cannot effi-
ciently manage them together. Indeed, when one implements this algorithm,
one sets a positive real γ and then, one approximates the biased target νγ .
In order to get rid of this problem, Lamberton and Pagès (see [14, 15]) re-
place the standard Euler scheme with constant step γ with an Euler scheme
with decreasing step γn. Denoting by (X̄n)n≥1 this Euler scheme and by

(ηk)k≥1 a sequence of weights such that Hn =
∑n

k=1 ηk
n→+∞−→ +∞, they de-

fine a sequence of weighted empirical measures (ν̄n) and show under some
Lyapunov assumptions (but without ellipticity assumptions) that if (ηn/γn)
is nonincreasing,

ν̄n(f) =
1

Hn

n
∑

k=1

ηkf(X̄k−1)
n→+∞−→ ν(f) p.s.,

for every continuous function f with polynomial growth (see [14, 15] for
more details and [17] for extensions).

Remark 3. These two approaches are significantly different. Talay’s
method strongly relies on the homogeneous Markovian structure of the con-
stant step Euler scheme and on its classical “toolbox” (irreducibility, positive
recurrence, . . . , see, e.g., [18]). Since the Euler scheme with decreasing step
is no longer homogeneous, Lamberton and Pagès develop another method
based on stability of Markov chains and on martingale methods which can
be extended to a nonhomogeneous setting (see [9]). This is why they do not
need any ellipticity assumptions on the coefficients.

1.4. Difficulties induced by the jumps of the Lévy process. In this paper
we adapt the Lamberton and Pagès approach. In order to obtain some similar
results in the case of Lévy driven SDEs, one mainly has two kinds of obstacles
to overcome.

From a dynamical point of view, the main difficulty comes from the mo-
ments of the jump component. Indeed, by contrast with the case of Brownian
motion, the jump component can have only few moments (stable processes,
e.g.), and it then generates some instability for the SDE.
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The second obstacle appears in the simulation of the Euler scheme. Actu-
ally, only in some very particular cases can the jump component of a Lévy
process be simulated (compound Poisson processes, stable processes, . . .). In
those cases, the Euler scheme [that we call exact Euler scheme and denote
by (A)] can be built by using the true increments of (Zt). Otherwise, one
has to study some approximate Euler schemes where we replace the incre-
ments of Zt with some approximations that can be simulated. The canonical
way for approximating the jump component is to truncate its small jumps.
Let (un)n≥1 be a sequence of positive numbers such that un < 1 and (un)
decreases to 0 and (Y n)n≥1 be the sequence of càdlàg processes defined by

Y n
t =

∑

0<s≤t

∆Ys1{∆Ys∈Dn} − t

∫

Dn

yπ(dy) ∀t≥ 0

with Dn = {y ∈ R
l, un < |y| ≤ 1} and ∆Ys = Ys − Ys− . The process Y n is a

compensated compound Poisson process with parameters λn = π(Dn) and
µn(dy) = 1Dn(y)π(dy)/π(Dn). It converges locally uniformly in L2 to Y ,
that is, for every T > 0,

E

{

sup
0<t≤T

|Yt − Y n
t |2

}

n→+∞−→ 0 (see [4]).(3)

We will denote by Zn the process defined by Zn = Y n + N and by (B)
the Euler Scheme built with its increments. The increments of Zn can be
simulated if λn and the coefficient of the drift term can be calculated, and
if µn can be simulated for all n ∈ N. This is the case for a broad class of
Lévy processes, thanks to classical techniques (rejection method, integral
approximation, . . .). If there exists (un)n≥1 such that the increments of Zn

can be simulated for all n ∈ N, we say that the Lévy measure can be simu-
lated. However, the simulation time of Zn

t depends on the average number of
its jumps, that is, on π(|y|> un)t. When the truncation threshold tends to
0 (this is necessary to approach the true increment of the jump component),
π(|y|> un) explodes as soon as the Lévy measure is not finite (i.e., as soon
as the true jump component is not a compound Poisson process). It implies
that the simulation time of Zn

t explodes for a fixed t. However, thanks to the
decreasing step, it is possible to adapt the time step γn and the truncation
threshold un so that the expectation of the number of jumps at each time
step remains uniformly bounded. Following the same idea, it is also possible
to choose some steps and some truncation thresholds so that the average
number of jumps at each time step tends to 0. In this case, approximating
the true component by the preceding compound Poisson process stopped at
its first jump time (the first time when it jumps) can also be efficient [see
Scheme (C)].
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1.5. Construction of the procedures. Let (γn)n≥1 be a decreasing se-
quence of positive real numbers such that limγn = 0 and Γn =

∑n
k=1 γk →

+∞ when n→ +∞. Let (Un)n≥1 be a sequence of i.i.d. square integrable
centered R

l-valued random variables with ΣU1 = Id. Finally, let (Z̄n)n≥1,
(Z̄B

n )n≥1 and (Z̄C
n )n≥1 be sequences of independent R

l-valued random vari-
ables independent of (Un)n≥1, such that,

Z̄n
(Rl)
= Zγn , Z̄B

n
(Rl)
= Zn

γn
and Z̄C

n
(Rl)
= Zn

γn∧T n ∀n≥ 1,

with T n = inf{s > 0, |∆Zn
s | > 0}. Let x ∈ R

d. The Euler Schemes (A), (B)
and (C) are recursively defined by X̄0 = X̄B

0 = X̄C
0 = x and for every n≥ 1,

X̄n+1 = X̄n + γn+1b(X̄n) +
√
γn+1σ(X̄n)Un+1 + κ(X̄n)Z̄n+1,(A)

X̄B
n+1 = X̄B

n + γn+1b(X̄
B
n ) +

√
γn+1σ(X̄B

n )Un+1 + κ(X̄B
n )Z̄B

n+1,(B)

X̄C
n+1 = X̄C

n + γn+1b(X̄
C
n ) +

√
γn+1σ(X̄C

n )Un+1 + κ(X̄C
n )Z̄C

n+1.(C)

We set Fn = σ(X̄k, k ≤ n), FB
n = σ(X̄B

k , k ≤ n) and FC
n = σ(X̄C

k , k ≤ n). Let
(ηk)k∈N be a sequence of positive numbers such that Hn =

∑n
k=1 ηk → +∞.

For each scheme, we define a sequence of weighted empirical measures by

ν̄n =
1

Hn

n
∑

k=1

ηkδX̄k−1
,

(4)

ν̄B
n =

1

Hn

n
∑

k=1

ηkδX̄B
k−1

and ν̄C
n =

1

Hn

n
∑

k=1

ηkδX̄C
k−1

.

For a function f :Rd 7→ R, (ν̄n(f)) can be recursively computed (so is the
case for the two other schemes). Indeed, we have ν̄1(f) = f(x) and for every
n≥ 1,

ν̄n+1(f) = ν̄n(f) +
ηn+1

Hn+1
(f(X̄n+1)− ν̄n(f)).

Some comments about the approximate Euler schemes. In Scheme (B),
since (un) decreases to 0, we discard fewer and fewer jumps of the true
component when n grows. We will see in Theorem 2 below that this is the
only condition on (un) for the convergence of (ν̄B

n ). This means that we only
need the law of Zn

γn
to be an “asymptotically good approximation” of the law

of Zγn . Yet, as previously mentioned, there is a hidden constraint induced
by the simulation time which is proportional to the average number π(|y|>
un)γn of jumps of Zn on [0, γn]. In practice, we require (π(|y| > un)γn) to
be bounded.

Furthermore, if π(|y| > un)γn → 0 (i.e., the average number of jumps at
each step tends to 0), we will see that the first jump of Zn is all that matters
for the convergence of the empirical measure. This means that Scheme (C)
becomes efficient.
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1.6. Notations. Throughout this paper, every positive real constant is
denoted by C (it may vary from line to line). We denote the usual scalar
product on R

d by 〈·, ·〉 and the Euclidean norm by | · |. For any d× l real
matrix M , we define ‖M‖ = sup{|x|≤1} |Mx|/|x|. For a symmetric d× d real
matrixM , we set λM = max(0, λ1, . . . , λd), where λ1, . . . , λd denote the eigen-
values of M . For every x ∈ R

d,

Mx⊗2 = x∗Mx≤ λM |x|2.(5)

We denote by Cb(R
d) [resp. C0(R

d)] the set of bounded continuous functions
on R

d with values in R (resp. continuous functions that go to 0 at infinity)
and C2

K(Rd), the set of C2-functions on R
d with values in R and compact

support. One says that f is a p-Hölder function on E with values in F (where
E and F are normed vector spaces) if

[f ]p = sup
x,y∈E

‖f(x)− f(y)‖F

‖x− y‖p
E

<+∞.

Finally, we say that V :Rd 7→ R
∗
+ is an EQ-function (Essentially Quadratic

function) if V is C2, limV (x) = +∞ when |x| → +∞, |∇V | ≤ C
√
V and

D2V is bounded. [In particular, V given by V (x) = ρ+ Sx⊗2, where ρ is a
positive number and S is a definite and positive symmetric d×d real matrix,
is an EQ-function.] For p > 0, one checks that ‖D2(V p)‖ ≤CV p−1, that V p

is a 2p-Hölder function if p ≤ 1/2, and that V p−1∇V is a (2p − 1)-Hölder
function if p ∈ (1/2,1) (see Lemma 3). Hence, λp and cp given by

λp :=
1

2p
sup
x∈Rd

λV 1−pD2(V p)(x) and

(6)

cp :=







[

V p

p

]

2p
, if p ∈ (0,1/2],

[V p−1∇V ]2p−1, if p ∈ (1/2,1]

are finite positive numbers.

1.7. Organization of the paper. The main results (Theorems 2 and 3) are
stated in Section 2 and are proved in Sections 3, 4 and 5. First, we focus
on the proof of these theorems for the exact Euler Scheme (A): in Section
3 we prove the almost sure tightness of (ν̄n) and in Section 4 we establish
that every weak limiting distribution of (ν̄n) is invariant for the SDE (1).
Second, in Section 5 we point out the main differences which arise in the
proofs when considering the approximate Euler Schemes (B) and (C). In
Section 6 we show that the almost sure central limit theorem for symmetric
stable processes (see [3]) can be obtained as a consequence of our main
theorems. Finally, in Section 7 we simulate the procedure on some concrete
examples.
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2. Main results. In Theorem 2 we obtain a result under simple condi-
tions on the steps and on the weights. In Theorem 3 we show that, under
more stringent conditions on the steps and on the weights, some assump-
tions on the coefficients of the SDE can be relaxed. Let us introduce the
joint assumptions. First, we state some assumptions on the moments of the
Lévy measure at +∞ and 0:

(H1
p) :

∫

|y|>1
π(dy)|y|2p <+∞, (H2

q) :

∫

|y|≤1
π(dy)|y|2q <+∞,

where p is a positive real number and q ∈ [0,1].
Assumption (H1

p) is satisfied if, and only if, E|Zt|2p <+∞ for every t≥
0 (see [1], Theorem 6.1). By the compensation formula (see [4]), (H2

q) is

satisfied if and only if E{∑0<s≤t |∆Yt|2q}<+∞, that is, if and only if (Yt)

has locally 2q-integrable variation. We recall that (H2
q) is always satisfied for

q = 1 since
∫

{|y|≤1} |y|2π(dy)<∞ for any Lévy measure π.
Now, we introduce the Lyapunov assumption on the coefficients of the

SDE and on π denoted by (Sa,p,q). The parameter a specifies the intensity

of the mean-reversion. We denote by b̃ the function defined by

b̃=























b, if p≤ 1/2 ≤ q,

b− κ

∫

{|y|≤1}
yπ(dy), if p, q ≤ 1/2,

b+ κ

∫

{|y|>1}
yπ(dy), if p > 1/2.

The function b̃ plays the role of the global drift of the dynamical system
resulting from b and from the jump component (see Remark 4 for more
precisions). Let a ∈ (0,1], p > 0 and q ∈ [0,1].

Assumption (Sa,p,q). There exists an EQ-function V such that:
1. Growth control : |b|2 ≤CV a,

{

Tr(σσ∗) + ‖κ‖2(p∨q) ≤CV a+p−1, if p < 1,
Tr(σσ∗) + ‖κ‖2 ≤CV a, if p≥ 1.

2. Mean-reversion: there exist β ∈ R, α> 0 such that, 〈∇V, b̃〉+φp,q(σ,κ,π,
V )≤ β − αV a, where φp,q is given by

φp,q(σ,κ,π,V )

=















cpm2p,π‖κ‖2pV 1−p1q≤p, if p < 1,
λ1(Tr(σσ∗) +m2,π‖κ‖2), if p= 1,

dpλp

(

Tr(σσ∗) +m2,π‖κ‖2 + epm2p,π
‖κ‖2p

V p−1

)

, if p > 1,

with mr,π =
∫ |y|rπ(dy), dp = 2(2(p−1)−1)+ , cp and λp given by (6), and ep =

[
√
V ]

2(p−1)

1 .
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Assumption (Sa,p,q).2 can be viewed as a discretized version of “AV p ≤
β − αV a+p−1,” where A is the infinitesimal generator of (Xt) defined on a
subset D(A) of C2(Rd) by

Af(x) = 〈∇f, b〉(x) + 1
2 Tr(σ∗D2fσ)(x)

(7)

+

∫

(f(x+ κ(x)y)− f(x)− 〈∇f(x), κ(x)y〉1{|y|≤1})π(dy).

Furthermore, one can check that if Assumption (Sa,p,q) is fulfilled, then there
exist β̄ ∈ R and ᾱ > 0 such that “AV p ≤ β̄ − ᾱV a+p−1.” This means that if
V is the function whose existence is required in Assumption (Sa,p,q), then
V p is a Lyapunov function for the stochastic process (Xt) and for the Euler
scheme (X̄n).

The left-hand side of (Sa,p,q).2 is the sum of two antagonistic compo-

nents: 〈∇V, b̃〉 produces the mean-reverting effect (see Example 1 for con-
crete cases), whereas the positive function φp,q expresses the noise induced
by the Brownian and jump components. In particular, if the following tighter
growth control condition holds,

|b|2 ≤CV a,







Tr(σσ∗(x))
|x|→+∞

= o(V a−(1−p)+(x)),

‖κ(x)‖2 |x|→+∞
= o(V ηa,p,q(x)),

(8)

with ηa,p,q = (p ∨ q)−1(a + p − 1) if p ≤ 1 and ηa,p,q = a if p > 1, then the
term φp,q becomes negligible and the mean-reversion assumption becomes

〈∇V, b̃〉 ≤ β − αV a.

Remark 4. If we had chosen to compensate the jumps smaller than
h > 0 rather than h = 1, the corresponding assumption would have been
(Sh

a,p,q), where (Sh
a,p,q) is obtained from (Sa,p,q) by replacing b with bh and b̃

with b̃h defined by

b̃h =























bh, if p≤ 1/2 ≤ q,

bh − κ

∫

{|y|≤h}
yπ(dy), if p, q ≤ 1/2,

bh + κ

∫

{|y|>h}
yπ(dy), if p > 1/2.

One can check that, for every h > 0, (Sh
a,p,q) ⇐⇒ (Sa,p,q). This means that

these assumptions do not depend on the choice of the truncation parameter
h. Indeed, first, it is clear that (Sh

a,p,q).1 ⇐⇒ (Sa,p,q).1. Second, when p > 1/2

or p, q ≤ 1/2, (Sh
a,p,q).2 ⇐⇒ (Sa,p,q).2 because in these cases, b̃h = b̃ for every



10 F. PANLOUP

h > 0. This can be explained by the existence of a formulation of the SDE
that does not depend on h. Actually, when p > 1/2, we can rewrite the SDE

(2) by replacing bh with b̃h and, Zh
t with Ẑh

t = Zh
t − t

∫

{|y|>h} yπ(dy), that

is, we can compensate the big jumps. Since (Ẑh
t ) = (Z∞

t ) for every h > 0,
it follows that b̃h = b̃ (= b∞) for every h > 0. There also exists an intrinsic
formulation when p, q ≤ 1/2 because in this case, we can replace bh with b̃h

and Zh
t with Žh

t = Zh
t + t

∫

{|y|≤h} yπ(dy) (now, we do not compensate any

jumps). Since (Žh
t ) = (Z0

t ) for every h > 0, b̃h = b̃ (= b0). These formulations
can be considered as the natural formulations of the dynamical system in
these settings.

When p≤ 1/2< q, there is no intrinsic formulation of the SDE (even if π
is symmetrical). Since bh depends on h, it appears that the left-hand side of
(Sh

a,p,q).2 also depends on h. However, under the growth assumption on κ,

one can check that 〈∇V, bh〉 = 〈∇V, b〉+ o(V a) and it follows that the same
conclusion still holds in this case.

We now state our first main result.

Theorem 2. Let a ∈ (0,1], p > 0 and q ∈ [0,1] such that (H1
p), (H2

q) and

(Sa,p,q) are satisfied. Suppose that E{|U1|2(p∨1)}<+∞ and that the sequence
(ηn/γn)n≥1 is nonincreasing. Then:

(1) If p/2 + a− 1> 0, the sequence (ν̄n)n≥1 is almost surely tight. More-

over, if κ(x)
|x|→+∞

= o(|x|) and Tr(σσ∗) + ‖κ‖2q ≤ CV p/2+a−1, then every
weak limit of this sequence is an invariant probability for the SDE (1). In
particular, if (Xt)t≥0 admits a unique invariant probability ν, for every con-
tinuous function f such that f = o(V p/2+a−1), limn→∞ ν̄n(f) = ν(f) a.s.

(2) The same result holds for (ν̄B
n )n≥1.

(3) The same result holds for (ν̄C
n )n≥1 under the additional condition

π(|y|>un)γn
n→+∞−→ 0.(9)

We present below some examples which fulfill the conditions of Theorem
2. In the first we suppose that the dynamical system has a radial drift term
and a noise generated by a centered jump Lévy process with a Lévy measure
close to that of a symmetric stable process. In the second we suppose that
the SDE is only driven by a jump Lévy process, but we suppose that it is
not centered. This implies that even if the SDE has seemingly no drift term,
a mean-reverting assumption can be still satisfied.

Example 1. Let φ and ψ be positive, bounded and continuous functions
on R

d such that

φ(x) = φ(−x) ∀x ∈ R
d,
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φ= min
Rd

φ(x)> 0 and ψ = inf
{|x|>1}

ψ(x)> 0.

Consider (Zt) defined as in the SDE (1) with Lévy measure π given by
π(dy) = φ(y)/|y|d+rλd(dy), where r ∈ (0,2). When φ=C > 0, the increments
of (Zt) can be exactly simulated because (Zt) is a symmetric R

d-stable
process with order r. In the other cases, Z̄B

n and Z̄C
n can be simulated by

the rejection method since the density of π is dominated by the density of
a Pareto’s law.

Let ρ∈ [0,2) and b be a continuous function defined by b(x) = −ψ(x)x/|x|ρ.
We consider (Xt) solution to

dXt = b(Xt−)dt+ κ(Xt−)dZt,(10)

where κ is a continuous function such that ‖κ(x)‖2 ≤C(1+ |x|2)ǫ with ǫ≤ 1.
A natural candidate for the function V is V (x) = 1+ |x|2. Indeed, since b̃= b
[because φ(y) = φ(−y)], one checks that there exists β ∈ R such that

〈∇V (x), b̃(x)〉 = −2ψ(x)|x|2−ρ ≤ β −ψV (x)1−ρ/2.

We set a := 1− ρ/2 and

∆(r) := {(p, q) ∈ (0,+∞)× [0,1], (H1
p) and (H2

q) hold}.

We have ∆(r) = (0, r/2)× (r/2,1). By (8), for every (p, q) ∈ ∆(r), (Sa,p,q) is
satisfied if ǫ < (p+a− 1)/q = (p− ρ/2)/q. Hence, (ν̄n) is tight if there exists
(p, q) ∈ ∆(r) such that p/2+a−1> 0, that is, if p > ρ, and (2p−ρ)/(2q)> ǫ.
If, moreover, ‖κ‖2q ≤ C(1 + |x|2)p/2+a−1, that is, if (p − ρ)/(2q) ≤ ǫ, every
weak limit ν is invariant for the SDE (10).

It follows that if the invariant distribution ν is unique, ν̄n
L

=⇒ ν a.s. as soon
as 2ρ < r and ǫ < sup{(p− ρ)/(2q), (p, q) ∈ ∆(r)}= 1/2− ρ/r. Furthermore,
ν̄n(f) → ν(f) a.s. for every continuous function f satisfying f(x) ≤ C(1 +
|x|)θ with θ ∈ [0, (r/2− ρ)/2).

Example 2. Let π be a Lévy measure on R such that
∫

|y|≤1 |y|π(dy)<

+∞,
∫

|y|>1 |y|2pπ(dy)<+∞ with p≥ 2 and
∫

yπ(dy)> 0. Let (Z0
t ) be a real

Lévy process with characteristic function given for every t≥ 0 by

E{ei〈u,Z0
t 〉} = exp

[

t

(
∫

(ei〈u,y〉 − 1)π(dy)

)]

.

For instance, (Z0
t ) can be a subordinator with no drift term. We assume

that κ(x) = −ψ(x)x/|x|ρ with ρ ∈ [0,2) and ψ defined as in the preceding
example. We then consider the SDE:

dXt = κ(Xt−)dZ0
t = b(Xt−)dt+ κ(Xt−)dZt,
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with b(x) = κ(x)
∫

{|y|≤1} yπ(dy) and Zt = Z0
t − t

∫

{|y|≤1} yπ(dy). Since p >

1/2, b̃(x) = b(x)+κ(x)
∫

{|y|>1} yπ(dy) = κ(x)
∫

yπ(dy). Setting V (x) = 1+x2,
one checks that there exists β ∈ R such that

V ′(x)b̃(x) = −2ψ(x)

∫

yπ(dy)|x|2−ρ ≤ β − ψ

∫

yπ(dy)V (x)1−ρ/2.

We set a = 1 − ρ/2. Let p ≥ 2 and q ≤ 1/2 such that (H1
p) and (H2

q) hold.

First, checking that as soon as ρ > 0, ‖κ(x)‖2 = o(1+ |x|2)a when |x| →+∞,
we derive from (8) that (Sa,p,q) is satisfied as soon as ρ ∈ (0,2). Second, for
every p ≥ 2, q ≤ 1 and a ∈ (0,1), one can check that p/2 + a − 1 > 0 and
‖κ(x)‖2q ≤C(1+ |x|2)p/2+a−1. Hence, Theorem 2 applies for every ρ ∈ (0,2).

The interest of Theorem 2 lies in the facility with which it can be put to
use in concrete situations. For instance, in Scheme (A), we only have to take
a sequence (γn)n≥1 decreasing to 0, with infinite sum and ηn = γn. The next
theorem (Theorem 3) requires tougher conditions on the sequences (γn) and
(ηn), but it can be applied to SDEs where the coefficients do not necessarily
verify all conditions of Theorem 2. It broadens the class of SDEs for which
we can find an efficient procedure for the approximation of the invariant
measure.

Theorem 3. Let a ∈ (0,1], p > 0 and q ∈ [0,1] such that (H1
p), (H2

q) and

(Sa,p,q) are satisfied. Suppose that E{|U1|2(p∨1)}<+∞. Then:

(1) Let s ∈ (1,2] satisfying the following additional conditions when p >
1/2:















s >
2p

2p+ (a− 1)(2p− 1)/p
, if

1

2
< p≤ 1,

s >
2p

2p+ a− 1
, if p≥ 1.

(11)

If p/s+a− 1> 0, there exist some sequences (γn)n≥1 and (ηn)n≥1 such that

(ν̄n)n≥1 is almost surely tight. Moreover, if κ(x)
|x|→+∞

= o(|x|) and Tr(σσ∗)+
‖κ‖2q ≤ CV p/s+a−1, then every weak limit of this sequence is an invariant
probability for the SDE (1). In particular, if (Xt)t≥0 admits a unique invari-
ant probability ν, for every continuous function f such that f = o(V p/s+a−1),
limn→∞ ν̄n(f) = ν(f) a.s.

(2) The same result holds for (ν̄B
n )n≥1.

(3) The same result holds for (ν̄C
n )n≥1 under the additional condition (9).

Remark 5. The sequences (ηn)n≥1 and (γn)n≥1 must verify an explicit
condition given in Proposition 1 below (see Remark 6 for a version adapted
to polynomial steps and weights).
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In the following example, we consider the same class of SDEs as in Ex-
ample 1 in the nonintegrable case (i.e., r ≤ 1). One can observe that the
mean-reversion condition and the growth condition on κ and on the func-
tions f whose the procedure converges can be relaxed. We also give some
explicit polynomial weights and steps for which Theorem 3 applies in this
case.

Example 3. Let ρ ∈ [0,2) and r ∈ (0,1], let b and κ be continuous
functions defined as in Example 1. Consider (Xt) solution to the SDE (10)
and assume that the invariant measure ν is unique. For s ∈ (1,2], denote by
(γn,s) and (ηn,s) some sequences of steps and weights satisfying γn,s =Cn−r1,
ηn,s =Cn−r2 with r1 ≤ r2 and

0< r1 < 2

(

1− 1

s

)

and r2 < 1 or 0< r1 ≤ 2

(

1− 1

s

)

and r2 = 1.

Then, for these choices of steps and weights, ν̄n
L

=⇒ ν a.s. as soon as sρ < r
and ǫ ∈ [0,1/s− ρ/r) (this improves the condition: 2ρ < r and ǫ ∈ [0,1/2 −
ρ/r) of Example 1). Furthermore, ν̄n(f) → ν(f) a.s. for every continuous
function f satisfying |f(x)| ≤C(1 + |x|)θ with θ ∈ [0, (r/s− ρ)/2) (this im-
proves the condition: θ ∈ [0, (r/2− ρ)/2) of Example 1).

3. Almost sure tightness of (ν̄n(w,dx))n∈N. The main result of this
section is Proposition 1. We need to introduce the function fa,p defined for
all s ∈ (1,2] by

fa,p(s) =







s, if s≥ 2p,
p+ a− 1

p/s+ (a− 1)/(2(p ∧ 1))
∧ s, if s < 2p.(12)

Assume that p + a− 1 > 0. Then, s 7→ fa,p(s) is a nondecreasing function
which satisfies f1,p(s) = s for all p > 0 and fa,p(2) = 2. Note that fa,p(s)> 1
if and only if s satisfies assumption (11).

Proposition 1. Let a ∈ (0,1], p > 0 and q ∈ (0,1] such that (H1
p), (H2

q)

and (Sa,p,q) are satisfied. Assume that E{|U1|2(p∨1)}<+∞ and (ηn/γn)n≥1

is nonincreasing.

(1) Then,

sup
n≥1

ν̄n(V p/2+a−1)<+∞ a.s.

Consequently, if p
2 + a− 1> 0, the sequence (ν̄n)n∈N is a.s. tight.
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(2) Let s ∈ (1,2) such that assumption (11) is satisfied. Assume that
(ηn)n≥1 and (γn)n≥1 are such that

(

1

γn

(

ηn

Hn
√
γn

)fa,p(s))

is nonincreasing and
∑

n≥1

(

ηn

Hn
√
γn

)fa,p(s)

<+∞.

(13)
Then, supn≥1 ν̄n(V p/s+a−1)<+∞ a.s. and the sequence (ν̄n)n∈N is a.s. tight
as soon as p/s+ a− 1> 0.

Remark 6. If γn = Cn−r1 and ηn =Cn−r2 with r1 ≤ r2, then assump-
tion (13) reads

r2 < 1 and 0< r1 < r̄1 := 2

(

1− 1

fa,p(s)

)

or

(14)
r2 = 1 and 0< r1 ≤ r̄1.

The proof of Proposition 1 is organized as follows: first, in Section 3.1 (see
Proposition 2) we establish a fundamental recursive control of the sequence
(V p(X̄n)): we show that (Ra,p): There exist n0 ∈ N, α′ > 0, β′ > 0 such that
∀n≥ n0,

E{V p(X̄n+1)|Fn} ≤ V p(X̄n) + γn+1V
p−1(X̄n)(β′ −α′V a(X̄n)).(15)

For this step, we rely on Lemma 2 that provides a control of the moments
of the increments of the jump component in terms of p and q.

Second, in Section 3.3 we make use of martingale techniques in order to
derive some consequences from (Ra,p). In Lemma 5 we establish a Lp-control
of the Euler scheme with arguments close to [15]. This control is fundamental
for the proof of Corollary 1 where we show the following property:

(Cp,s): There exist ρ ∈ (1,2] and a sequence (πn) of Fn-measurable random
variables such that

∑

n≥1

(

ηn

Hnγn

)ρ

E{|V p/s(X̄n)− πn−1|ρ}<+∞.(16)

This step is used to obtain a Lρ-martingale control (see proof of Lemma 1).
We will see in the proof of Corollary 1 that the choice of the sequence (πn)
depends on p and q. In particular, even if q does not appear in (Cp,s), this
assumption indirectly depends on this parameter. The same remark holds
for (Ra,p). In the following lemma, we show that these two steps are all what
we have to show for the proof of Proposition 1.

Lemma 1. Let p > 0, a ∈ (0,1] and s ∈ (1,2] such that (H1
p), (Ra,p) and

(Cp,s) are fulfilled. Assume that E{|U1|2(p∨1)} < +∞ and that (ηn/γn) is
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nonincreasing. Then,

sup
n≥1

ν̄n(V p/s+a−1)<+∞ a.s.(17)

and the sequence (ν̄n)n≥1 is a.s. tight as soon as p/s+ a− 1> 0.

Proof. By a convexity argument (see Lemma 3 of [15]), one shows that
(Ra,p) =⇒ (Ra,p̄) for all p̄ ∈ (0, p]. Hence, for all s ∈ (1,2], there exists n0 ∈ N,

α̂ > 0 and β̂ > 0 such that ∀k≥ n0,

E{V p/s(X̄k)|Fk−1} ≤ V p/s(X̄k−1) + γkV
p/s−1(X̄k−1)(β̂ − α̂V a(X̄k−1)).(18)

For R > 0, set ε(R) = sup{|x|>R}V
−a(x) and M(R) = sup{|x|≤R}V

p/s−1(x).
We have

V p/s−1(x) ≤ ε(R)V p/s+a−1(x) +M(R).(19)

Since V (x) → +∞ when |x| → +∞ (resp. since V is bounded on every
compact set), ε(R) → 0 when R → +∞ [resp. M(R) is finite for every
R > 0]. Hence, for every ε > 0, there exists Mε > 0 such that V p/s−1 ≤
εV p/s+a−1 +Mε. By setting ε= α̂/(2β̂), α̃= α̂/2 and β̃ = β̂Mε, we deduce

that V p/s−1(β̂ − α̂V a)≤ β̃ − α̃V p/s+a−1. Hence, we derive from (18) that

V p/s+a−1(X̄k−1)≤
V p/s(X̄k−1)−E{V p/s(X̄k)|Fk−1}

α̃γk
+
β̃

α̃
∀k ≥ n0.

It follows that (17) holds if

sup
n≥n0+1

(

1

Hn

n
∑

k=n0+1

ηk

γk
(V p/s(X̄k−1)−E{V p/s(X̄k)|Fk−1})

)

(20)
<+∞ a.s.

We then prove (20). We decompose the above sum as follows:

1

Hn

n
∑

k=n0+1

ηk

γk
(V p/s(X̄k−1)− E{V p/s(X̄k)|Fk−1})

= − 1

Hn

n
∑

k=n0+1

ηk

γk
∆V p/s(X̄k)

+
1

Hn

n
∑

k=n0+1

ηk

γk
(V p/s(X̄k)−E{V p/s(X̄k)|Fk−1}),
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where ∆V p/s(X̄k) = V p/s(X̄k)−V p/s(X̄k−1). First, an Abel’s transform yields

− 1

Hn

n
∑

k=n0+1

ηk

γk
∆V p/s(X̄k) =

1

Hn

(

ηn0

γn0

V p/s(X̄n0)−
ηn

γn
V p/s(X̄n)

)

+
1

Hn

(

n
∑

k=n0+1

(

ηk

γk
− ηk−1

γk−1

)

V p/s(X̄k−1)

)

≤ ηn0

Hnγn0

V p/s(X̄n0),

where we used in the last inequality that (ηn/γn) is nonincreasing. Hence,

since Hn
n→+∞−→ +∞ and

ηn0
Hnγn0

V p/s(X̄n0)
n→+∞−→ 0 a.s.,

sup
n≥n0

(

− 1

Hn

n
∑

k=n0+1

ηk

γk
∆V p/s(X̄k)

)

<+∞ a.s.(21)

Second, one denotes by (Mn)n∈N the martingale defined by

Mn =
n
∑

k=1

ηk

Hkγk
(V p/s(X̄k)−E{V p/s(X̄k)|Fk−1}).(22)

Let ρ ∈ (1,2] and (πk) be a sequence of Fk-measurable random variables
such that (16) holds. We derive from the elementary inequality |u+ v|ρ ≤
2ρ−1(|u|ρ + |v|ρ) that

E{|V p/s(X̄k)−E{V p/s(X̄k)|Fk−1}|ρ}
≤CE{|V p/s(X̄k)− πk−1|ρ}+CE{|E{(πk−1 − V p/s(X̄k))|Fk−1}|ρ}
≤CE{|V p/s(X̄k)− πk−1|ρ},

thanks to the Jensen inequality. Hence, (Cp,s) yields
∑

k≥1 E{|∆Mk|ρ}<+∞
a.s. Since ρ > 1, it follows from Chow’s theorem (see [11]) that Mn

n→∞−→ M∞
a.s. where M∞ is finite a.s. Then, Kronecker’s lemma yields

1

Hn

n
∑

k=n0+1

ηk

γk
(V p/s(X̄k)−E{V p/s(X̄k)|Fk−1}) n→∞−→ 0 a.s.(23)

Hence, (20) follows from (21) and (23). Finally, since lim|x|→+∞V p/s+a−1(x) =
+∞ when p/s+ a− 1> 0, we derive from a classical tightness criteria (see,
e.g., [9], page 41) that (ν̄n)n≥1 is a.s. tight as soon as p/s+ a− 1> 0. �

3.1. A recursive stability relation.

Proposition 2. Let p > 0, q ∈ [0,1] and a ∈ (0,1]. Assume (H1
p), (H2

q)

and (Sa,p,q). If, moreover, E{|U1|2(p∨1)}<+∞, then (Ra,p) holds.
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The idea of the proof of Proposition 2 is to obtain an inequality of the
following type:

E{V p(X̄n+1)− V p(X̄n)|Fn} ≤ γn+1pV
p−1(X̄n)Φ(X̄n) +Rn,

where Φ = 〈∇V, b̃〉+ φp,q(σ,κ,π,V ) [see (Sa,p,q).2] and Rn is asymptotically
negligible in a sense made clear in the proof. To this end, we begin by three
lemmas. In Lemma 2 we study the behavior of the moments of (Zt) near
0. Then, in Lemma 3, we state some properties of the derivatives of V p in
terms of p and in the last one (Lemma 4) we control the contribution of the
jump component on the conditional expectation (conditioned by Fn) of the
increment V p(X̄n+1)− V p(X̄n).

Lemma 2. (i) Let p > 0 such that (H1
p) holds. Then, for every h > 0,

there exists a locally bounded function ψh such that

∀t≥ 0 E{|Nh
t |2p}=

∫

|y|>h
|y|2pπ(dy)(t+ψh(t)t2).(24)

(ii) Let q ∈ [0,1] such that (H2
q) holds. Then, for every h > 0,



















E

{
∣

∣

∣

∣

Y h
t + t

∫

|y|≤h
yπ(dy)

∣

∣

∣

∣

2q}

≤ t

∫

|y|≤h
|y|2qπ(dy), if q ≤ 1/2,

E{|Y h
t |2q} ≤Cqt

∫

|y|≤h
|y|2qπ(dy), if q ∈ (1/2,1].

(iii) Let p ∈ [1,+∞) such that (H1
p) holds. Then, there exists η > 1 such

that, for every T > 0, for every ε > 0, there exists Cε,T,p > 0 such that,

∀t∈ [0, T ] E{|Ẑt|2p} ≤ t

(
∫

|y|2pπ(dy) + ε

)

+Cε,T,pt
η,

where (Ẑt) is the compensated jumps process defined by Ẑt = Zt−t
∫

|y|>1 yπ(dy).

In particular, E|Ẑt|2 = t
∫ |y|2π(dy).

Remark 7. In this lemma we obtain, in particular, a control of the ex-
pansion of t 7→ E{|Dt|r} in the neighborhood of 0 (where D denotes one of
the above jump components and r, a positive number). We have the fol-
lowing type of inequality: E{|Dt|r} ≤ crt+O(tη), where cr is a nonnegative
real constant and η > 1. In the first and in the last inequality, we minimize
this value because it has a direct impact on the coefficients of the func-
tion φp,q and then, on the mean-reverting assumption (see Lemma 4 for
details). Note that we cannot have cr = 0 in the inequalities of Lemma 2.
Indeed, according to the Kolmogorov criterion, a Lévy process D that satis-
fies E{|Dt|r} ≤Ctη in the neighborhood of 0 is pathwise continuous [for the
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Brownian motion, cr = 0 as soon as r > 2 since E{|Wt|r} = o(tr/2)]. When
p > 1, this feature generates a specific contribution of the jump component
on the mean-reverting assumption ((Sa,p,q).2). This contribution appears in
φp,q where there is an additional term of order 2p coming only from the
jump component.

Proof of Lemma 2. (i) (Nh
t )t≥0 is a compound Poisson process with

parameters λh = π(|y| > h) and µh(dy) = 1{|y|>h}π(dy)/π(|y|> h). Hence,

(Nh
t ) can be written as follows: Nh

t =
∑

n≥1Rn1Tn≤t, where (Rn)n≥1 is a

sequence of i.i.d. r.v. with law µh and (Tn)n∈N is the sequence of the jump
times of a Poisson process with parameter λh independent of (Rn)n≥1. We
have

E{|Nh
t |2p} =

∑

n≥1

E

{∣

∣

∣

∣

∣

n
∑

i=1

Ri

∣

∣

∣

∣

∣

2p}

e−λht (λht)
n

n!
= λhtE{|R1|2p}Fλh

(t)

where Fλ(t) = e−λt
∑

n≥0

E{|∑n+1
i=1 Ri|2p}

E{|R1|2p}
(λt)n

(n+ 1)!
.

By the elementary inequality (this inequality will be usually needed in the
sequel for the control of the moments of some sums of jumps)

∀a1, . . . , an ∈ R
l,∀α> 0

∣

∣

∣

∣

∣

n
∑

i=1

ai

∣

∣

∣

∣

∣

α

≤ n(α−1)+
n
∑

i=1

|ai|α,(25)

used with α= 2p, we obtain

E{|∑n+1
i=1 Ri|2p}

(n+ 1)!E{|R1|2p} ≤ E{(n+ 1)(2p−1)+
∑n+1

i=1 |Ri|2p}
(n+ 1)!E{|R1|2p} =

(n+ 1)(2p−1)+

n!
.

It follows that Fλh
is an analytic function on R such that Fλh

(0) = 1. There-
fore,

Fλh
(t) = 1 + tψh(t) with |ψh(t)| ≤C(p,h,λh) ∀t∈ [0, T ].

Since E{|R1|2p}= 1
λh

∫

{|y|>h} |y|2pπ(dy), the first equality is obvious.

(ii) If
∫

|y|≤h |y|2qπ(dy)<+∞ with q ≤ 1/2, then Y h has locally bounded

variations and Y h
t + t

∫

|y|≤h yπ(dy) =
∑

0<s≤t ∆Y
h
t . Inequality (25) with α=

2q and the compensation formula yield

E

{∣

∣

∣

∣

Y h
t + t

∫

|y|≤h
yπ(dy)

∣

∣

∣

∣

2q}

≤ E

{

∑

0<s≤t

|∆Y h
t |2q

}

= t

∫

y≤h
|y|2qπ(dy).
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Now, let q ∈ (1/2,1]. As Y h is a martingale, we derive from the Burkholder–
Davis–Gundy (BDG) inequality (see [4]) that

E{|Y h
t |2q} ≤CqE

{(

∑

0<s≤t

|∆Y h
s |2
)q}

.

The second inequality follows from inequality (25) with α= q and from the
compensation formula.

(iii) One first considers case p = 1. The process (Mt) defined by Mt =

|Ẑt|2−t
∫ |y|2π(dy) is a martingale. Then, in particular, E{|Ẑt|2}= t

∫ |y|2π(dy).
Suppose now that p > 1. In order to simplify the notation, we assume that
T < 1. The BDG inequality yields

E{|Y h
t |2p} ≤CpE

{(

∑

0<s≤t

|∆Y h
s |2
)p}

.(26)

For every integer k ≥ 1, Mt,k :=
∑

0<s≤t |∆Y h
s )|2k − t

∫

{|y|≤h} |y|2
k
π(dy) is

a martingale. By inequality (25) and the BDG inequality applied to (Mt,k),
we obtain

E

{(

∑

0<s≤t

|∆Y h
s |2k

)p/2k−1}

≤C

(

E{|Mt,k|p/2k−1}+

(

t

∫

{|y|≤h}
|y|2k

π(dy)

)p/2k−1)

≤C

(

E

{(

∑

0<s≤t

|∆Y h
s |2k+1

)p/2k}

+

(

t

∫

{|y|≤h}
|y|2k

π(dy)

)p/2k−1)

.

Set k0 = inf{k ≥ 1,2k ≥ p}. Iterating the preceding relation yields

E

{(

∑

0<s≤t

|∆Y h
s |2
)p}

≤ CE

{(

∑

0<s≤t

|∆Y h
s |2k0+1

)p/2k0}

+C
k0
∑

k=1

(

t

∫

{|y|≤h}
|y|2k

π(dy)

)p/2k−1

.

By construction, p/2k0 ≤ 1. We then derive from inequality (25) with α =
p/2k0 , from the compensation formula and from (26) that

E{|Y h
t |2p} ≤CpE

{(

∑

0<s≤t

|∆Y h
s |2
)p}

(27)

≤Cpt

∫

{|y|≤h}
|y|2pπ(dy) +Cp,ht

η1
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with η1 = p/2k0−1 > 1. We now consider (Ẑt). For every h ∈ (0,+∞), we

have Ẑt = Y h
t + N̂h

t , where N̂h
t =Nh

t − t
∫

|y|>h yπ(dy). Using the elementary
inequality,

∀u, v ∈ R+,∀α≥ 1 (u+ v)α ≤ uα +α2α−1(uα−1v+ vα),(28)

we derive from (24) that

∀α> 1 E{|N̂h
t |α} ≤ t

∫

|y|>h
|y|απ(dy) +Cα,ht

α∧2.(29)

Using (28) and the independence between (N̂h
t ) and (Y h

t ) also yields

E{|Ẑt|2p} ≤ E{|N̂h
t |2p}+C(E{|N̂h

t |}2p−1
E{|Y h

t |}+ E{|Y h
t |2p}).

Since E{|Y h
t |2} = t

∫

{|y|≤h} |y|2π(dy), we derive from the Jensen inequality

that E{|Y h
t |} ≤ Ch

√
t. Hence, by (27) and (29), it follows that, for every

h > 0 and t≤ T ,

E{|Ẑt|2p} ≤ t

∫

{|y|>h}
|y|2pπ(dy) +C1

p,ht
3/2∧η1 +C2

p t

∫

{|y|≤h}
|y|2pπ(dy)

with η1 > 1, C1
p,h > 0 and C2

p > 0. Let ε be a positive number. As C2
p does not

depend on h, and
∫

|y|≤h |y|2pπ(dy) → 0 when h→ 0, we can choose hε > 0

such that C2
p

∫

|y|≤hε
|y|2pπ(dy) ≤ ε. That yields the announced inequality.

�

Lemma 3. Let V be an EQ-function defined on R
d. Then:

(a) If p ∈ [0,1/2], V p is α-Hölder for any α ∈ [2p,1] and if p ∈ (0,1],
∇(V p) is α-Hölder for any α ∈ [2p− 1,1] ∩ (0,1].

(b) Let x, y ∈ R
d and ξ ∈ [x,x + y] and set v = min{V (x), x ∈ R

d}. If
p≤ 1,

1
2D

2(V p)(ξ)y⊗2 ≤ pvp−1λp|y|2.(30)

If, moreover, |y| ≤ (1− ε)
√

V (x)

[
√

V ]1
with ε ∈ (0,1], then,

1
2D

2(V p)(ξ)y⊗2 ≤ pλpε
2(p−1)V p−1(x)|y|2.(31)

If p > 1,

1
2D

2(V p)(ξ)y⊗2 ≤ pλp2
(2(p−1)−1)+(V p−1(x) + [

√
V ]1|y|2(p−1))|y|2.(32)

Proof. Consider a continuous function f :Rd 7→ R. Let α ∈ (0,1] such
that |f |1/α is Lipschitz. Then, f is an α-Hölder function. This argument
yields (a) (see [21] for details). Now, let us pass to (b). We have

D2(V p) = pV p−1
(

D2V + (p− 1)
∇V ⊗∇V

V

)

,(33)
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where (∇V ⊗ ∇V )i,j = (∇V )i(∇V )j . Since V p−1 ≤ vp−1 if p ≤ 1, we de-
rive (30) from relations (5) and (6). For (31), we consider ξ = x+ θy with

θ ∈ [0,1] and |y| ≤ (1− ε)
√

V (x)

[
√

V ]1
. As

√
V is a Lipschitz function,

√
V (ξ)≥

√
V (x)− [

√
V ]1|y| ≥ ε

√
V (x) =⇒ V p−1(ξ) ≤ ε2(p−1)V p−1(x).

Hence, inequality (31) follows from (6). If p > 1,
√
V (ξ) ≤

√
V (x) + [

√
V ]1|y| =⇒ V p−1(ξ)≤ (

√
V (x) + [

√
V ]1|y|)

2(p−1).

We then derive (32) from (25) [with α= 2(p− 1) and n= 2] and from (6).
�

Lemma 4. Let p ∈ (0,1), q ∈ [0,1] and a ∈ (0,1]. Assume (H1
p), (H2

q)
and (Sa,p,q).1. Then, for every ε > 0, there exists hε ∈ [0,+∞], Tε > 0 and
Cε > 0 such that for every x, z ∈ R

d, for every t≤ Tε,

E{V p(z + κ(x)Zhε
t )− V p(z)}

(34)

≤ t

(

pcp

∫

|y|2pπ(dy)1{q≤p}‖κ(x)‖2p + εV p+a−1(x) +Cε

)

,

with cp given by (6), hε ∈ (0,1] if p ≤ 1/2 < q, hε = 0 if p, q ≤ 1/2 and
hε = +∞ if p ∈ (1/2,1).

Proof. Set ∆(z,x,U) = V p(z + κ(x)U) − V p(z). We first consider the
case p ≤ 1/2 and q > 1/2. Let h ∈ (0,∞). Since Zh

t = Y h
t + Nh

t , we can
decompose ∆(z,x,Zh

t ) as follows:

∆(z,x,Zh
t ) = ∆(z + κ(x)Nh

t , x, Y
h
t ) + ∆(z,x,Nh

t ).

One controls each term of the right-hand side. On the one hand, as V p is
2p-Hölder with constant [V p]2p = pcp [see (6)], we deduce from Lemma 2(i)
that

E{∆(z,x,Nh
t )} ≤ pcp‖κ(x)‖2p

E{|Nh
t |2p}

(35)

≤ pcp

∫

|y|>h
|y|2pπ(dy)‖κ(x)‖2p(t+ψh(t)t2),

where ψh is a locally bounded function. On the other hand, we set z̃ =
z + κ(x)Nh

t . By the Taylor formula,

∆(z̃, x, Y h
t ) = 〈∇(V p)(z̃), κ(x)Y h

t 〉+ 〈∇(V p)(ξ)−∇(V p)(z̃), κ(x)Y h
t 〉

with ξ ∈ [z̃, z̃+ κ(x)Y h
t ]. As (Nh

t ) and (Y h
t ) are independent and Y h

t is cen-
tered, E{〈∇(V p)(z̃), κ(x)Y h

t 〉} = 0. By Lemma 3, V p−1∇V = ∇(V p)/p is
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(2q − 1)-Hölder (because 2q − 1 ∈ [2p − 1,1] ∩ (0,1] in this case). Then, it
follows from Lemma 2(ii).2 that

E{∆(z + κ(x)Nh
t , x, Y

h
t )} ≤ p[V p−1∇V ]2q−1‖κ(x)‖2q

E{|Y h
t |2q}

(36)

≤C‖κ(x)‖2qt

∫

|y|≤h
|y|2qπ(dy).

Let ε > 0. First, by (Sa,p,q).1, ‖κ(x)‖2q ≤ CV p+a−1. Then, using that
∫

|y|≤h |y|2qπ(dy) → 0 when h→ 0, we can fix hε ∈ (0,1] such that

E{∆(z + κ(x)Nhε
t , x, Y hε

t )} ≤ ε

2
tV p+a−1(x).(37)

Second, since ψhε is locally bounded, it follows from (35) that there exists

C1
ε such that, for every t≤ 1, E{∆(z,x,Nhε

t )} ≤C1
ε t‖κ(x)‖2p. Now, as p < q,

for every δ > 0, there exists C2
δ > 0 such that ‖κ(x)‖2p ≤ δV p+a−1 +C2

δ [see
(19) for similar arguments]. Hence, setting δε = ε/(2C1

ε ) yields

E{∆(z,x,Nhε
t )} ≤ t

(

ε

2
V p+a−1(x) +Cε

)

(38)

with Cε =C1
εC

2
δε

. Then, adding up (37) and (38) yields the result when p≤
1/2< q.

When p, q ≤ 1/2, we deal with (Žt) = (Z0
t ). For every h > 0, Žt = Y̌ h

t +Nh
t ,

where Y̌ h
t = Y h

t + t
∫

{|y|≤h} yπ(dy). Hence, for every h > 0,

∆(z,x, Žt) = ∆(z + κ(x)Nh
t , x, Y̌

h
t ) + ∆(z,x,Nh

t ).

If q ≤ p, π satisfies (H2
p). Since p ≤ 1/2, V p is 2p-Hölder. Therefore, by

Lemma 2(ii).1,

E{∆(z+ κ(x)Nh
t , x, Y̌

h
t )} ≤ pcpt‖κ(x)‖2p

∫

|y|≤h
|y|2pπ(dy).

By summing up this inequality and (35), we deduce (34). When p < q ≤ 1/2,
we use that V p is 2q-Hölder (see Lemma 3) and a proof analogous to the
case p≤ 1/2< q yields the result.

Finally, we consider the case p > 1/2 where we deal with Ẑt = Z∞
t . For

every h > 0, we have Ẑt = Y h
t + N̂h

t , where N̂h
t =Nh

t − ∫{|y>h} yπ(dy). For

every h > 0, ∆(z,x, Ẑt) can be written as follows:

∆(z,x, Ẑt) = ∆(z + κ(x)N̂h
t , x, Y

h
t ) + ∆(z,x, N̂h

t ).(39)

One the one hand, by the same process as that used for (36) and by inequality
(29), we have

E{∆(z,x, N̂h
t )} ≤ p[V p−1∇V ]2p−1‖κ(x)‖2p

E{|N̂h
t |2p}

≤ t‖κ(x)‖2p
(
∫

|y|>h
|y|2pπ(dy) +Cht

2p−1
)

.
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On the other hand, by Lemma 3, V p−1∇V is (2(p ∨ q)− 1)-Hölder. Hence,
(36) is still valid in this case if we replace q with p∨ q. By using this control
for the first term of the right-hand side of (39), we obtain if q ≤ p

E{∆(z,x, Ẑt)}

≤ t‖κ(x)‖2p
(
∫

{|y|>h}
|y|2pπ(dy) +

∫

|y|≤h
|y|2pπ(dy) +Cht

2p−1
)

.

The result follows in this case. When q > p, the sequel of the proof is similar
to the case p≤ 1/2< q. �

3.2. Proof of Proposition 2. For this proof, one needs to study separately
the p < 1 and p≥ 1 cases. We detail the first case. When p ≥ 1, we briefly
indicate the process of the proof which is close to that of Lemma 3 of [15].

Case p < 1. For h > 1, we set Z̄h
n = Z̄n − γn

∫

{1<|y|≤h} yπ(dy) and for

h ∈ (0,1), Z̄h
n = Z̄n + γn

∫

{h<|y|≤1} yπ(dy). If q ≤ 1/2 (resp. p > 1/2), we can

take h= 0 (resp. h= +∞). Thus, we can write

∆X̄n+1 := X̄n+1 − X̄n =
3
∑

k=1

∆X̄h
n+1,k with ∆X̄h

n+1,1 = γn+1b
h(X̄n),

(40)
∆X̄h

n+1,2 =
√
γn+1σ(X̄n)Un+1 and ∆X̄h

n+1,3 = κ(X̄n)Z̄h
n+1.

The idea is to study the difference V p(X̄n+1) − V p(X̄n) as the sum of
three terms that correspond to the above decomposition. For k = 1,2,3,
set X̄h

n+1,k = X̄h
n +

∑k
i=1 ∆X̄h

n+1,i.

(i) First term: There exists n1 ∈ N such that, for every n≥ n1

E{V p(X̄h
n+1,1)− V p(X̄n)|Fn}

(41)

≤ pγn+1
〈∇V, bh〉
V 1−p

(X̄n) +Cγ2
n+1V

a+p−1(X̄n).

Indeed, from Taylor’s formula,

V p(X̄h
n+1,1)− V p(X̄n) = pγn+1

〈∇V, bh〉
V 1−p

(X̄n) +
1

2
D2(V p)(ξ1n+1)(∆X̄

h
n+1,1)

⊗2,

where ξ1n+1 ∈ [X̄n, X̄n +γn+1b
h(X̄n)]. Set x= X̄n and y = γn+1b

h(X̄n). Since

γn
n→+∞−→ 0 and |bh| ≤ C

√
V by (Sa,p,q).1, there exists n1 ∈ N such that,

for n≥ n1, |y| ≤
√

V (x)

2[
√

V ]1
a.s. Thus, we can apply the second inequality of

Lemma 3(b) with ε= 1/2 and deduce (41) from (Sa,p,q).1.
(ii) Second term: For every ε > 0, there exists n2,ε ∈ N such that, for

every n≥ n2,ε,

E{V p(X̄h
n+1,2)− V p(X̄h

n+1,1)|Fn} ≤ εγn+1V
a+p−1(X̄n) +C1

εγn+1.(42)
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Let us prove this inequality. Since E{Un+1|Fn} = 0, we deduce from Taylor’s
formula that

E{V p(X̄h
n+1,2)− V p(X̄h

n+1,1)|Fn}= 1
2E{D2(V p)(ξ2n+1)(∆X̄n+1,2)

⊗2|Fn}
with ξ2n+1 ∈ [X̄h

n+1,1; X̄
h
n+1,2]. Set x = X̄h

n+1,1 and y =
√
γn+1σ(x)Un+1. By

(Sa,p,q).1, ‖σ(x)‖ ≤ Cσ

√
V (x) because p + a− 1 ≤ 1. Then, the conditions

of (31) are satisfied with ε = 1/2 if |Un+1| ≤ ρn+1 = 1/(2Cσ [
√
V ]1

√
γn+1).

Therefore,

E{D2(V p)(ξ2n+1)(∆X̄n+1,2)
⊗21{|Un+1|≤ρn+1}|Fn}

≤Cγn+1V
p−1(X̄n)Tr(σσ∗)(X̄n)

≤Cγn+1V
a+2(p−1)(X̄n)

since Tr(σσ∗)≤CV p+a−1 when p < 1. By (30) and (Sa,p,q).1, we also have

E{D2(V p)(ξ2n+1)(∆X̄n+1,2)
⊗21{|Un+1|>ρn+1}|Fn} ≤Cδn+1γn+1V

p+a−1(X̄n),

where δn = E{|Un|21{|Un|>ρn}}. Now, let ε > 0. First, since a+2(p−1)< a+

p−1 when p < 1, there exists Cε > 0 such that V p−1 Tr(σσ∗)≤ εV a+p−1 +Cε

[see (19) for similar arguments]. Second, since ρn → +∞, δn → 0. Thus, there
exists n2,ε ∈ N such that, for every n ≥ n2,ε, CδnV

p+a−1 ≤ εV p+a−1. The
combination of these two arguments yields (42).

(iii) Third term: For every ε > 0, there exists hε ∈ [0,∞], C2
ε > 0 and n3,ε

such that, for all n≥ n3,ε,

E{V p(X̄hε
n+1,3)− V p(X̄hε

n+1,2)|Fn}
(43)

≤ γn+1

(

pcp

∫

|y|2pπ(dy)1{q≤p}‖κ(X̄n)‖2p + εV p+a−1(X̄n) +C2
ε

)

with hε ∈ (0,1] if p ≤ 1/2 < q, hε = 0 if p, q ≤ 1/2 and hε = +∞ if p ∈
(1/2,1). This step is a consequence of Lemma 4: since Un+1 and Z̄h

n+1 are
independent, we have

E{V p(X̄hε
n+1,3)− V p(X̄hε

n+1,2)|Fn} = E{Ghε(X̄
hε
n+1,2, X̄n)|Fn},

where Gh(z,x) = E{V p(z + κ(x)Zh
t )− V p(z)}. Then, Lemma 4 yields (43).

We can now prove the proposition. Let ε > 0. By adding (41), (42) and
(43) and using that γ2

n ≤ εγn for sufficiently large n (since γn → 0), we obtain
that there exists nε ∈ N, hε > 0 and Cε > 0 such that, for every n≥ nε,

E{V p(X̄n+1)|Fn}
≤ V p(X̄n) + γn+1(εV

p+a−1(X̄n) +Cε)
(44)

+ γn+1pV
p−1(X̄n)

×
(

〈∇V, bhε〉+ 1q≤pcp

∫

|y|2pπ(dy)‖κ‖2pV 1−p
)

(X̄n).
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When p, q ≤ 1/2 (resp. p > 1/2), hε = 0 (resp. hε = ∞). We deduce that
〈∇V, bhε〉 = 〈∇V, b̃〉 because b̃ = b0 (resp. b̃ = b∞) when p, q ≤ 1/2
(resp. p > 1/2). We then recognize the left-hand side of (Sa,p,q).2 in (44).

When p≤ 1/2< q, hε ∈ (0,∞) and 〈∇V, bhε〉= 〈∇V, b̃〉+Φhε , where Φh(x) =
〈∇V (x), κ(x)

∫

{hε<|y|≤1} yπ(dy)〉. Therefore, by (Sa,p,q).2, we obtain

E{V p(X̄n+1)|Fn}
≤ V p(X̄n) + γn+1pV

p−1(X̄n)(β −αV a(X̄n))

+ γn+1(εV
p+a−1(X̄n) +Cε + 1{p≤1/2<q}pV

p−1(X̄n)Φhε(X̄n)).

When p, q ≤ 1/2 or p > 1/2, we set ε = pα/2 and obtain (Ra,p) with β′ =
pβ + Cε/v

p−1 and α′ = pα/2. When p ≤ 1/2 < q, by (Sa,p,q).1, one checks

that, for every ε > 0, there exists C̃ε > 0 such that V p−1|Φhε | ≤ εV p+a−1+C̃ε

and the result follows.
Case p ≥ 1. Thanks to Taylor’s formula,

V p(X̄n+1) = V p(X̄n) + γn+1〈∇(V p)(X̄n),∆Xn+1〉
+ 1

2D
2(V p)(ξn+1)(∆X̄n+1)

⊗2,

where ξn+1 ∈ [X̄n, X̄n+1] and

∆X̄n+1 = X̄n+1 − X̄n = γn+1b
∞(X̄n) +

√
γn+1σ(X̄n)Un+1 + κ(X̄n)Z̄∞

n+1

with Z̄∞
n = Z̄n − γn

∫

{|y|>1} yπ(dy). Using that b̃= b∞ in this case and that

E{Un+1|Fn} = E{Z̄∞
n+1|Fn}= 0 yields

E{V p(X̄n+1)|Fn} = V p(X̄n) + pγn+1V
p−1(X̄n)〈∇V, b̃〉(X̄n)

+ 1
2E{D2(V p)(ξn+1)(∆X̄n+1)

⊗2|Fn}.
The sequel of the proof consists in studying the last term of this equality.
The main tools for this are the last inequality of Lemma 3 which provides a
control of D2(V p)(ξn+1)(∆X̄n+1)

⊗2 and Lemma 2(iii), which gives a control
of the moments of the jump component (see [21] for details or [15] for a
similar proof).

3.3. Consequences of Proposition 2. In Proposition 2, we established
(Ra,p). According to Lemma 1, it suffices now to prove (Cp,s). This property
is established in Corollary 1 and is a consequence of Proposition 2 [under
additional assumptions on (γn) and (ηn) when s < 2]. More precisely, we
first show in Lemma 5 that a supermartingale property can be derived from
(Ra,p) and that this property provides an Lp+a−1-control of the sequence
(V (X̄n)) [see (45)]. Second, we show in Corollary 1 that we can derive (Cp,s)
from this lemma.
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Lemma 5. Let a ∈ (0,1] and p > 0. Assume (H1
p) and (Ra,p). Let (θn)n∈N

be a nonincreasing sequence of nonnegative numbers such that
∑

n≥1 θnγn <

∞. Then, there exists n0 ≥ 0, α̂ > 0 and β̂ > 0 such that (Sn)n≥n0 defined
by

Sn = θnV
p(X̄n) + α̂

n
∑

k=1

θkγkV
p+a−1(X̄k−1) + β̂

∑

k>n

θkγk

is a nonnegative L1-supermartingale. In particular,

∑

n≥1

θnγnE{V p+a−1(X̄n−1)}<+∞ and E{V p(X̄n)} n→+∞
= O

(

1

θn

)

.

(45)

Proof. Since b, σ and κ have sublinear growth and Z̄n ∈ L2p for every
n≥ 1, we can check by induction that, for every n≥ 0, V p(X̄n) is integrable.
Denote by (∆n)n≥1 the sequence of martingale increments defined by ∆n =
V p(X̄n) − E{V p(X̄n)|Fn−1}. By (Ra,p), there exists n0 ∈ N such that, for
every n≥ n0,

θn+1V
p(X̄n+1)

≤ θn+1∆n+1 + θn+1E{V p(X̄n+1)|Fn}
≤ θn+1∆n+1 + θn+1(V

p(X̄n) + γn+1V
p−1(X̄n)(β′ −α′V a(X̄n))).

By the same argument as in (19), one can find α̂ > 0 and β̂ > 0 such that

V p−1(β′−α′V a) ≤ β̂− α̂V p+a−1. Since (θn) is nonincreasing, we deduce that

θn+1(V
p(X̄n+1) + α̂γn+1V

p+a−1(X̄n))

≤ θnV
p(X̄n) + θn+1∆n+1 + θn+1γn+1β̂.

Adding “α̂
∑n

k=1 θkγkV
p+a−1(X̄k−1) + β̂

∑

k>n+1 θkγk” to both sides of the
inequality yields

Sn+1 ≤ Sn + θn+1∆n+1 =⇒ E{Sn+1|Fn} ≤ Sn ∀n≥ n0.

Since Sn0 ∈ L1, it follows that (Sn)n≥n0 is a nonnegative supermartingale
and then, that supE{Sn}<+∞. The result is obvious. �

Corollary 1. Let a ∈ (0,1], p > 0 and q ∈ [0,1]. Assume (H1
p), (H2

q)

and (Sa,p,q). If E{|U1|2(p∨1)}<+∞ and (ηn/γn)n∈N is nonincreasing,

∑

n≥1

(

ηn

Hnγn

)2

E{|V p/2(X̄n)− V p/2(X̄n−1 + γnb̃(X̄n−1))|2}<+∞.(46)

In particular, (Cp,2) holds with ρ= 2 and πn = V p/2(X̄n + γnb̃(X̄n)).
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Furthermore, if conditions (11) and (13) are satisfied for s ∈ (1,2),

∑

n≥1

(

ηn

Hnγn

)fa,p(s)

E{|V p/s(X̄n)− V p/s(X̄n−1 + γnb̃(X̄n−1))|fa,p(s)}

(47)
<+∞.

In particular, (Cp,s) holds with ρ= fa,p(s) and πn = V p/s(X̄n + γnb̃(X̄n)).

Proof. Let us begin the proof by two useful remarks. First, (46) is a
particular case of (47) since fa,p(2) = 2 and (13) is always satisfied in this
case. Indeed, as (ηn/γn)n∈N is nonincreasing, so is ( 1

γn
( ηn

Hn
√

γn
)2), and

∑

n≥1

(

ηn

Hn
√
γn

)2

≤ η1

γ1

∑

n≥1

ηn

H2
n

≤ η1

γ1

∑

n≥1

∆Hn

H2
n

≤C

(

1 +

∫ ∞

η1

dt

t2

)

<∞,(48)

with ∆Hn =Hn −Hn−1. Then, it suffices to prove (47). Second, by Lemma
5 applied with θn = 1

γn
( ηn

Hn
√

γn
)fa,p(s), we have

∑

n≥1

(

ηn

Hn
√
γn

)fa,p(s)

E{V p+a−1(X̄n−1)}<+∞.(49)

Hence, one checks that (47) holds as soon as

E{|V p/s(X̄n)− V p/s(X̄n−1 + γnb̃(X̄n−1))|fa,p(s)}
(50)

≤Cγfa,p(s)/2
n E{V p+a−1(X̄n−1)}.

Thus, we only need to prove (50). We inspect the p/s≤ 1/2 and p/s > 1/2
cases successively.

Case p/s ≤ 1/2. In this case, fa,p(s) = s. We keep the notation intro-
duced in (40), with h= 1 if p ≤ 1/2 < q, h= 0 if p, q ≤ 1/2 and h= +∞ if
p > 1/2, and derive from (25) that

|V p/s(X̄n)− V p/s(X̄n−1 + γnb̃(X̄n−1))|s
(51)

≤C|V p/s(X̄h
n,2)− V p/s(X̄h

n,1)|s +C|V p/s(X̄n)− V p/s(X̄h
n,2)|s.

We study successively the two right-hand side members. First, by the Taylor
formula,

|V p/s(X̄h
n,2)− V p/s(X̄h

n,1)|s ≤Cγs/2
n |〈V p/s−1∇V (ξ1n), σ(X̄n−1)Un〉|s

with ξ1n ∈ [X̄h
n,1; X̄

h
n,2]. The function V p/s−1∇V is bounded. Hence, since

‖σ‖s ≤CTr(σσ∗) (because s≤ 2), we derive from (Sa,p,q).1 that

E{|V p/s(X̄h
n,2)− V p/s(X̄h

n,1)|s|Fn−1} ≤Cγs/2
n V a+p−1(X̄n−1).(52)
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Second, since Un and Z̄h
n are independent,

E{|V p/s(X̄n)− V p/s(X̄h
n,2)|s} = E{Υh(X̄h

n,2, X̄n−1, γn)|Fn−1}
where Υh(z,x, γ) = E{|V p/s(z + κ(x)Zh

γ )− V p/s(z)|s}.
By (51) and (52), one checks that (50) holds if there exists C > 0 such that,
for every z,x ∈ R

d and γ ≤ γ1,

Υh(z,x, γ) ≤Cγs/2V a+p−1(x),(53)

where h = 1 (resp. h= 0, resp. h = +∞) if p ≤ 1/2 < q (resp. if p, q ≤ 1/2,
resp. if p > 1/2). Then, it suffices to prove (53). First, when p ≤ 1/2 < q,
we have Z1

γ = Zγ = Yγ +Nγ . On the one hand, since V p/s is a 2p/s-Hölder
function [see Lemma 3(a)], it follows from (Sa,p,q).1 and Lemma 2(i) that

E{|V p/s(z + κ(x)Nγ)− V p/s(z)|s} ≤ C‖κ(x)‖2p
E{|Nγ |2p}

(54)
≤ CγV p+a−1(x).

On the other hand, V p/s is a 2q/s-Hölder function when q/s≤ 1/2 (be-
cause 2p/s≤ 2q/s≤ 1 in this case). Hence, using this property if q/s≤ 1/2
and the Taylor formula if q/s > 1/2 yields

E{|V p/s(z + κ(x)(Nγ + Yγ))− V p/s(z + κ(x)Nγ)|s}
(55)

≤C

{‖κ(x)‖2q
E{|Yγ |2q}, if q/s≤ 1/2,

E{|〈V p/s−1∇V (ξ2), κ(x)Yγ〉|s}, if q/s > 1/2,

with ξ2 ∈ [z+κ(x)Nγ , z+κ(x)(Nγ +Yγ)]. By Lemma 2(ii).2, E{|Yγ |2q} ≤Cγ.
It follows from Jensen’s inequality that

E{|V p/s(z + κ(x)Zγ)− V p/s(z + κ(x)Nγ)|s} ≤Cγs/(2q)∧1‖κ(x)‖s∧2q .(56)

One checks that ‖κ‖s∧2q ≤CV p+a−1 under (Sa,p,q).1 and that γ+γs/(2q)∧1 ≤
Cγs/2 for every γ ≤ γ1. Hence, summing up (54) and (56) and using (25)
yields (53) (with h= 1) when p≤ 1/2< q.

When p, q ≤ 1/2 (resp. p > 1/2), we have to check that (53) holds with
h = 0 (resp. with h = +∞). Then, we need to use a decomposition of the
jump component adapted to the value of h. We split up Z0

γ (resp. Z∞
γ ) as

follows: Z0
γ = Y̌γ +Nγ with Y̌γ = Yγ + γ

∫

{|y|≤1} yπ(dy) [resp. Z∞
γ = Yγ + N̂γ

with N̂γ =Nγ −γ
∫

{|y|>1} yπ(dy)]. Then, when p, q ≤ 1/2 (resp. p > 1/2), the

idea is to replace Yγ with Y̌γ (resp. Nγ with N̂γ) in the left-hand sides of (54)
and (55) and to derive some adapted controls from Lemma 2 and inequality
(29). Since the proof is close to that of the p≤ 1/2 < q case, we leave it to
the reader.
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Case p/s > 1/2. Since p > 1/2, we use the notation introduced in (40)
with h= +∞. We recall that X̄n−1 + γnb̃(X̄n−1) = X̄∞

n,1. Then, applying the
following inequality,

∀u, v≥ 0,∀α≥ 1 |uα − vα| ≤Cα(|u− v|uα−1 + |u− v|α)(57)

with u=
√
V (X̄n), v =

√
V (X̄∞

n,1) and α= (2p)/s, we obtain

|V p/s(X̄n)− V p/s(X̄∞
n,1)| ≤ C|

√
V (X̄n)−

√
V (X̄∞

n,1)|V p/s−1/2(X̄n−1)

+C|
√
V (X̄n)−

√
V (X̄∞

n,1)|2p/s.

We deduce from (Sa,p,q).1 that

|X̄n − X̄∞
n,1| ≤

{

CV (a+p−1)/(2p)(X̄n−1)(
√
γn|Un|+ |Z̄∞

n |), if p < 1,

CV a/2(X̄n−1)(
√
γn|Un|+ |Z̄∞

n |), if p≥ 1.

Since
√
V is Lipschitz, one then checks that

|V p/s(X̄n)− V p/s(X̄∞
n,1)|

≤CV r(X̄n−1)(
√
γn|Un|+ |Z̄∞

n |+ γp/s
n |Un|2p/s + |Z̄∞

n |2p/s),

where r =















(

p

s
+
a− 1

2p

)

∨
(

a+ p− 1

s

)

, if p < 1,
(

p

s
+
a− 1

2

)

∨ ap

s
, if p≥ 1.

One derives from Lemma 2(iii) and from the Jensen inequality that, for

α > 0, E{|Z̄∞
n |α}=O(γ

(α/2)∧1
n ). Therefore, since 2p/s≥ 1/2 and fa,p(s)≤ 2,

we have

E{(√γn|Un|+ |Z̄∞
n |+ γp/s

n |Un|2p/s + |Z̄∞
n |2p/s)fa,p(s)}=O(γfa,p(s)/2

n ).

Second, one deduces from the definition of fa,p that rfa,p(s) ≤ a + p − 1.
Therefore, inequality (50) follows. �

By Lemma 1, Corollary 1 concludes the proof of Proposition 1 and then,
the part which is concerned with the tightness of (ν̄n(ω,dx))n≥1. The only
thing left to prove the theorem for Scheme (A) is thus to identify the limit.
This is the aim of the next section.

4. Identification of the weak limits of (ν̄n(ω,dx))
n≥1. In this section

we show that every weak limiting distribution of (ν̄n(ω,dx))n≥1 is invariant
for (Xt)t≥0. For this purpose, we will rely on the Echeverria–Weiss theorem
(see [7], page 238, [14] and [16]). This is a criterion for invariance based
on the infinitesimal generator A of (Xt) defined by (7). By the Echeverria–
Weiss theorem, we know that if A(C2

K(Rd)) ⊂ C0(R
d), a probability ν is
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invariant for the SDE if for every f ∈ C2
K(Rd), ν(Af) = 0. One can check that

A(C2
K(Rd)) ⊂ C0(R

d) if ‖κ(x)‖ = o(|x|) when |x| → +∞ (and this condition
cannot be improved in general). Hence, under this condition on κ, it follows
that every weak limiting distribution of (ν̄n) is invariant if for every f ∈
C2

K(Rd), ν̄n(Af) → 0. The main result of this section is then the following
proposition.

Proposition 3. Let a ∈ (0,1], p > 0 and q ∈ [0,1]. Assume (H1
p), (H2

q),

(Sa,p,q).1. Assume that ‖κ(x)‖ |x|→+∞
= o(|x|) and that (ηn/γn)n≥1 is nonin-

creasing. If, moreover,

sup
n≥1

ν̄n(‖κ‖2q + Tr(σσ∗))<∞ and

(58)
∑

k≥1

η2
k

H2
kγk

E{V a+p−1(X̄k−1)}<+∞,

then,

∀f ∈ C2
K(Rd), a.s.,

∫

Af dν̄n
n→∞−→ 0.(59)

Consequently, a.s., every weak limiting distribution of (ν̄n(ω,dx))n≥1 is in-
variant for the SDE (1).

Remark 8. This proposition is sufficient to conclude the proof because
the two assumptions in (58) hold under the assumptions of Theorem 2 (resp.
Theorem 3). Indeed, since ‖κ‖2q + Tr(σσ∗)≤CV p/s+a−1 with s= 2 in The-
orem 2 [resp. with s satisfying (11) in Theorem 3], the first is a consequence
of Proposition 1. Likewise, the second is a consequence of Lemma 5 applied
with θn = (ηn/(Hnγn))2 [see (48)].

4.1. Proof of Proposition 3. The proof of Proposition 3 is built in two
successive steps that are represented by Propositions 4 and 5. In Proposi-
tion 4 we claim that showing that ν̄n(Af) → 0 a.s. is equivalent to showing
that 1/Hn

∑n
k=1(ηk/γk)E{f(X̄k)− f(X̄k−1)|Fk−1}→ 0 a.s. Then, in Propo-

sition 5 we show that this last term does tend to 0.

Proposition 4. Assume that the assumptions of Proposition 3 are ful-
filled. Then, for every f ∈ C2

K(Rd),

lim
n→∞

1

Hn

n
∑

k=1

ηk

(

E{f(X̄k)− f(X̄k−1)|Fk−1}
γk

−Af(X̄k−1)

)

= 0 a.s.

(60)
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We begin the proof by a technical lemma.

Lemma 6. Let Φ:Rd 7→ R
l be a continuous function with compact sup-

port, Ψ:Rd 7→ R+, a locally bounded function, (hθ
1)θ∈[0,1] and (hθ

2)θ∈[0,1] two

families of Borel functions defined on Rd × R+ with values in Rd satisfying
the following assumptions:

• There exists δ0 > 0 such that

inf
θ∈[0,1],γ∈[0,δ0]

(|hθ
1|(x,γ) + |hθ

2|(x,γ))
|x|→+∞−→ +∞.(61)

• For every compact set K,

sup
x∈K,θ∈[0,1]

|hθ
1(x,γ)− hθ

2(x,γ)|
γ→0−→ 0.(62)

Then, for every sequence (xk)k∈N of R
d,

1

Hn

n
∑

k=1

ηk sup
θ∈[0,1]

‖Φ(hθ
1(xk−1, γk))−Φ(hθ

2(xk−1, γk))‖Ψ(xk−1)
n→+∞−→ 0.

Proof. Φ has a compact support, therefore, we derive from (61) that
there exists Mδ0 > 0 such that, for every |x|>Mδ0 , γ ≤ δ0 and θ ∈ [0,1],

Φ(hθ
1(x,γ)) = Φ(hθ

2(x,γ)) = 0.

Consider ρ 7→ w(ρ,Φ) = sup{η > 0, sup|x−y|≤η |Φ(x) − Φ(y)| ≤ ρ}. As Φ is
uniformly continuous, w(ρ,Φ)> 0 for every ρ > 0. Thanks to (62), for every
ρ > 0, there exists δρ ≤ δ0 such that, for every γ ≤ δρ, θ ∈ [0,1],

sup
|x|≤Mδ0

|hθ
1(x,γ)− hθ

2(x,γ)| ≤w(ρ,Φ).

As γk
k→+∞−→ 0, there exists kρ ∈ N such that γk ≤ δρ for k ≥ kρ. By using

that Hn
n→+∞−→ +∞, we deduce that

lim sup
n→+∞

1

Hn

n
∑

k=1

ηk sup
θ∈[0,1]

‖Φ(hθ
1(xk−1, γk))−Φ(hθ

2(xk−1, γk))‖Ψ(xk−1)≤ ρΨδ0 ,

where Ψδ0 := sup{|Ψ(x)|, |x| ≤Mδ0}<+∞ since Ψ is locally bounded. The
result follows. �

Proof of Proposition 4. We have to inspect successively the q ∈
(1/2,1] and q ∈ [0,1/2] cases.
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Case q ∈ (1/2,1]. Let f ∈ C2
K(Rd). Decompose the infinitesimal generator

as the sum of three terms defined by

A1f(x) = 〈∇f, b〉(x), A2f(x) = Tr(σ∗D2fσ)(x),

A3f(x) =

∫

(f(x+ κ(x)y)− f(x)− 〈∇f(x), κ(x)y〉1{|y|≤1})π(dy).

Set X̄k,1 = X̄k−1 + γkb(X̄k−1), X̄k,2 = X̄k,1 +
√
γkσ(X̄k−1)Uk and X̄k,3 =

X̄k,2 +
√
γkκ(X̄k−1)Z̄k. We then part the proof into three steps:

Step 1.
1

γk
E{f(X̄k,1)− f(X̄k−1)/Fk−1} =A1f(X̄k−1) +R1(γk, X̄k−1)

with
1

Hn

n
∑

1

ηkR1(γk, X̄k−1)
n→∞−→ 0.

Step 2.
1

γk
E{f(X̄k,2)− f(X̄k,1)|Fk−1}=A2f(X̄k−1) +R2(γk, X̄k−1)

with
1

Hn

n
∑

1

ηkR2(γk, X̄k−1)
n→∞−→ 0.

Step 3.
1

γk
E{f(X̄k)− f(X̄k,2)|Fk−1}=A3f(X̄k−1) +R3(γk, X̄k−1)

with
1

Hn

n
∑

1

ηkR3(γk, X̄k−1)
n→∞−→ 0.

The combination of the three steps yields Proposition 4. We refer to Proposi-
tion 4 of [15] for steps 1 and 2 and focus on the last step where the specificity
of our jump Lévy setting appears. Since X̄k−1 is Fk−1-measurable and Z̄k,
Uk and Fk−1 are independent, we have

E{f(X̄k,2 + κ(X̄k−1)Z̄k)|Fk−1}=Qγk
f(X̄k−1),

where Qγf(x) =

∫

Rd
E{f(Sx,γ,u + κ(x)Zγ)}PU1(du),

with Sx,γ,u = x+ γb(x) +
√
γσ(x)u. Set Vt = Sx,γ,u + κ(x)Zt. Applying Itô’s

formula to (f(Vt))t≥0 yields

f(Vt) = f(Sx,γ,u) +

∫ t

0
〈∇f(Vs−), κ(x)dYs〉

(63)
+
∑

0<s≤t

H̃f (Sx,γ,u + κ(x)Zs− , x,∆Zs)

where, H̃f (z,x, y) = f(z + κ(x)y)− f(z)− 〈∇f(z), κ(x)y〉1{|y|≤1}.
(64)
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The process (
∫ t
0 〈∇f(Vs−), κ(x)dYs〉) is a true martingale since ∇f is bounded.

The compensation formula and a change of variable yield

E{f(Sx,γ,u + κ(x)Zγ)}
= E{f(Vγ)}

= f(Sx,γ,u) + γE

{
∫ 1

0
dv

∫

π(dy)H̃f (Sx,γ,u + κ(x)Zvγ , x, y)

}

.

Since A3f(x) =
∫

π(dy)H̃f (x,x, y) = E{∫ 1
0 dv

∫

π(dy)H̃f (x,x, y)}, it follows
from the previous inequality that

1

γk
E{f(X̄k)− f(X̄k,2)|Fk−1} =A3f(X̄k−1) +R3(γk, X̄k−1),

where,

R3(γ,x) =

∫

E

{
∫ 1

0
dv

∫

π(dy)∆H̃f (Sx,γ,u + κ(x)Zvγ , x, x, y)

}

PU1(du)

with ∆H̃f (z1, z2, x, y) = H̃f (z1, x, y)− H̃f (z2, x, y). We upper-bound R3 by
two terms: R3,1 and R3,2 that are associated to the small and big jumps
components of (Zt), namely,

R3,1(γ,x)

=

∫ ∫ 1

0
dv

∫

{|y|≤1}
π(dy)E|∆H̃f (Sx,γ,u + κ(x)Zvγ , x, x, y)|PU1(du),

R3,2(γ,x)

=

∫ ∫ 1

0
dv

∫

{|y|>1}
π(dy)E|∆H̃f (Sx,γ,u + κ(x)Zvγ , x, x, y)|PU1(du).

We study successively R3,1 and R3,2. From Taylor’s formula, we have for
every y such that |y| ≤ 1

|∆H̃f (Sx,γ,u + κ(x)Zvγ , x, x, y)| ≤ 1
2R(Z,γ,x,u, v, y)|κ(x)y|2,

where

R(Z,γ,x,u, v, y)

= sup
θ∈[0,1]

‖D2f(Sx,γ,u + κ(x)(Zvγ + θy))−D2f(x+ θκ(x)y)‖.

By setting Φ =D2f , Ψ(x) = ‖κ(x)‖2|y|2,
hθ

1(x,γ) = Sx,γ,u + κ(x)(Zvγ + θy) and hθ
2(x,γ) = x+ θκ(x)y,

we want to show that the assumptions of Lemma 6 are a.s. fulfilled for every
fixed u, v and y.
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First, since κ(x)
|x|→+∞

= o(|x|), there exists a continuous function ε such

that κ(x) = |x|ε(x) and ε(x)
|x|→∞−→ 0. Therefore, as b and σ have sublinear

growth, one checks that there exist some positive real constants C1 and C2

such that
{ |Sx,γ,u + κ(x)(Zvγ + θy)| ≥ |x|(1− γC1 − (|Zvγ |+ |y|)|ε(x)|) −C2,
|x+ θκ(x)y| ≥ |x|(1− |ε(x)||y|).(65)

Let δ0 be a positive number such that 1 − δ0C1 > 0. Since (Zt) is locally

bounded (as a càdlàg process) and ε(x)
|x|→∞−→ 0, there exists a.s. M > 0,

inf
|x|>M,γ∈[0,δ0]

(1− γC1 − (|Zvγ |+ |y|)|ε(x)|)> 0.

It follows that a.s.,

inf
θ∈[0,1],γ∈[0,δ0]

(|hθ
1|(x,γ) + |hθ

2|(x,γ))
|x|→∞−→ +∞.

Second, let K be a compact set of R
d. We check that (62) holds. We have

sup
x∈K,θ∈[0,1]

|hθ
1(x,γ)− hθ

2(x)|
(66)

≤ sup
x∈K

(γ|b(x)|+√
γ‖σ(x)‖|u| + ‖κ(x)‖ |Zvγ |) γ→0−→ 0 a.s.

because b, σ, κ are locally bounded and limt→0Zt = 0 a.s. Thus, by Lemma
6, for any sequence (xk)k∈N of R

d, for every (u, v, y) ∈ R
d × [0,1]×Bd(0,1),

1

Hn

n
∑

k=1

ηk∆H̃
f (Sxk−1,γk,u +κ(xk−1)Zvγk

, xk−1, xk−1, y)
n→∞−→ 0 a.s.(67)

Now, since ∇f and D2f are bounded, we derive from Taylor’s formula that,
for every z1, z2 ∈ R

d,

|H̃f (z2, x, y)− H̃f (z1, x, y)|1{|y|≤1} ≤
{

2‖∇f‖∞‖κ(x)‖ |y|1{|y|≤1},
2‖D2f‖∞‖κ(x)‖2|y|21{|y|≤1}.

Then, for every q ∈ (1/2,1],

|∆H̃f (Sx,γ,u + κ(x)Zvγ , x, x, y)|1{|y|≤1} ≤C‖κ(x)‖2q |y|2q1{|y|≤1},(68)

where C = 2max(‖∇f‖∞,‖D2f‖∞). Therefore, by assumption (H2
q), we fi-

nally derive from (67), (68) and from the Lebesgue dominated convergence
theorem that

1

Hn

n
∑

k=1

ηkR3,1(γk, xk−1)
n→∞−→ 0

(69)

if sup
n∈N

1

Hn

n
∑

k=1

ηk‖κ(xk−1)‖2q <∞.
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We apply this result to (xk) = (X̄k). By (58), supn∈N ν̄n(‖κ‖2q) <∞ a.s.

Hence, it follows that 1/Hn
∑n

k=1 ηkR3,1(γk, X̄k−1)
n→∞−→ 0 a.s.

Now, let us focus on R3,2. Set ∆f(z1, z2) = f(z1)− f(z2). Then,

R3,2(γ,x) =

∫

E

{
∫ 1

0
dv

∫

{|y|>1}
π(dy)∆f(x,Sx,γ,u + κ(x)Zvγ)

}

PU1(du)

+

∫

E

{
∫ 1

0
dv

∫

{|y|>1}
π(dy)

×∆f(Sx,γ,u + κ(x)(Zvγ + y), x+ κ(x)y)

}

PU1(du).

One proceeds as before. By using Lemma 6, one begins by showing that, for
any sequence (xk)k∈N , for every (u, v, y) ∈ [0,1]×R

d ×Bd(0,1)
c, a.s.,

1

Hn

n
∑

k=1

ηk∆f(xk−1, Sxk−1,γk,u + κ(xk−1)Zuγk
)

n→∞−→ 0 and

(70)
1

Hn

n
∑

k=1

ηk∆f(Sxk−1,γk,u + κ(xk−1)(Zvγk
+ y), xk−1 + κ(xk−1)y)

n→∞−→ 0.

By the dominated convergence theorem [which can be applied because
π(|y|> 1)<∞ and f is bounded], we deduce that, for any sequence (xk)k∈N,

1

Hn

n
∑

k=1

ηkR3,2(γk, xk−1)
n→∞−→ 0 a.s.

This completes the proof of Step 3 when q ∈ (1,2].
Case q ≤ 1/2. The reader can check that the assumption q ∈ (1/2,1] is

used only once: when we want to apply the dominated convergence theorem
for R3,1 [see (68)]. Since inequality (68) is not true when q < 1/2, we need
to decompose the infinitesimal generator in a slightly different way:

A1f(x) = 〈∇f, b0〉(x),
A2f(x) = Tr(σ∗D2fσ)(x),

A3f(x) =

∫

(f(x+ κ(x)y)− f(x))π(dy).

Note that this decomposition is only possible when q ≤ 1/2. That means
that with the notation (40), we decompose ∆X̄k with h = 0 and inspect
the three induced steps. We do not go into further details since the proof is
similar to the case q > 1/2. �
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Proposition 5. Assume that the assumptions of Proposition 3 are ful-
filled. Then,

lim
n→∞

1

Hn

n
∑

k=1

ηk

γk
E{f(X̄k)− f(X̄k−1)|Fk−1}= 0 a.s.

Proof. We do not detail the proof of this proposition which is an adap-
tation of Proposition 3 in [15]. �

5. Proof of the main theorems for Schemes (B) and (C). The aim of
this section is to give a general idea of the proof for Schemes (B) and (C)
and to overcome the main difficulties induced by the approximation of the
jump component. For Scheme (A), main theorems have been proven in two
successive steps. First, we focused on tightness results (Proposition 1) and
then proved that every weak limiting distribution is invariant for (Xt)t≥0

(Proposition 3). We follow the same process for Schemes (B) and (C). We
will successively explain for both schemes why Proposition 1 and Proposition
3 remain valid.

5.1. Almost sure tightness of ν̄B
n (ω,dx) and ν̄C

n (ω,dx). The tightness
result for Schemes (B) and (C) is strictly identical to Proposition 1 [in
particular, assumption (9) is not necessary for tightness]. Looking carefully
into the proof of this theorem for Scheme (A) shows that the properties of
the jumps that we use are the following: the control of the moments of the
jump components (Lemma 2) which is fundamental for Proposition 2, and
independence between (Ȳn)n∈N, (N̄n)n∈N and (Un)n∈N. We show in Lemma
7 below that the controls of Lemma 2 hold true for the moments of the jump
components of Schemes (B) and (C). Then, since Scheme (B) satisfies the
independence properties, Proposition 1 follows in this case. In Scheme (C),
(Ȳ C

n )n∈N and (N̄C
n )n∈N are no longer independent. It raises several technical

difficulties in the proof of Proposition 2 in case p < 1, but the process of
the proof is the same. So, we only state a variant of Lemma 2 (see [21] for
details).

Lemma 7. Let T0 be a positive number and T n = inf{s > 0, |∆Zn
t |> 0}.

(i) Let p > 0 such that (H1
p) holds. Then, for every t≤ T0 and h > 0,

E{|Nh
t∧T n |2p} ≤ t

∫

|y|>h
|y|2pπ(dy) if p > 0.

(ii) Let τ be an (Ft)-stopping time and q ∈ [0,1] such that (H2
q) holds. Set

Dh
n = {y, |y| ∈ (un, h]} and Y h,n

t =
∑

0<s≤t ∆Y
h
s 1{∆Y h

s ∈Dh
n} − t

∫

Dh
n
yπ(dy).
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Then,


















E

{∣

∣

∣

∣

Y h,n
t∧τ + (t∧ τ)

∫

Dh
n

yπ(dy)

∣

∣

∣

∣

2q}

≤ t

∫

|y|≤h
|y|2qπ(dy), if q ∈ [0,1/2],

E{|Y h,n
t∧τ |2q} ≤Cqt

∫

|y|≤h
|y|2qπ(dy), if q ∈ (1/2,1].

(iii) Let p≥ 1 such that (H1
p) holds. Set Ẑn

t = Zn
t −t ∫{|y|>1} yπ(dy). Then,

there exists η > 1 such that, for every T0 > 0, for every ε > 0, there exists
Cε,T0,p > 0, n0 ∈ N such that, for every t≥ T0 and n≥ n0,

E{|Ẑn
t |2p} ≤ t

(
∫

|y|2pπ(dy) + ε

)

+Cε,T0,pt
η

and

E{|Ẑn
t∧T n |2p} ≤ t

(
∫

|y|2pπ(dy) + ε

)

+Cε,T0,pt
η.

Proof. The proof is left to the reader. �

Remark 9. In (iii), the control is only valid for n sufficiently large but
that does not make any problem since (Ra,p) just needs to be valid for
sufficiently large n.

5.2. Identification of the limit of (ν̄B
n )n∈N and (ν̄C

n )n∈N. The theorem
which is obtained for (ν̄B

n )n∈N and (ν̄C
n )n∈N is strictly identical to Proposition

3 under the additional condition (9) for Scheme (C). We recall that the proof
of Proposition 3 is based on two steps: Propositions 4 and 5. Proposition 5 is
still valid without additional difficulties. However, the proof of the analogous
result to Proposition 4 raises some new difficulties. Denote by Ak,B and Ak,C

the operators on CK
2 (Rd) with values in Cb(R

d,R) defined by

Ak,Bf(x) = 〈∇f, b〉(x) + 1
2 Tr(σ∗D2fσ)(x) +

∫

{|y|≥uk}
H̃f (x,x, y)π(dy),

Ak,Cf(x) =Ak,Bf(x)− (1−αk(γk))

∫

{|y|≥uk}
H̃f (x,x, y)π(dy),

where αk(t) = 1−e−π(|y|>uk)t

π(|y|>uk)t . “Af −Ak,Bf” and “Af −Ak,Cf” can be viewed

as the principal part of the weak error induced by the approximation in
Schemes (B) and (C) [Ak,B is the infinitesimal generator of (Xk

t ), where
(Xk

t ) is solution to the SDE (1) driven by (Zk
t ) instead of (Zt)]. Thus, one

may expect that this error be negligible in the sense of our problem. This is
the aim of Lemma 8.



38 F. PANLOUP

Lemma 8. Assume (H2
q). Let (xk)k∈N be a sequence such that

sup
n≥1

1

Hn

n
∑

k=1

ηk‖κ(xk−1)‖2q <∞.(71)

Then, for every function f ∈ CK
2 (Rd,R),

lim
n→+∞

1

Hn

n
∑

k=1

ηk(Af(xk−1)−Ak,Bf(xk−1)) = 0

and if π(Dn)γn
n→+∞−→ 0,

lim
n→+∞

1

Hn

n
∑

k=1

ηk(Af(xk−1)−Ak,Cf(xk−1)) = 0.

Proof. Note that Ak,Bf(x)−Af(x) =
∫

{|y|<uk} H̃
f (x,x, y)π(dy). When

q ≥ 1/2, we deduce from Taylor’s formula and the boundedness of ∇f and
D2f that there exists Cq > 0 such that

|H̃f (x,x, y)|1{|y|≤uk} ≤Cq‖κ(x)‖2q |y|2q1{|y|≤uk}.

When q ≤ 1/2, since f is a 2q-Hölder function,

|H̃f (x,x, y)|1{|y|≤uk} ≤ [f ]2q‖κ(x)‖2q |y|2q1{|y|≤uk}

+ sup
x∈suppf

|∇f(x)| · ‖κ(x)‖ |y|1{|y|≤uk}.

By setting vk,q =
∫

{|y|<uk} |y|
2qπ(dy), we have

|Af(xk−1)−Ak,Bf(xk−1)| ≤
{

C(vk,q‖κ(xk−1)‖2q + vk,1), if q ≤ 1/2,
Cvk,q‖κ(xk−1)‖2q, if q ≥ 1/2.

Since vk,α
k→∞−→ 0 for every α ≥ q under assumption (H2

q), the first result
follows from (71). One deduces the second inequality by checking that

|Ak,Bf(x)−Ak,Cf(x)| ≤Cπ(Dk)γk(1 + ‖κ(x)‖2q). �

Set

RB,k
3 (γk, X̄

B
k−1) =

E{f(X̄B
k )− f(X̄B

k−1)|FB
k−1}

γk
−Ak,Bf(X̄B

k−1),

RC,k
3 (γk, X̄

C
k−1) =

E{f(X̄C
k )− f(X̄C

k−1)|FC
k−1}

γk
−Ak,Cf(X̄C

k−1).

The rest of the proof then amounts to proving that

lim
n→∞

1

Hn

n
∑

k=1

ηkR
B,k
3 (γk, X̄

B
k−1) = 0
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and

lim
n→∞

1

Hn

n
∑

k=1

ηkR
C,k
3 (γk, X̄

C
k−1) = 0.

We do not detail this proof based on the same approach as the proof of
Proposition 4 (see [21] for more details). However, we want to derive the
main difficulties from the proof. For Scheme (B), one deduces from the Ito
formula that

|Rk,B
3 (γ,x)| ≤

∫ ∫ 1

0
dv

∫

π(dy)E|∆H̃f (Sx,γ,u + κ(x)Zk
vγ , x, x, y)|PU1(du).

The right-hand term can be written RB,k
3,1 (γ,x)+RB,k

3,2 (γ,x), whereRB,k
3,1 (γ,x)

[resp. RB,k
3,2 (γ,x)] is simply derived from R3,1(γ,x) [resp. R3,2(γ,x)], defined

in the proof of Proposition 3, by replacing Z with Zk. We focus on RB,k
3,1 . One

observes that the controls (65) and (66) used for R3,1 no longer work since
the jump component depends on n. An idea is to use the Skorokhod repre-
sentation theorem (see, e.g., [24]) in order to replace (Zk) by a uniformly
controllable sequence.

Lemma 9. There exist a sequence of cdlg processes (Z̃n) and a cdlg

process Z̃ such that Z̃n L
= Zn for every n ≥ 1, Z̃

L
= Z and Z̃n → Z̃ a.s. for

the Skorokhod topology. In particular,

sup
n∈N

sup
0≤s≤T

|Z̃n
s |<+∞ ∀T > 0 and

(72)
lim sup

n→+∞,γ→0
sup

0≤s≤γ
|Z̃n

s | = 0 a.s.

Proof. Zn converges locally uniformly in L2 toward Z, hence, in distri-
bution for the Skorokhod (Polish) topology. Thanks to the Skorokhod rep-

resentation theorem, there exists (Z̃n)n∈N and Z̃ with Z̃n L
= Zn and Z̃

L
= Z

such that Z̃n tends a.s. toward Z̃ for Skorokhod topology. The assertion
(72) easily follows from the continuity of α 7→ ‖α‖sup and α 7→ α(0) for the
Skorokhod topology. �

Since RB,k
3,1 only depends on the law of Zn, one can replace Zn with

Z̃n. Then, we use (72) as an alternative to the local boundedness and the
continuity at t = 0 of (Zt) needed in (65) and (66) respectively. A result

analogous to (67) follows. The idea is the same for RB,k
3,2 .

Finally, for Scheme (C), the result essentially follows from the following
remark:

sup
0<s≤t

|Zn
s∧T n | ≤ sup

0<s≤t
|Zn

s |.
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This means that the remainders in Scheme (C) are easier to control than
those of Scheme (B). For more details, we refer to [21].

6. A theoretical application. The “classical” a.s. CLT due to Brosamler
[6] and Schatte [26] is the following result. Let (Un)n∈N be a sequence of
i.i.d. random variables with values in R

d such that EU1 = 0 and ΣU1 = Id.
Then,

P-a.s
1

lnn

n
∑

k=1

1

k
δ
1/

√
k
∑k

i=1
Ui

=⇒N (0, Id).

This result is obviously connected with the central limit theorem which
expresses the fact that every square-integrable centered random variable
is in the domain of normal attraction of the normal law. When the square-
integrability no longer holds, Berkes, Horvath and Khoshnevisan [3] obtained
an extension of this result connected with the nonsquare-integrable attrac-
tive laws which are stable laws [with index α ∈ (0,2)]. We are going to show
that we can deduce this extension from Theorem 2.

Let c be a positive number and denote by (Zα,c
t )t≥0 a symmetrical one-

dimensional α-stable process such that the characteristic function φ of Zα,c
1

satisfies φ(u) = e−ρ|u|α , where ρ= 2c
∫ +∞
0 y−α siny dy. Consider a sequence

(Vn)n∈N of symmetrical i.i.d. random variables such that, for x > 0,

P(V1 ≥ x) =
c

xα
+ δ(x)(x−α(lnx)−γ)

(73)
with γ > 0 and δ(x)

x→+∞−→ 0.

By a result of Gnedenko and Kolmogorov (see [10]), we know that

V1 + · · ·+ Vn

n1/α
=⇒Zα,c

1 .

Then, the following a.s. CLT holds:

Theorem 4. Let (ηk)k∈N be a nonincreasing sequence with infinite sum
such that (kηk)k∈N is nonincreasing and set ν = L(Zα,c

1 ). Then, if γ > 1
α ,

a.s.,

1

Hn

n
∑

k=1

ηkδ(V1+···+Vk)/k1/α

(R)
=⇒ ν.

In particular,

1

lnn

n
∑

k=1

1

k
δ(V1+···+Vk)/k1/α

(R)
=⇒ ν a.s.
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In order to prove this theorem, we first need an almost sure invariance
principle due to Stout (see [27] or [3]).

Proposition 6. Let (Vn)n≥1 and (ζn)n≥1 be sequences of i.i.d. random

variables such that ζ1
L
= Zα,c

1 and V1 is defined as above. Then, if γ > 1
α , there

exists a probability space (Ω̂, F̂ , P̂) and sequences of i.i.d. random variables

(V̂n)n≥1 and (ζ̂n)n≥1 such that V̂1
L
= V1, ζ̂1

L
= ζ1 and

n
∑

i=1

ζ̂i −
n
∑

i=1

V̂i
n→+∞

= o(n1/α(lnn)−ρ) a.s. ∀ρ∈
(

0, γ − 1

α

)

.(74)

Proof of Theorem 4. First, we assume that V1 = ζ1
L
= Zα,c

1 . Set

Sn =
ζ1 + · · ·+ ζn+1

(n+ 1)1/α
∀n≥ 0.

One easily checks that Sn+1 = Sn − 1
αγn+1Sn + γ

1
α
n+1ζn+2 +Rn+1 with γn =

1
n+1 and Rn+1 =O(γ2

n+1|Sn|). The idea of the proof is to compare (Sn)n≥0

with the exact Euler scheme with initial value ζ1 and step sequence (γn)
associated with the SDE (Eα,c) defined by dXt = − 1

αXt− dt+ dZα,c
t . Since

(Zα,c
t )t≥0 is a self-similar process with index 1/α (see, e.g., [25]), its Euler

scheme can be written

X̄0 = ζ1 and X̄n+1 = X̄n − 1

α
γn+1X̄n + γ

1
α
n+1ζn+2.

As an Ornstein–Uhlenbeck process driven by a symmetric stable law, (Xt)
admits a unique invariant measure ν and ν = L(Zα,c

1 ) (see [25], page 188).
Since κ is bounded, assumptions of Theorem 2 are clearly fulfilled with
V (x) = 1+x2, a= 1 and for any p ∈ (0, α/2) and q ∈ (α/2,1). (In the rest of
the paper the initial value of the Euler scheme is supposed to be constant,
but it is obvious that Theorem 2 is still true when X̄0 is a random variable
satisfying E{|X̄0|2p}<+∞.) Hence, it follows from Theorem 2 that

1

Hn

n
∑

k=1

ηkδX̄k−1

n→+∞
=⇒ ν a.s.(75)

Then, by using that |f(Sk)− f(X̄k)| ≤C(|Sk − X̄k| ∧ 1) for every Lipschitz
bounded function f , one easily checks that Theorem 4 holds with V1 = ζ1 if

∆n := Sn − X̄n
n→+∞−→ 0 a.s.(76)

Let us show (76). One first checks that

∆0 = 0 and ∆n =

(

1− 1

α(n+ 1)

)

∆n−1 +Rn ∀n≥ 1.
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Setting k0 = inf{k ≥ 0, k − 1/α > 0}, we deduce that, for every n≥ k0 + 1,

∆n =
∆k0

cn
+

1

cn

n
∑

k=k0+1

ckRk with cn =
n
∏

k=k0+1

(

1− 1

α(k + 1)

)−1

.

One observes that

cn = exp

(

−
n+1
∑

k=k0+2

ln

(

1− 1

αk

)

)

= exp

(

1

α

n+1
∑

k=k0+2

1

k
+O

(

1

k2

)

)

n→+∞∼ C ′n1/α.

Then, ∆k0/cn → 0 a.s. Hence, (76) holds if we check that 1/cn
∑n

k=k0+1 ckRk →
0 a.s. First, if α > 1, as ζ1 is integrable and Rk =O(Sk−1/(k+ 1)2), we have

∑

k≥1

E{|Rk|} ≤ C
∑

k≥1

E{|Sk−1|}
(k+ 1)2

≤C
∑

k≥1

kE{|ζ1|}
(k+ 1)1/(α+2)

≤ C
∑

k≥1

1

(k+ 1)1+1/α
<+∞.

We deduce that
∑

k≥1 |Rk| < +∞ a.s. Since cn
n→+∞−→ +∞, we derive from

Kronecker’s lemma that

1

cn

n
∑

k=k0+1

ckRk
n→+∞−→ 0 =⇒ ∆n

n→+∞−→ 0 a.s. if α > 1.

Second, if α≤ 1, ζ1 has a moment of order θ for every θ < α. It follows from
inequality (25) that

E{|Rk|θ} ≤C
k

(k+ 1)2θ+θ/α
E{|ζ1|θ} ≤

C

(k+ 1)θ(2+1/α)−1
.

Therefore, if θ satisfies θ(2 + 1
α) − 1 > 1, that is, if 2α

2+α < θ < α, we have
∑

k≥1 |Rk|θ <+∞ a.s. Hence, by inequality (25) and Kronecker’s lemma, it
follows that

∣

∣

∣

∣

∣

1

cn

n
∑

k=k0+1

ckRk

∣

∣

∣

∣

∣

θ

≤ 1

cθn

n
∑

k=k0+1

cθk|Rk|θ n→+∞−→ 0 a.s.

and the theorem is proved when V1 = ζ1. Now, consider a sequence (Vn)n≥0

of i.i.d. symmetric random variables satisfying (73). Since Theorem 4 is

true for (ζn)n≥1, it is also true for every sequence (ζ̂n)n≥1 of i.i.d. random

variables satisfying ζ̂1
L
= ζ1. By taking (ζ̂n)n≥1 such that Proposition 6 holds,

we derive from (74) that there exists a sequence of i.i.d. random variables

(V̂n)n≥1 such that V1
L
= V̂1 and
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1

Hn

n
∑

k=1

ηkδ(V̂1+···+V̂k)/k1/α
n→+∞
=⇒ ν a.s.(77)

As (Vn)n≥1 and (V̂n)n≥1 are sequences of i.i.d. random variables such that

V1
L
= V̂1, (77) is also true for (Vn)n≥1. �

7. Simulations.

Example 4. Denote by (Zt)t≥0 a Cauchy process with parameter 1
[with Lévy measure defined by π(dy) = 1/y2 dy] and consider the Ornstein–
Uhlenbeck process solution to dXt = −Xt− dt+ dZt corresponding to (E1,1)
defined in the previous subsection. The unique invariant measure of (Xt)t≥0

is the Cauchy law (see [25], page 188) and the assumptions of Theorem 2
are fulfilled with V (x) = 1+x2, a= 1 and every p ∈ (0,1/2) and q ∈ (1/2,1).
Therefore,

ν̄n(f), ν̄B
n (f), ν̄C

n (f)
n→+∞−→

∫

f(x)

π(1 + x2)
dx a.s.

for every f satisfying f = O(|x|1/2−ε) with ε > 0. In Figures 1, 2 and 3,

Fig. 1. Scheme (A), t = 12.5.
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Fig. 2. Scheme (B), t = 16.6.

Fig. 3. Scheme (C), t = 16.4.
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Fig. 4. Scheme (A).

one compares the theoretical density of the invariant measure with the den-
sity obtained by convolution of each of the empirical measures by a Gaus-
sian kernel for N = 5.104. We choose ηn = γn = 1/

√
n, un =

√
γn [so that

π(Dn)γn → 0] and t indicates the CPU time. In order to have a more precise
idea of the differences between the three Euler schemes, we simulate and
represent on Figures 4, 5 and 6 the sequence (ν̄n(f)) with f(x) = |x|0.4, for
several choices of polynomial steps. We set γn = ηn = 1/nθ and un = γn (resp.
un =

√
γ

n
) for Scheme (B) [resp. for Scheme (C)]. We observe that, among

the tested steps, the best rate seems to be obtained for θ = 0.3. Notably, in
Schemes (B) and (C), we see that, on the one hand, if the step decreases
too slowly (e.g., θ = 0.7), so is the stabilization and, on the other hand,
if the steps decreases too fast (e.g., when θ = 0.1), there are not sufficient
variations to correct the error.

Remark 10. In [20] we study the rate of convergence of these procedures
in terms of steps, weights and truncation thresholds. This enlightens these
first numerical illustrations.

Example 5. Now we deal with the following SDE:

dXt = (1−Xt−)dt−Xt− dZt,
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Fig. 5. Scheme (B).

Fig. 6. Scheme (C).
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Fig. 7. Approximated density, N = 106.

where (Zt)t≥0 is a drift-free subordinator with Lévy measure π defined by

π(dy) =
f3/2,1/2(y)

y2
dy,

where fa,b is the density function of the β(a, b)-distribution. This SDE mod-
els the dust generated by a particular EFC process (see Introduction) whose
sudden dislocations do not create dust, having parameters (according to the
notation of [2]):

ck = 0, ce = 1, νcoag (dy) = f3/2,1/2(y)dy.

One checks that (S1,1,1/2) is satisfied with V (x) = 1 + x2. However, we do
not have κ(x) = o(|x|), but since supp(π) is restrained to [0,1] without sin-
gularities in 0 and 1, we are able to show that assumption κ(x) = o(x) is no
longer necessary in this case. In Figure 7 we represent the approximation of
the invariant measure obtained for Schemes (B) and (C) [we are not able to
simulate Scheme (A) in that case].

Acknowledgments. Thanks to Gilles Pagès for extensive discussions and
suggestions.
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differential equations. Ann. Probab. 25 393–423. MR1428514

[24] Rogers, L. C. G. and Williams, D. (1987). Diffusions, Markov Processes, and

Martingales. 2. Wiley, New York. MR0921238
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