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SINC APPROXIMATION OF THE HEAT FLUXON THE BOUNDARY OF A TWO-DIMENSIONAL FINITE SLABbyP. H. Quan, D. D. TrongHoChiMinh City National University, Department of Mathematics and Informatics227 Nguyen Van Cu, Q5, HoChiMinh City, VietnamEmail: tquan@pmail.vnn.vn&P. N. Dinh AlainMathematics Department, Mapmo UMR 6628, BP 67-5945067, Orleans cedex, FranceEmail: alain.pham@univ-orleans.frAbstract : We consider the two-dimensional problem of recovering globally in time the heat
ux on the surface of a layer inside of a heat conducting body from two interior temperaturemeasurements. The problem is ill-posed. The approximation function is represented by a two-dimensional Sinc series and the error estimate is given.Key words and phrases : heat equation, heat 
ux, Sinc series, ill-posed problem, regulariza-tion, numerical results. AMS Subjects Classi�cation : 35K05, 35K20, 35R30, 42A38Address for correspondence: Alain Pham Ngoc Dinh1. IntroductionIn this paper, we consider the problem of recovering the heat 
ux on the surface of a thinlayer inside of a heat conducting body from transient temperature measurements. The problem israised in many applications in Physics and Geology. In fact, in many physical situation (see, e.g.,[B]), we cannot attach a temperature sensor at the surface of the body (for example, the skin ofa missile). On the other hand, we can easily measure the temperature history at an interior pointof the body. Hence, to get the heating history in the body, we want to use temperature measuredin the interior of the body. In the simplest model, the heat-conducting body is assumed to have aconstant conductivity and represented by the half-line x > 0 (see, e.g. [C, EM, LN, TV]),. Whilegiving many useful results, this model is not suitable for the case of a body having a series ofsuperposed layers, each of which has a constant conductivity.Precisely, we shall consider the problem corresponding to a thin layer of the body representedby the strip R� (0; 3), say. Let u be the temperature in the strip. For the uniqueness of solution,we shall have to measure the temperature history at two interior lines R�fy = 1g and R�fy = 2g.From these measurements, we can identify uniquely the heating history inside of the layer (see, e.g.,[B]). However, to make clearly ideas, we limit to the problem of �nding the heat 
ux uy(x; 1; t) �w(x; t) on the one side of the boundary of the slab R� (1; 2). Our problem is classical and can be1



changed to the one of �nding the solution of a convolution equation of Volterra type which can besolved on any �nite time interval by the iteration (see, e.g., [F]). However, it is surprised that theproblem is ill-posed if we consider the problem on the global time interval and the literature onthis way is very scarce. In fact, despite uniqueness, the global solution in L2(R�R+) is unstabilityand hence, in this point of view, a sort of regularization is in order.As discussed in the latter paragraph, the main purpose of our paper is to present a regularizationof the problem. Moreover, an e�ective way of approximating the heat 
ux w is also worthy ofconsidering. Indeed, we recall that the problem can be changed into a convolution equation. Thereare many methods for regularizing the equation (see [TA, B]). In the present paper, using themethod of truncated integration, one can approximate the Fourier transform of the solution bya function having the compact support in R2. Therefore, the solution can be represented by anexpansion of two dimensional Sinc series (see [AGTV]). The Sinc method is based on the Cardinalfunctions S(p; d)(z) = sin[(�(z � pd))=d]�(z � pd)=d ; p 2Z; d > 0which dates back to the works of many mathematicians (Bohr, de la Vallee Poussin, E. T. Whittaker,...). The one dimensional version of the method is studied very clearly and completely in [S]. Someprimary results related to the two dimensional Sinc approximation were given in [AGTV]. As isknown, the Sinc series converges very rapidly at an incredible 0(e�cn1=2) rate, where c > 0 and nis the dimension of approximation (see [S]). Hence, this method, which is new in our knowledge, isvery e�ective.The remainder of the present paper is divided into three sections. In Section 2, we state precise-ly the problem, change it into an integral equation of convolution type, and state the main resultof our paper. In Section 3, we give the proof of the main result and in Section 4 we present somenumerical results in terms of two dimensional Sinc functions.2. Notations and the main resultConsider the problem of determining the heat 
uxuy(x; 1; t)� w(x; t); x 2 R; t > 0; (1)where u satis�es �u� @u@t = 0 x 2 R; 1 < y < 2; t > 0; (2)with the boundary conditions u(x; 2; t) = g(x; t); x 2 R; t > 0; (3)u(x; 1; t) = f(x; t); x 2 R; t > 0; (4)2



and the initial condition u(x; y; 0) = 0; x 2 R; 1 < y < 2 (5)where f; g are given.We shall transform Problem (1)-(5) into a convolution equation.Put �(x; y; t; �; �; �) = 14�(t� �) exp��(x � �)2 + (y � �)24(t� �) �and G(x; y; t; �; �; �) = �(x; y; t; �; �; �)� �(x; 4� y; t; �; �; �): (6)We have G�� + G�� + G� = 0:Integrating the identity div(Gru� urG)� @@� (uG) = 0over the domain (�n; n)� (1; 2)� (0; t� ") and letting n!1; "! 0, we have+1Z�1 tZ0 g(�; �)G�(x; y; t; �; 2; �)d�d� + +1Z�1 tZ0 G(x; y; t; �; 1; �)w(�; �)d�d�� +1Z�1 tZ0 f(�; �)G�(x; y; t; �; 1; �)d�d� + u(x; y; t) = 0:Hence +1Z�1 tZ0 G(x; y; t; �; 1; �)w(�; �)d�d� = �u(x; y; t) ++1Z�1 tZ0 G�(x; y; t; �; 1; �)f(�; �)d�d� � +1Z�1 tZ0 g(�; �)G�(x; y; t; �; 2; �)d�d�: (7)Letting y ! 1+ in (8), we have+1Z�1 tZ0 � 12�(t� �) exp��(x� �)24(t� �)�� 12�(t� �) exp��(x� �)2 + 44(t� �) ��w(�; �)d�d�3



= �f(x; t)� 12� +1Z�1 tZ0 1(t� �)2 exp��(x� �)2 + 44(t� �) � f(�; �)d�d�+ 12� +1Z�1 tZ0 g(�; �) 1(t� �)2 exp��(x� �)2 + 14(t� �) � d�d�: (8)This implies that(P �Q) � w(x; t) = �f(x; t)�R1 � f(x; t) +R2 � g(x; t) (9)where we put w(x; t) = f(x; t) = g(x; t) = 0 if (x; t) 2 R� (�1; 0),P (x; t) = ( 1t exp��x24t � (x; t) 2 R� [0;+1)0 (x; t) 2 R� (�1; 0) ;Q(x; t) = ( 1t exp��x2+44t � (x; t) 2 R� [0;+1)0 (x; t) 2 R� (�1; 0) ;R1(x; t) = ( 1t2 exp��x2+44t � (x; t) 2 R� [0;+1)0 (x; t) 2 R� (�1; 0) ;and R2(x; t) = ( 1t2 exp��x2+14t � (x; t) 2 R� [0;+1)0 (x; t) 2 R� (�1; 0) :From now on, every function ' = '(x; t) de�ned on R�R+ will be seen as a function de�nedon R2 by putting '(x; t) = 0 for t < 0.Now, we state our main result.TheoremLet a 2 (0; 2) and " 2 (0; 2�3=2). Assume that w0 2 L2(R2) is the (unique) solution of(9) corresponding to the exact data f0; g0 2 L2(R2) and that f; g 2 L2(R2) are measured datasatisfying kf � f0k2 � "; kg � g0k2 � "where k:k2 is the L2(R2)-norm.Then, from f; g, we can construct a sequence famn;"g (m;n 2Z) and a C > 0 independent of" such that 





w0 � +1Xn=�1 Xjmj�jnj amn;"S(m; �b2")(x)S(n; �b2")(t)





2 �pC"2�a + �(")4



where b" = "a=4, S(p; d)(z) = sin [�(z � pd)=d]�(z � pd)=d ; p 2Z; d > 0;and �(")! 0 as " # 0.Moreover, if we assume in addition that w0 2 L1(R2) \ H2(R2) then, for a = 43 there exists aD > 0 independent of " such that





w0 � +1Xn=�1 Xjmj�jnj amn;"S(m; �b2")(x)S(n; �b2")(t)





2 < D" 13 :ProofThe proof consists of two steps. In Step 1, we shall construct a regularized solution and in Step2, we give the error estimate.Step 1 : Construction of a regularized solutionWe have P̂ (z; r) = 12� +1Z�1 +1Z�1 P (x; t)e�i(xz+tr)dxdt= 1p2pz4 + r2 �qpz4 + r2 + z2 � isgn(r)qpz4 + r2 � z2�and Q̂(z; r) = 12� +1Z�1 +1Z�1 Q(x; t)e�i(xz+tr)dxdt= 1pz4 + r2 e�2u [u cos 2v � v sin 2v � isgn(r)(u sin 2v + v cos 2v)]where u = 1p2qpz4 + r2 + z2; v = 1p2qpz4 + r2 � z2:We put F (x; t) = �f(x; t) +R1 � f(x; t) +R2 � g(x; t);F0(x; t) = �f0(x; t) +R1 � f0(x; t) + R2 � g0(x; t):Taking the Fourier-transform of both sides of (9), we have�P̂ (z; r)� Q̂(z; r)� ŵ(z; r) = F̂ (z; r):5



It call for the following formula of the regularized equationw"(x; t) = 12� ZD" F̂ (z; r)P̂ (z; r)� Q̂(z; r)ei(xz+tr)dzdr:where b" = "a5 2 (0; 1); D" = �(z; r)=b4" � z4 + r2 � 1b4"� :We have supp ŵ" � D" � �� 1b2" ; 1b2" �� �� 1b2" ; 1b2" � :As in [AGLT], p. 121, we havew"(x; t) = +1Xn=�1 Xjmj�jnjw"(m�b2"; n�b2")S(m; �b2")(x)S(n; �b2")(t)= +1Xn=�1 Xjmj�jnj amnS(m; �b2")(x)S(n; �b2")(t)where amn = w"(m�b2"; n�b2") = 12� ZD" F̂ (z; r)P̂ (z; r)� Q̂(z; r)ei(mz+nr)�b2"dzdr: (10)Step 2 : Error estimatesNoting that �P̂ (z; r)� Q̂(z; r)� bw0(z; r) = bF0(z; r);we havekw0 � w"k22 = jbw0 � bw"j2 = ZD" ����� F̂ (z; r)� F̂0(z; r)P̂ (z; r)� Q̂(z; r) �����2 dzdr+ ZR2nD" jŵ0(z; r)j2 dzdr: (11)For (z; r) 2 D", we have���P̂ (z; r)� Q̂(z; r)��� = 1pu2 + v2p1� 2e�2u cos 2v + e�4u� 14pz4 + r2 �1� e�p2ppz4+r2+z2�� b" �1� e�p2b"� � 1� e�p2p2 b2": (12)6



On the other hand,


F̂ � F̂0


2 = kF � F0k2� [kR1k1 + 1] kf � f0k2 + kR2k1 kg � g0k2� (kR1k1 + kR2k1 + 1) ":From (11), (12) and the latter inequality, we getkw" � w0k22 � 2"2 (kR1k1 + kR2k1 + 1)2�1� e�p2�2 b4" + �(") = 2 (kR1k1 + kR2k1 + 1)2�1� e�p2�2 "2�a + �(")where �(") = RR2nD" jŵ0(z; r)j2 dzdr:Moreover, if w0 2 H2(R2), then choosing b" = " 13 < 1p2 .We havekw0 � w"k22 � 2(kR1k1 + kR2k1 + 1)2(1� e�p2)2b4" "2 + Zz4+r2<b4" jŵ0(z; r)j2 dzdr+ Zz4+r2> 1b4" jŵ0(z; r)j2 dzdr: (13)Note that if b" < 12 and z4 + r2 < b4", then z2 + r2 < b2"p2, henceZz4+r2<b2" jŵ0(z; r)j2 dzdr � 2 kw0k21 �b2": (14)On the other hand if b" < 12 and z4 + r2 > 1b4" , then z2 + r2 > 1b2" , thereforeZz4+r2> 1b4" jŵ0(z; r)j2 dzdr � Zz4+r2> 1b4" (z2 + r2)2 jŵ0(z; r)j2(z2 + r2)2 dzdr � b4"E (15)where E = 

(z2 + r2)ŵ0(z; r)

22 :By (13)-(15), we havekw0 � w"k22 � 2(kR1k1 + kR2k1 + 1)2(1� e�p2)2b4" "2 + �2kw0k21 � +E� b2" � D2" 23 :where D = max(p2 (kR1k1 + kR2k1 + 1)1� e�p2 ;q2 kw0k21 � +E) :The proof of theorem is completed. 7



4. Numerical resultsWe present some results of numerical comparison of the regularized representation of thesolution given by (10) and the corresponding exact solution of the problem.Let the problem �u� @u@t = 0; (x; y) 2 R� (0; 3); t > 0 (16)u(x; 1; t) = 1t e�x2�14t ; u(x; 2; t) = 1t e�x2�44t ; u(x; y; 0 = 0 (17)whose the unknown is w(x; t) = uy(x; 1; t) (18)The exact solution of this problem is w(x; t) = �12t2 e�x2�14t :The approximated solution is calculated from the expansion of two-dimensional Sinc series givenby (10) in whichF̂ = e�uu2 + v2 h(�u� �vi� i(�v + �u)i + "�pr2 + 1pz2 + 1� = e�2u cos 3v � cos v ; � = e�2u sin 3v � sin vP̂ � Q̂ = a1 + ib1 wherea1 = u� e�2u(u cos2v � v sin v); b1 = sgn(r)[�v + e�2u(v cos 2v + u sin 2v)].Thus we have 


F̂ � F̂0


L2(R2) = "which is a perturbation similar to the one operated on the two given functions f and g.With " = 150 ; N = 50 (the size of the double series) and for (x; t) 2 [0; 2]� [0; 2] we have drawnthe corresponding approximate surface solution (x; t) �! w"(x; t) in Fig.1.To calculate the double integral in (10) we have used the rectangle rule which gives goodaccuracy if one integrates on the interval ["; 1="] � ["; 1="]. The time of calculus with a goodcomputer is very long: 2 hours for 900 points M = (x; t) 2 [0; 2]� [0; 2]. It is the reason for whichwe are limited ourselves to a relatively small size of the double series (N = 20). For comparison inFig.2 we have drawn the exact solution (x; t) �! w(x; t).8
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Fig.2Using the same method as previously we have drawn in Fig.3 the surface (x; t) 2 [0; 4]�[0; 4]�!w"(x; t) which is the regularization of the following problem�u� @u@t = 0; (x; y) 2 R� (0; 3); t > 0u(x; 1; t) = 0; u(x; 2; t) = 1t e�x2�44t (1� e�1t ); u(x; y; 0 = 0 (19)the unknown being w(x; t) = uy(x; 1; t). The exact solutionw(x; t) = 1t2 e�x2�14t :is represented in Fig.4. 10



0

1

2

3

4

0

1

2

3

4
−1

0

1

2

3

4

x

approximate solution

t

w

Fig.3
11



0

1

2

3

4

0

1

2

3

4

5
0

1

2

3

4

5

6

7

x

exact solution

t

w

Fig.4
12



REFERENCES[AGVT] D. D. Ang, R. Goren
o, L. K. Vy and D. D. Trong. Moment theory and some InverseProblems in Potential Theory and Heat Conduction, Lecture Notes in Mathematics 1792, Springer,(2002).[B] J. V. Beck, B. Blackwell and C. R. St. Clair, Jr., Inverse Heat Conduction, Ill-posedProblem, Wiley, New York, (1985).[C] A. Carasso, Determining surface temperatures from interior observations, SIAM J. Appl.Math. 42 (1981), 558-547.[E] Erdelyi et al., Tables of Integral Transforms, Vol. 1, Mc Graw-Hill, New York, (1954).[EM] H. Engl and P. Manselli, Stability estimates and regularization for an inverse heat con-duction problem, Numer. Funct. Anal. and Optim. 10 (1989), 517-540.[F] A. Friedman, Partial Di�erential Equations of Parabolic Type, Englewood Cli�., N. J.,(1964).[LN] T. T. Le and M. P. Navarro, Surface Temperature From Borehole Measurements : Regu-larization and Error Estimates, Internl. J. Math and Math Sci. (1995).[S] Stenger Fr., Numerical methods based on Sinc and analytic functions, Springer Verlag, Berlin- Heidelberg - New York, (1993).[TA] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, Winston, Washington,(1977).[TV] G. Talenti and S. Vessella, Note on an ill-posed problem for the heat equation, J Austral.Math. Soc. 32 (1981), 358-368.
13


