Exponential growth of Lie algebras of finite global dimension

Abstract : Let $X$ be a finite simply connected CW complex of dimension $n$. The loop space homology $H_*(\Omega X;\mathbb Q)$ is the universal enveloping algebra of a graded Lie algebra $L_X$ isomorphic with $\\pi_{*-1} (X)\otimes \mathbb Q$. Let $Q_X \subset L_X$ be a minimal generating subspace, and set $\alpha = \limsup_i \frac{\log\mbox{\scriptsize rk} \pi_i(X)}{i}$. Theorem: If $\mbox{dim}\, L_X = \infty$ and $\limsup (\mbox{dim} ( Q_X)_k)^{1/k} < \limsup (\mbox{dim} (L_X)_k)^{1/k}$ then $$\sum_{i=1}^{n-1} \mbox{rk} \pi_{k+i}(X) = e^{(\alpha + \varepsilon_k)k} \hspace{1cm} \mbox{where} \varepsilon_k \to 0 \mbox{as} k\to \infty.$$ In particular $\displaystyle\sum_{i=1}^{n-1} \mbox{rk} \pi_{k+i}(X)$ grows exponentially in $k$.
Type de document :
Autre publication
213. Prépub. Math. Angers, 213. 2005
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00008857
Contributeur : Secrétariat Math. Angers <>
Soumis le : lundi 19 septembre 2005 - 12:08:15
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : jeudi 1 avril 2010 - 22:28:04

Fichiers

Identifiants

Collections

Citation

Yves Félix, Steve Halperin, Jean-Claude Thomas. Exponential growth of Lie algebras of finite global dimension. 213. Prépub. Math. Angers, 213. 2005. 〈hal-00008857〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

126