Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Other publications

Exponential growth of Lie algebras of finite global dimension

Abstract : Let $X$ be a finite simply connected CW complex of dimension $n$. The loop space homology $H_*(\Omega X;\mathbb Q)$ is the universal enveloping algebra of a graded Lie algebra $L_X$ isomorphic with $\\pi_{*-1} (X)\otimes \mathbb Q$. Let $Q_X \subset L_X$ be a minimal generating subspace, and set $\alpha = \limsup_i \frac{\log\mbox{\scriptsize rk} \pi_i(X)}{i}$. Theorem: If $\mbox{dim}\, L_X = \infty$ and $\limsup (\mbox{dim} ( Q_X)_k)^{1/k} < \limsup (\mbox{dim} (L_X)_k)^{1/k}$ then $$\sum_{i=1}^{n-1} \mbox{rk} \pi_{k+i}(X) = e^{(\alpha + \varepsilon_k)k} \hspace{1cm} \mbox{where} \varepsilon_k \to 0 \mbox{as} k\to \infty.$$ In particular $\displaystyle\sum_{i=1}^{n-1} \mbox{rk} \pi_{k+i}(X)$ grows exponentially in $k$.
Document type :
Other publications
Complete list of metadata

Cited literature [9 references]  Display  Hide  Download
Contributor : Secrétariat Math. Angers Connect in order to contact the contributor
Submitted on : Monday, September 19, 2005 - 12:08:15 PM
Last modification on : Wednesday, October 20, 2021 - 3:18:42 AM
Long-term archiving on: : Thursday, April 1, 2010 - 10:28:04 PM





yves Félix, Steve Halperin, Jean-Claude Thomas. Exponential growth of Lie algebras of finite global dimension. 2005. ⟨hal-00008857⟩



Record views


Files downloads