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ABSTRACT

An average Reynolds equation for predicting the effects of deterministic periodic roughness, taking
JFO mass flow preserving cavitation model into account, is introduced based upon double scale analysis
approach. This average Reynolds equation can be used both for a microscopic interasperity cavitation
and a macroscopic one. The validity of such a model is verifiedby numerical experiments both for one
dimensional and two dimensional roughness patterns.
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NOMENCLATUREA", B", Ai, Bi = partial differential operatorsa?ij, a?i , a0i = auxiliary homogenized coefficientsA?ij, B?i , B0i = homogenized coefficientsh1, h2 = description of the gaph, h" = actual gaphs = smooth part of the gaphr = amplitude of the roughnessp = pressurep0, p1... = approximations of the pressureQ = input flow valueU = velocityx = (x1; x2) = dimensionless space coordinatesy = (y1; y2) = microscale coordinatesX = (X1; X2) = oblique coordinatesX 0 = (X 01; X 02) = real coordinatesY =℄0; 1[�℄0; 1[ = rescaled microcell = obliqueness angle�=�n = normal derivative� = viscosity" = roughness spacing� = saturation�0 = microscopic homogenized saturation�, �1,�2 = macrohomogenized saturationswi, �0i = auxiliary functions defined onY� Y = average operator with respect toy[�℄Y1 = average operator with respect toy1[�℄Y2 = average operator with respect toy2
0 Introduction

The effects of the surface roughness on the behavior of a thinfilm flow has long been the subject of intensive
studies. Various ways have been introduced to study Reynolds roughness by seeking an average equation with
smooth coefficients. Some of the most popular results are theChristensen formula [1] for longitudinal and trans-
verse roughness and the Patir and Cheng flow factor model [2] for a more general surface roughness pattern. Two
wide classes of results can be outlined. In the first one, which is deterministic, a periodic description of the sur-
faces is often assumed to be known and linked to a specific process of the surface [3]. It is possible to distinguish
macrovariables and microvariables and to use a mathematical homogenization approach to rigorously obtain an
average Reynolds equation by making the period of the roughness tend to zero [4]. The coefficients of this aver-
age Reynolds equation implicitly contain the description of the microroughness elementary cell. The second class
of results deals with a statistical description of the surface roughness. Following the Patir and Cheng approach,
numerous authors proposed an average Reynolds equation in which the coefficients included the knowledge of the
surface statistics by way of flow factors which can be evaluated by numerical experiments. Rigorously speaking,
this approach is less satisfactory than the first one, assuming a priori the existence of a control volume in which
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the average flow rates can be equivalently expressed in termsof flow factors. The number and quantities (Peklenik
number, combined root mean square roughness...) involved in the characterization of the flow factors can also be
discussed. Moreover, as the initial Reynolds equation, theaverage Reynolds equation can be expressed in terms
of r � (Krp) = F in whichK is a diagonal matrix. This seems to be contradictory with theresult obtained by
the first approach in whichK is a non diagonal matrix for two dimensional general roughness pattern [5].

Up to now, these averaging processes never take cavitation into account. A common procedure is to use the
average equation instead of the classical Reynolds equation with Gumbel and Swift Steiber boundary conditions
or to include it in the S.O.R. algorithm proposed by Richardson, thus obtaining the splitting of the lubricated
device in two areas. In a first area, the pressure is greater than the cavitation pressure and the average Reynolds
equation is valid; in the other area, pressure is equal to thecavitation pressure. It is well known [6–8], however,
that none of these models is mass preserving, especially through the cavitation area. Jakobsson, Floberg and Ols-
son (JFO) [9,10] developed a set of conditions for the cavitation boundary that properly takes the conservation of
mass into account in the entire device. Elrod [11,12] proposed a slightly modified formulation and a related spe-
cific algorithm. The mathematical related problem evidencea hyperbolic-parabolic feature which renders difficult
both theoretical study and numerical experiments [7, 13–15]. It is the goal of this paper to develop in a rigorous
way an average JFO Reynolds equation for the deterministic periodic roughness pattern. So far, few papers have
been devoted to such a problem. Recently, the interasperitycavitation has been studied by way of a statistical
approach [16, 17]. The Patir and Cheng flow factor method is extended and an average Reynolds equation is
proposed. The resulting equation has the same left-hand side that in the Patir and Cheng equation (cavitation
has no effect on the corresponding flow factors) while the right-hand side of the equation is modified and new
flow factors are introduced. At last Harp and Salant [17] proposed to modify the boundary conditions by a value
which is a function of the wavelength of the roughness. Our approach is quite different and explicitly based upon
the introduction of fast and slow variables. The initial equation is rewritten in terms of these two variables and
asymptotic expansion of the pressure is introduced with respect to a small parameter associated to the roughness
wavelength. The goal is to find an equation satisfied by the first terms of the expansion. Some assumptions about
the shape of the roughness appear to be necessary to solve theproblem, leading to a new average Reynolds cavi-
tation equation. This equation has numerous common features with the initial Reynolds equation: it is also a two
unknowns pressure-saturation formulation. Some particular cases - transverse, longitudinal roughness patterns -
will be studied in details.

1 Basic equations
Our studied cavitation model, like the Elrod algorithm and its variants, views the film as a mixture. It does

not, however, make the assumption of liquid compressibility in the full film area as in [15] and some other papers.
As in [18,19], only the liquid-vapor mixture in the cavitated region is assumed compressible. The flow obeys the
following “universal” Reynolds equation (here written in adimensionless form) through all the gap in which the
pressure cavitation is assumed to be zero in the cavitation area2Xi=1 ��xi  h3 �p�xi! = ��h�x1 ; (1)p � 0; (2)0 � � � 1; (3)
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p (1� �) = 0: (4)

In this steady state isoviscous version of the equation,p is the pressure,� is the relative mixture density,h the
film thickness,x1 is the direction of the effective relative velocity of the shaft, whilex2 is the transverse direction.

This system of equations can be understood as follows (see [7,9–12,14,18] for various comments and meaning
of the� variable):� the well-known Reynolds equation holds in the full film region, that isp > 0 and� = 1,� a mass flow conserving equation��h=�x1 = 0 holds in the cavitated region withp = 0 and0 < � < 1.� a boundary condition which is also mass flow preserving at the(unknown) interface between the two regions:�h3 �p�n + h os(n; x1) = �h os(n; x1):

The reason to retain this specific cavitation equation is that it has been the subject of numerous mathematical
studies [7] giving a strong and rigorous basis to the following manipulations [20]. To be noticed, however, that
our approach can be applied without difficulty to other cavitation models as the one in [15]. Last, it has to be
mentioned that this equation takes both macrocavitation (associated to the occurrence of a diverging part of a
bearing for example) and interasperity cavitation into account.

The boundary conditions depend on the considered device. However, the following ones are often used,
corresponding for example to a journal bearing with an axialsupply groove. The pressure is imposed at two
circumferential locations and one axial location. The lastboundary condition is an input flow condition at the
axial location corresponding to the supply groove:�(x)h(x)� h3(x) �p�x1 (x) = Q: (5)

For small values ofQ, starvation may occur in the vicinity of the supply groove.

2 Asymptotic expansion
Let us suppose that the roughness is periodically reproduced in the twox1 andx2 directions from an ele-

mentary cellY (or “miniature bearing” in Tonder’s terminology). We denote by " the ratio of the homothetic
transformation passing from the elementary cellY = Y1�Y2 to the real bearing and byy1 = x1=" andy2 = x2="
the local variables (see FIG. 1).

Let us now consider shapes that can be written ash"(x) = h(x; x="). We suppose furthermore that they are
described as h"(x) = h1 �x; x1" � h2 �x; x2" �
which allows us to take into account either transverse or longitudinal roughness, but also more general two di-
mensional roughness. Introducing now the fast variablesy1 andy2, it appears that the new expression for the gap
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Figure 1. Macroscopic domain and elementary cells

is: h(x; y) = h1 (x; y1)h2 (x; y2) : (6)

The combined computation in terms of(x1; x2) or (y1; y2) is an important feature of the method. It is conve-
nient to consider firstx andy as independent variables and to replace nexty by x=" (see [4]).

2.1 Formulation of average equations

We denote byA" the initial differential Reynolds operatorA"[�℄ = 2Xj=1 ��xj  h3 �x; x"� � [�℄�xj ! ;
and we also define the right-hand side operatorB"[�℄ = ��x1 �h�x; x"� [�℄� :

The Reynolds equation (1) becomes A"(p) = B"(�):
5



The underscript" indicates the dependance of the real pressure on the microtexture related to". We also define
the following operators: A1[�℄ = 2Xj=1 ��yj  h3 (x; y) � [�℄�yj ! ;A2[�℄ = 2Xj=1 ��yj  h3(x; y)� [�℄�xj !+ 2Xj=1 ��xj  h3(x; y)� [�℄�yj ! ;A3[�℄ = 2Xj=1 ��xj  h3(x; y)� [�℄�xj ! ;
and also Bi1[�℄ = ��yi (h(x; y) [�℄ ) ; i = 1; 2;Bi2[�℄ = ��xi (h(x; y) [�℄ ) ; i = 1; 2:

If applied to a function of(x; x="), the operators becomeA" = �1="2 A1 + 1=" A2 + A3� ; (7)B" = �1=" B11 +B12� : (8)

We shall look for an asymptotic expansion of the solutionsp(x) = p0(x; x" ) + "p1 �x; x"�+ "2p2 �x; x"�+ :::; (9)�(x) = �0 �x; x"� ; (10)

each unknownpi and�0 being a function of(x; y). The problem of the boundary conditions to be satisfied by thepi is somewhat difficult but may be summarized as follows.

(i) The natural boundary conditions on(p"; �") are assigned top0 and an equivalent saturation linked to�0, which
will be developped in next subsection.

(ii) The functionpi, i � 1, areY periodic, i.e. periodic in the two variablesy1, y2, for each value of(x1; x2).
To be noticed that unlike ofp, we do not introduce an asymptotic expansion for�. This can be explained by
observing the evolution ofp and� as" tends to 0 (see FIG.2 for instance). Clearly, the oscillations of the pressure
are decreasing andp tends to a smooth function (namelyp0 which, actually, does not depend on the fast variable
as it will be pointed out further). This is not the case for� and an asymptotic smooth limit cannot be considered.
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We shall see later that the functionspi, i � 1, are defined up to an additive constant. Moreover, from Equations
(2)–4), the following properties hold: p0(x; y) � 0; (11)0 � �0(x; y) � 1; (12)p0(x; y) (1� �0(x; y)) = 0: (13)

Putting Equations (9) and (10) into Equation (1) and taking account of Equations (7) and (8), one can write
by an identification procedure: A1p0 = 0; (14)A1p1 + A2p0 = B11�0; (15)A1p2 + A2p1 + A3p0 = B12�0: (16)

Let us remark that these equations are of the following type:For a givenF , find a functionq, depending on
the variabley, q beingY periodic, such that (x is a parameter),A1q = F: (17)

A condition to have a solution for Equation (17) isZY F (x; y)dy = 0: (18)

Moreover, ifq is a solution, thenq+  with  any constant with respect toy is also a solution. Applying Condition
(18) to Equation (14), we deduce thatp0 does not depend onyp0(x): (19)

Let us suppose now thatp0 is known, and noticing that, due to boundary conditions,(B11�0 � A2p0) satisfies
Equation (18), existence ofp1 is guaranteed. Now we can representp1 as a function ofp0 in a more usable form.
We definewi and�0i (i = 1; 2) as theY periodic solutions (up to an additive constant) of the following local
problems: A1 wi = �h3�yi ; i = 1; 2; (20)A1 �0i = ��0h�yi ; i = 1; 2: (21)
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The solution of Equation (15) reduces top1(x; y) = �01(x; y)� �p0�x1 (x)w1(x; y)� �p0�x2 (x)w2(x; y): (22)

The same procedure can be used to ensure the existence ofp2, but in that step, the corresponding condition
(18) applied to Equation (16) becomesZY (B12�0 � A2p1 � A3p0) dy = 0: (23)

Then the main idea is to put Equation (22) into Equation (23),so that the only remaining unknowns arep0 and�0.
By analogy with the probabilistic framework, we denote byuY the local average of anyY periodic functionu: uY (x) = 1[Y ℄ ZY u(x; y) dy:
By exchanging the integral and the derivation symbols, and after some calculations, Equation (23) becomesXi;j ��xi  A?ij �p0�xj! =  �B01�x1 + �B02�x2 ! ; (24)

where (i; j = 1; 2 andj 6= i) A?ii = h3Y � h3�wi�yi Y ;A?ij = �h3 �wj�yi Y = �h3�wi�yj Y = A?ji;
and also B01 = �0hY � h3��01�y1 Y ;B02 = �h3��01�y2 Y :

Equation (24) deals with any periodic roughness pattern. Tobe noticed is the fact that the differential operator
is no more of the Reynolds type since extra terms�2p0=�xi�xj appear. The right-hand side also contains an
additive term in thex2 direction. However, the link betweenp0 and�0 is not so clear. This is a major obstacle
which prevents from getting a tractable equation. Nevertheless, Assumption 6 allows us to solve the following
difficulties:
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� Computation ofA?ii, i = 1; 2:
Let us recall Equation (20) withi = 1:��y1  h3�w1�y1 !+ ��y2  h3�w1�y2 ! = �h3�y1 :
Sinceh3�w1=�y2 is Y periodic, averaging this equation overY2 gives��y1  "h3�w1�y1 #Y2! = � [h3℄Y2�y1 ;
where[�℄[Yi℄ is the averaging operator overYi (for i = 1; 2).
Thus we have, by integrating in they1 variable and using Equations(6):"h3 � h3�w1�y1 #Y2 = C1;
whereC1 is a constant with respect toy. Let us notice that, averaging the earlier equation overY1 simply givesC1 = A?11. Thus, it remains to calculateC1. Dividing each side of the previous equation byh31:hh32iY2 � "h32�w1�y1 #Y2 = C1h31
and, sincew1 is Y periodic, averaging overY1 givesA?11 = h32Yh�31 Y : (25)

Following the same procedure, we state: A?22 = h31Yh�32 Y : (26)� Computation ofA?ij, i 6= j:
Starting from Equation (20) withi = 1, sinceh3 � h3�w1=�y1 is Y periodic, averaging this equation overY1
gives ��y2  "h3�w1�y2 #Y1! = 0:
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Thus we have, by integrating in they2 variable"h3�w1�y2 #Y1 = C2;
whereC2 is a constant with respect ofy. Similarly to the computation ofA?ii, one hasC2 = A?12 = A?21.
Dividing each side of the equation byh32: C2h32 = "h31�w1�y2 #Y1 ;
and, sincew1 is Y periodic, averaging overY2 givesC2a�11 Y = 0, i.e.A?12 = A?21 = 0: (27)

Now, it remains to calculate the right-hand side of the Reynolds equation.� Computation ofB01 :
Let us recall Equation (21) withi = 1:��y1  h3��01�y1 !+ ��y2  h3��01�y2 ! = ��0h�y1 :
Sinceh3��01=�y2 is Y periodic, averaging this equation overY2 gives��y1  "h3��01�y1 #Y2! = � [�0h℄Y2�y1 :
Thus we have, by integrating in they1 variable:"�0h� h3��10�y1 #Y2 = C3;
whereC3 is a constant with respect toy. Clearly, we haveC3 = B01 . Dividing each side of the equation byh31:"�0hh31 #Y2 � "h32��01�y1 #Y2 = C3h31 ;

10



and, since�01 is Y periodic, averaging overY1 gives�0h=h31Y = C3h�31 Y
, i.e.B01 =  �0h2h21 !Yh�31 Y (28)� Computation ofB02 :

Starting from Equation (21) withi = 1, since the functionh3 � h3��01=�y1 is Y periodic, averaging this
equation overY1 gives ��y2  "h3��01�y2 #Y1! = 0:
Thus we have, by integrating in they2 variable:� "h3��01�y2 #Y1 = C4;
whereC4 is a constant with respect ofy. We haveC = B02 . Then dividing each side byh32:C4h32 = "h31��01�y2 #Y1 ;
and, since�01 is Y periodic, averaging overY2 givesC4h�31 Y = 0, i.e.B02 = 0: (29)

Now, it is obvious that Equation (24) can be written in a more simple way by using Equations (25)–(29).
Before that, let us write the termB01 in a more usable form. Defining the quantitiesB?1 = h�21 Yh�31 Y h2Y ; (30)� = 1h2Y h�21 Y  �0h2h21 !Y ; (31)

we getB01 = �B?1 . Moreover, from Equations (12) and (13), we immediately have:0 � �(x) � 1; (32)p0(x) (1� �(x)) = 0; (33)
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so that the homogenized equations appear to be2Xi=1 ��xi  A?ii�p0�xi! = ��B?1�x1 ; (34)p0 � 0; (35)0 � � � 1; (36)p0 (1� �) = 0; (37)

whereA?11, A?22 andB?1 are, respectively, given by Equations (25), (26) and (30). Moreover, the link between a
new (smooth) “macroscopic” saturation� and the (oscillating) “microscopic” saturation�0 is given by Equation
(31). As an important feature,� is not the average of the microscopic saturation�0.
2.2 Average boundary condition

When the pressure is imposed, the corresponding average boundary condition is assigned top0. When an
input flow is given on a supply line, the average flow conditionis obtained following the asymptotic expansion
method. Taking account of roughness patterns, Equation (5)becomes:�(x)h�x; x"�� h3 �x; x"� �p�x1 (x) = Q: (38)

Putting Equations (9) and (10) into Equation (38), one can write by an identification procedure:�0(x; y)h(x; y)� h3(x; y) �p0�x1 (x) + �p1�y1 (x; y)! = Q:
Putting Equation (22) into it gives �0h� h3��01�y1 !�  h3 � h3�w1�y1 ! �p0�x1 +  h3�w2�y1 ! �p0�x2 = Q:
Averaging overY gives the boundary condition relatingp0 and� at the supply groove:B01 � A?11 �p0�x1 � A?12 �p0�x2 = Q;

and sinceA?12 = 0 andB01 = �B?1 , one gets:�B?1 � A?11 �p0�x1 = Q: (39)

The next subsection deals with two main particular cases: transverse or longitudinal roughness.
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2.3 Particular cases� Transverse roughness: when the roughness does not depend ony2, we have the homogenized equation, easily
deduced from Equations (25)–(31)��x1  1h�3Y �p0�x1!+ ��x2  h3Y �p0�x2! = ��x1 0��h�2Yh�3Y 1A ;
with � = 1h�2Y  �0h2!Y

and the boundary condition at the supply groove, deduced from Equation (39), should

be read as: �h�2Yh�3Y � 1h�3Y �p0�x1 = Q:� Longitudinal roughness: when the roughness does not dependony1, we get��x1  h3Y �p0�x1!+ ��x2  1h�3Y �p0�x2! = ��x1 ��hY � ;
with � = �0hYhY , and the boundary condition at the supply groove should be read as:�hY � h3Y �p0�x1 = Q:

3 Oblique roughness
Let us consider gaps that can be written as:h"(x) = h1  x; X1(x)" !h2  x; X2(x)" ! ;

with (X1(x) = os  x1 + sin  x2;X2(x) = � sin  x1 + os  x2;
which allows us to take into account oblique roughness (withh2 � 1 for instance). The idea is to introduce a
change of coordinates so that the assumption of Section B.2 on the roughness form in the new coordinates system
is valid. The first step is to rewrite Equation (1) in theX coordinates:2Xi=1 ��Xi  h3" �p�Xi! =  ��h"�X1 os  � ��h"�X2 sin ! :
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Working now in theX coordinates and using the operators defined in Section B.2 (up to the writing in theX
coordinates), we apply the asymptotic expansion techniqueto the earlier equation. With the formal asymptotic
expansion used in Section B.2, we have in the(X; y) coordinates (withy = X="):A1p0 = 0; (40)A1p1 + A2p0 = B11�0 os  � B21�0 sin ; (41)A1p2 + A2p1 + A3p0 = B12�0 os  � B22�0 sin : (42)

As in Section B.2,p0 only depends on theX variable. Equation (41) allows us to determinep1:p1(X; y) = �01(X; y) os  � �02(X; y) sin  � w1(X; y) �p0�X1 (X)� w2(X; y) �p0�X2 (X):
Then, putting the earlier expression into Equation (42) gives:Xi;j ��Xi  a?ij �p0�Xj! = ��X1 �b011 os  + b012 sin �+ ��X2 �b021 os  + b022 sin � ;
where the coefficients, which are easily computed as in Section B.2, are given by (i; j = 1; 2, i 6= j):a?ii = h3Y � h3�wi�yi Y = h3j Yh�3i Y ; (43)a?ij = � h3�wj�yi Y = 0; (44)

and also (i; j = 1; 2, i 6= j) b0ii = �0hY � h3��0i�yi Y = 1h�3i Y  �0hjh2i !Y ; (45)b0ij = � h3��0i�yj Y = 0: (46)

Finally, as in Section B.2, defining the quantitiesb?i = h�2i Yh�3i Y hjY ; (47)�i = 1hjY h�2i Y  �0hjh2i !Y ; (48)
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one hasb0ii = �i b?i , with p0(1� �i) = 0 and0 � �i � 1.
Finally, going back to the initialx coordinates, one gets the following homogenized problem:Xi;j ��xi  A?ij �p0�xj! =  �B01�x1 + �B02�x2 ! ; (49)p0 � 0; (50)0 � �i � 1; (i = 1; 2); (51)p0 (1� �i) = 0; (i = 1; 2); (52)

with the left hand-side coefficients:A?11 = a?11 � (a?11 � a?22) sin2 ;A?22 = a?22 + (a?11 � a?22) sin2 ;A?12 = A?21 = (a?11 � a?22) sin  os ;
and the right hand-side member:B01 = �1b?1 � (�1b?1 ��2b?2) sin2 ;B02 = (�1b?1 ��2b?2) sin  os ;
the coefficientsa?ii, b?i (i = 1; 2) being given by Equation (43)1 and Equation (47)1 in thex coordinates. The link
between the “microscopic saturation”�0 and the two “macroscopic saturations”�i (i = 1; 2) is given by Equation
(48)1.

At first glance, Equation (49) is very similar to (24). A majordifference however is the anisotropic aspect of
the saturation with two saturation functions�i (i = 1; 2), one for each direction.

From a mathematical point of view, it is not clear wether the system of Equations (49)–(52) is a closed one or
not: is a supplementary equation needed to obtain a well-posed problem or not? Nevertheless, it can be proved that�1 = �2 is a possible choice for a solution of the system. With this assumption, it is possible to solve Equations
(49)–(52) by using the kind of algorithms as the ones used to solve Equations (1)–(4). The only difference lies in
the modified coefficients and the fact that the direction of the flow is no longer thex1 axis but an oblique one.

4 Numerical results
As both Equations (1) and (24) have the same mathematical feature, various algorithms (see [6, 7, 11, 13, 15,

18, 21]) used to compute solutions of Equations (1)–(4) can be adressed for the solution of Equation (24). In this
paper, we propose the characteristics method adapted to steady state problems to deal with nonlinear convection
term combined with finite elements. Moreover, the nonlinearElrod-Adams model for cavitation is treated by a
duality method. The combination of these numerical techniques has been explained and successfully applied by
Bayada, Chambat and Vazquez in [22].1to be translated in thex coordinates
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4.1 Computation of homogenized coefficients
We consider effective gaps defined with either transverse orlongitudinal roughness patterns.
Table 1 summarizes homogenized coefficients obtained for transverse and longitudinal cases:

Transverse roughnessLongitudinal roughnessh(x; y) hs(x) + hr sin (2�y1) hs(x) + hr sin (2�y2)A?11(x) 2(hs(x)2 � h2r)5=22hs(x)2 + h2r hs(x)3 + 32 hs(x) h2rA?22(x) hs(x)3 + 32 hs(x) h2r 2 (hs(x)2 � h2r)5=22hs(x)2 + h2rB?1(x) 2hs(x) hs(x)2 � h2r2hs(x)2 + h2r hs(x)
Table 1. Homogenized coefficients

The coefficients corresponding to assumption (6) can be easily obtained from the ones that are presented in
Table 1, using products taking account of roughness effectsin each direction.

The coefficients corresponding to oblique roughness can be obtained by using products and linear combina-
tions of coefficients given in Table 1.

4.2 Transverse roughness tests
We adress the numerical simulation of journal bearing devices with axial supply of lubricant. Indeed we

simulate a journal bearing device whose length is denotedL, the mean radiusRm = (Rb + Rj)=2, Rb andRj
being the bearing and journal radii respectively, and the clearance is = Rb � Rj. The supply flow isQR, the
lubricant viscosity is� and the velocity of the journal isU . Moreover, the roughless gap between the two surfaces
is given by: Hs(X 0) =  1 + � os X 01Rm!! ; X 0 = (X 01; X 02) 2 (0; 2�Rm)� (0; L)
where the eccentricity� satisfies0 � � < 1. The classical Reynolds problem, in real variablesX 0 = (X 01; X 02),
should be posed as follows: r � �H3s6�rP� = U ��X 01��Hs� (53)P � 0; 0 � � � 1; P (1� �) = 0; (54)

with the boundary conditions P = 0; (55)
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except on the supply groove in which U�Hs � H3s6� �P�X 01 = QR: (56)

Now let us introduce the dimensionless coordinates and quantities that provide the effective system to be
solved: x1 = X 01Rm ; x2 = X 02Rm ; hs = Hs ;p = 26�URm P; Q = QRU ; � = RmL :
Then, the dimensionless Reynolds problem becomes forx 2 (0; 2�)� (0; �):r � �h3srp� = ��x1 ��hs�; (57)p � 0; 0 � � � 1; p (1� �) = 0; (58)

with the boundary conditions �hs � h3s �p�x1 = Q; (59)

on the boundary corresponding to the dimensionless supply groove (namelyf0g � (0; �)), and the conditionp = 0; (60)

on the other boundaries. The roughless gap is nowhs(x) = 1 + � os (x1). For the numerical tests, we have
worked on the dimensionless equations, with the following data:� � = 1, i.e.Rm = L.� The domain being(0; 2�)� (0; 1), the rough dimensionless gap is given by:h(x; x=") = hs(x) + hr(x=") = 1 + � os(x1) + (1� �)� sin�2�x1" � ;

with � = 0:75, � = 0:7, hs (respectivelyhr) denoting the smooth (respectively rough) contribution tothe gap.� The dimensionless flow at the supply groove isQ = �inhs(0) with �in = 0:4571.

For various values of", FIG.2 represents the behavior of both pressure and saturation.In particular, it justifies the
formal asymptotic expansion used in Section B.2. Three mainfacts have to be observed:
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Figure 2. Pressure and saturation at x2 = 0:5 for different roughness periods

1= The oscillations of the pressure tend to vanish, thus showing thatp tends to a smooth limit pressure (i.e.p0(x)).2= The oscillations of the saturation do not vanish; the gradient tends to explode. Thus,�(x) behaves like a
function which depends on both slow and fast variables (i.e.�0(x; y)).3= The existence of two cavitation areas at both extremities ofthe bearing (starvation phenomenon).

FIG.2 allows us not only to compare more precisely the convergence of the pressure to the homogenized one,
but also to observe the behaviour of the saturation. The homogenized saturation may be viewed as an average,
with respect toy, of the microsaturation weighted by roughness parameters.
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4.3 Two dimensional roughness effects

The only difference with the previous subsection lies in thedefinition of the dimensionless gaph(x; y) defined
by Assumption 6, other data being unchanged:h1(x; y1) = 1 + 0:5 os(x1) + 0:35 sin (2�y1) ;h2(x; y2) = 1 + 0:35 sin (2�y2) :

FIG.3 represents the pressure at a fixedx1 (notice that the corresponding saturation figure is omitted, since
there is nearly no cavitation).

FIG.4 and 5 represent pressure and saturation at a fixedx2, for various values of" as well as the homogenized
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Figure 3. Hydrodynamic pressure with 2D roughness patterns at x1 = 2:639
curves. Due to the number of discretized elements for solving the real problem, it is difficult to compute solutions
for values of" smaller than1=20. However, the convergence for the pressure is observed in both directions, and
the same comments as in the transverse roughness case can be made.
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Figure 4. Hydrodynamic pressure with 2D roughness patterns at x2 = 0:5
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Figure 5. Hydrodynamic saturation with 2D roughness patterns at x2 = 0:5
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4.4 Oblique roughness effects
For convenience in computation, the data are not similar to the ones used in the previous subsections: consid-

ering the problem given in the real variables (see Equations(53)–(56)), we choose the following scaling process:x1 = X 012�Rm ; x2 = X 022�Rm ; hs = Hs ;p = 26�U2�Rm P; Q = QRU ; � = 2�RmL :
Now, the dimensionless Equations (57)–(60) are consideredwith the following data:� � = 0:2, i.e. 2�Rm = 0:2L.� The domain being(0; 1)� (0; 0:2), the rough dimensionless gap is given by:h(x; x=") = hs(x) + hr(x=") = 1 + 0:5 os�2�e � x" � ;

with e = (os; sin ), x = (x1; x2) and = �=4, hs (respectivelyhr) denoting the smooth (respectively
rough) contribution to the gap.� The dimensionless flow at the supply groove isQ = �inhs(0) with �in = 0:6.

FIG.6 shows the behaviour of the pressure at a fixedx2, thus clearly establishing the convergence of the
pressure. FIG.7 represents the pressure on the supply line (x1 = 0), corresponding to the maximum pressure for
the homogenized solution.

FIG.8 shows the evolution of the cavitated areas when" tends to 0. Lubricated (respectively cavitated) zones
are coloured in white (respectively black). For not too small values of", the direction of the cavitation streamlines
is the one of the roughness pattern. This does not seem to be the case for the homogenized one.

The results point out the fact that nondiagonal terms in the left-hand side and extra term in the right-hand side
of the homogenized Equation (24) or (49) are actually needed.

4.5 Some remarks on interasperity cavitation
In [17], Harp and Salant have proposed an average equation for modelling interasperity cavitation from JFO

mass flow preserving model. Basic assumptions are the existence of a (not too small) leading value of the period
of the roughness (length of correlation�) and that the roughness is distributed in a somewhat stochastic way. Then
the value of� does not disappear in the average equation obtained in [17] and allows for a description in detail
of the saturation in the interasperity. However, this equation is questionable for for general roughness patterns as
neither extradiagonal terms in the left hand-side nor a derivative with respect to the second direction in the right
hand-side appear in the average equation, unlike to our present Equation (24). This fact has been already pointed
out in [4] and is directly related to assumptions (4) in [17].In true two dimensional roughness, it is important to
take it into account, even without cavitation (see also [23]). For one dimensional roughness as the one numerically
studied in [17], it is well known that these additional termsno longer exist, so that some comparison can be made
between the two approaches.

FIG.9 describes numerical results linked to Harp and Salant’s comments (in particular Example 2, p. 141
in [17]). The data are the following ones:
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Figure 6. Hydrodynamic pressure for oblique roughness patterns at x2 = 0:1
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Figure 7. Hydrodynamic pressure for oblique roughness patterns at x1 = 0
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Figure 8. Lubricated [white] and cavitated [black] areas for different values of ": 1=20, 1=50, homogenized� The domain is a small square bearing℄0; l[�℄0; l[ whose area isl2 = 0:36mm2.� Periodic boundary conditions are placed onx1 = 0 andx1 = l.� Pressure is imposed on other sides:p = 1:105 Pa onx2 = 0 andp = 6:105 Pa onx2 = l.� The effective gap is given by: h"(x) = �1 + 0:5 os�2�l x1" ��
with  = 9:10�6 m.� The viscosity is� = 0:2 N:m:s�2.� The velocity isU = 1m:s�1.

FIG.9 describes on the right-hand side the evolution of the saturation as a function of". The related cavitated area
consists of a set of elements whose width is thiner with epsilon and whose number is proportional to1=". In the
homogenized case, the cavitation disappears.

Comparing with the results obtained in [17], we can observe that averaging the pressure in thex1 direction
gives the same kind of curves. Moreover, when" tends to 0, the results are identical with both approaches, as the
jump of the pressure at the boundary, introduced in [17], decreases with an order".
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5 Conclusion

A solution procedure for deterministic periodic roughnesscomputation has been developped. The procedure
uses homogenization multiscale approach and rigorously takes mass flow conservation into account. Classical JFO
algorithms can easily be extended to numerically compute the solution of the homogenized Reynolds equation for
transverse, longitudinal, oblique and even some two dimensional roughness.

However, further mathematical developments are needed to cope with general two dimensional roughness due
to anisotropic effects on the saturation.
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