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ABSTRACT

An average Reynolds equation for predicting the effectsetdrchinistic periodic roughness, taking
JFO mass flow preserving cavitation model into account, ti®duced based upon double scale analysis
approach. This average Reynolds equation can be used bo#hrfocroscopic interasperity cavitation
and a macroscopic one. The validity of such a model is verbiedumerical experiments both for one
dimensional and two dimensional roughness patterns.
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NOMENCLATURE

A., B., A;, B; = partial differential operators

ay, af, ay = auxiliary homogenized coefficients
Ay, Bf, B} = homogenized coefficients

hi, ho = description of the gap

h, h. = actual gap

hs = smooth part of the gap

h = amplitude of the roughness

P = pressure

Doy P1--- = approximations of the pressure
Q = input flow value

U = velocity

r = (x1,22) = dimensionless space coordinates
y = (y1,v2) = microscale coordinates

X = (X4, Xy) = oblique coordinates

X'=(X{,X;) = realcoordinates

Y =]0,1[x]0,1] = rescaled microcell

vy = obliqueness angle

d/on = normal derivative

1 = viscosity

£ = roughness spacing

6 = saturation

6o = microscopic homogenized saturation
0, 01,0, = macrohomogenized saturations
wi, XY = auxiliary functions defined ol

- = average operator with respectito
B = average operator with respectito
v, = average operator with respectito

0 Introduction

The effects of the surface roughness on the behavior of ditfmdlow has long been the subject of intensive
studies. Various ways have been introduced to study Regmoladghness by seeking an average equation wi
smooth coefficients. Some of the most popular results ar€linistensen formula [1] for longitudinal and trans-
verse roughness and the Patir and Cheng flow factor moded{2] fmore general surface roughness pattern. Tw
wide classes of results can be outlined. In the first one, visicleterministic, a periodic description of the sur-
faces is often assumed to be known and linked to a specifiepsanf the surface [3]. It is possible to distinguish
macrovariables and microvariables and to use a matherhatiogogenization approach to rigorously obtain ar
average Reynolds equation by making the period of the rceggtend to zero [4]. The coefficients of this aver-
age Reynolds equation implicitly contain the descriptibthe microroughness elementary cell. The second cla:
of results deals with a statistical description of the stefeoughness. Following the Patir and Cheng approac
numerous authors proposed an average Reynolds equatidrah thie coefficients included the knowledge of the
surface statistics by way of flow factors which can be evaldiéty numerical experiments. Rigorously speaking
this approach is less satisfactory than the first one, asgpenpriori the existence of a control volume in which
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the average flow rates can be equivalently expressed in tdrfhasv factors. The number and quantities (Peklenik
number, combined root mean square roughness...) invaivéieticharacterization of the flow factors can also b
discussed. Moreover, as the initial Reynolds equationatteeage Reynolds equation can be expressed in terr
of V- (K'Vp) = F in which K is a diagonal matrix. This seems to be contradictory withréseilt obtained by
the first approach in whick is a non diagonal matrix for two dimensional general rouglnmattern [5].

Up to now, these averaging processes never take cavitatiorccount. A common procedure is to use the
average equation instead of the classical Reynolds equatth Gumbel and Swift Steiber boundary conditions
or to include it in the S.O.R. algorithm proposed by Richargghus obtaining the splitting of the lubricated
device in two areas. In a first area, the pressure is greaartkie cavitation pressure and the average Reynols
equation is valid; in the other area, pressure is equal tadkigation pressure. It is well known [6—8], however,
that none of these models is mass preserving, especiablyghrthe cavitation area. Jakobsson, Floberg and Ol
son (JFO) [9, 10] developed a set of conditions for the cawitdboundary that properly takes the conservation o
mass into account in the entire device. Elrod [11, 12] predasslightly modified formulation and a related spe-
cific algorithm. The mathematical related problem evidembgperbolic-parabolic feature which renders difficult
both theoretical study and numerical experiments [7, 1B-1%s the goal of this paper to develop in a rigorous
way an average JFO Reynolds equation for the deterministiogic roughness pattern. So far, few papers hav
been devoted to such a problem. Recently, the interaspmitiyation has been studied by way of a statistica
approach [16, 17]. The Patir and Cheng flow factor method isreled and an average Reynolds equation |
proposed. The resulting equation has the same left-hawdtisad in the Patir and Cheng equation (cavitatior
has no effect on the corresponding flow factors) while thatrltand side of the equation is modified and new
flow factors are introduced. At last Harp and Salant [17] psgal to modify the boundary conditions by a value
which is a function of the wavelength of the roughness. Opraegch is quite different and explicitly based upon
the introduction of fast and slow variables. The initial atjon is rewritten in terms of these two variables anc
asymptotic expansion of the pressure is introduced witheetsto a small parameter associated to the roughne
wavelength. The goal is to find an equation satisfied by thetérms of the expansion. Some assumptions abo
the shape of the roughness appear to be necessary to sojw®kiem, leading to a new average Reynolds cavi
tation equation. This equation has numerous common fesatith the initial Reynolds equation: it is also a two
unknowns pressure-saturation formulation. Some padtictdses - transverse, longitudinal roughness pattern:
will be studied in details.

1 Basic equations

Our studied cavitation model, like the Elrod algorithm atgdviariants, views the film as a mixture. It does
not, however, make the assumption of liquid compressyaiiithe full film area as in [15] and some other papers
As in [18,19], only the liquid-vapor mixture in the cavitdteegion is assumed compressible. The flow obeys tr
following “universal” Reynolds equation (here written irdanensionless form) through all the gap in which the
pressure cavitation is assumed to be zero in the cavitatem a

2 9 [ ,op\ 00k
7 1
; o0x; (h 6xl-> 0x,’ (1)
p >0, (2)
0<6<1, 3)
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p(1—6)=0. (4)

In this steady state isoviscous version of the equatiasthe pressurd) is the relative mixture density, the
film thickness;x; is the direction of the effective relative velocity of theadthwhile x, is the transverse direction.

This system of equations can be understood as follows (s@e]Z,14,18] for various comments and meaning
of thef variable):

¢ the well-known Reynolds equation holds in the full film regjthat isp > 0 andf = 1,
e a mass flow conserving equatiéfih/0x; = 0 holds in the cavitated region with= 0 and0 < 6 < 1.
e a boundary condition which is also mass flow preserving afuhknown) interface between the two regions:

—h3g—p + hcos(n,z1) = Ohcos(n, xy).
n

The reason to retain this specific cavitation equation isitheas been the subject of numerous mathematic:
studies [7] giving a strong and rigorous basis to the follmywmanipulations [20]. To be noticed, however, tha
our approach can be applied without difficulty to other catuiin models as the one in [15]. Last, it has to be
mentioned that this equation takes both macrocavitatisso@ated to the occurrence of a diverging part of
bearing for example) and interasperity cavitation intcoatt.

The boundary conditions depend on the considered devicevetty, the following ones are often used,
corresponding for example to a journal bearing with an agigdply groove. The pressure is imposed at twe
circumferential locations and one axial location. The lastindary condition is an input flow condition at the
axial location corresponding to the supply groove:

Op

oy

0(x)h(z) — h¥(2) 5 —(2) = Q. ()

For small values of), starvation may occur in the vicinity of the supply groove.

2 Asymptotic expansion

Let us suppose that the roughness is periodically repratlurcéhe twozx,; andz, directions from an ele-
mentary cellY” (or “miniature bearing” in Tonder’s terminology). We deadiy = the ratio of the homothetic
transformation passing from the elementary tel- Y; x Y5 to the real bearing and by = z, /= andy, = x4 /¢
the local variables (seae . 1).

Let us now consider shapes that can be writteh.&8) = h(x,z/<). We suppose furthermore that they are

described as
he(x) = hy <:1:, E) ho (x, ﬁ)
£ g

which allows us to take into account either transverse ogitadinal roughness, but also more general two di
mensional roughness. Introducing now the fast variaplesdys,, it appears that the new expression for the ga|
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Figure 1. Macroscopic domain and elementary cells
is:
h(l’,y) = h’l (xayl) hZ («T,y2)- (6)

The combined computation in terms (@f;, 2:3) or (y1, y2) is an important feature of the method. It is conve-
nient to consider first andy as independent variables and to replace péxt /= (see [4]).

2.1 Formulation of average equations
We denote by, the initial differential Reynolds operator

= (095

7=

and we also define the right-hand side operator



The underscript indicates the dependance of the real pressure on the mitigeelated ta. We also define
the following operators:

2.0 0[]
M =3 5 (@ ).
! ]Zl ayj 8yj
0 0 [-]) 20 ( 0[]
A = a. h3 T, Y) + a. h3 T, Y) |
0 0[]
a1 =3 o (10 G).
s ]gl afE]‘ X
and also
Bl[]:@(h(xay) H): 22172:
Bil]= g (hzy)[]), i=12
If applied to a function ofz, = /<), the operators become
Ac=(1/22 Ay +1/2 Ay + 43), (7)
B. = (1/e B} + B}). 8)
We shall look for an asymptotic expansion of the solutions
() = po(x, f) +epy <x, £> + £%p, (x, f) + ..., (9)
£ £ £
6(z) = 6y (x, g) , (10)

each unknowm; andf, being a function of z, y). The problem of the boundary conditions to be satisfied by th
p; Is somewhat difficult but may be summarized as follows.

(i) The natural boundary conditions 9n., 6.) are assigned tg, and an equivalent saturation linkedég which
will be developped in next subsection.

(i) The functionp;, i > 1, areY periodic, i.e. periodic in the two variablegs, y», for each value ofz1, x5).

To be noticed that unlike g, we do not introduce an asymptotic expansionforThis can be explained by

observing the evolution gf andf ase tends to O (seelE.2 for instance). Clearly, the oscillations of the pressur
are decreasing andtends to a smooth function (namely which, actually, does not depend on the fast variabl
as it will be pointed out further). This is not the casefiand an asymptotic smooth limit cannot be considered
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We shall see later that the functiomns: > 1, are defined up to an additive constant. Moreover, from Egusit
(2)-4), the following properties hold:

po(w,y) >0, (11)
0<6(x,y) <1, (12)
pO(l‘ay) (1 - eﬁ(l‘ay)) =0. (13)

Putting Equations (9) and (10) into Equation (1) and takiogpant of Equations (7) and (8), one can write
by an identification procedure:

AlpO - O: (14)
Aipr + Aspy = Biby, (15)
Aipy + Agpr + Aspy = 3590- (16)

Let us remark that these equations are of the following tjoe:a givenF, find a functiong, depending on
the variabley, ¢ beingY” periodic, such thatA is a parameter),

Aq=F. (17)

A condition to have a solution for Equation (17) is

/ F(x,y)dy = 0. (18)
Y

Moreover, ifq is a solution, thel + ¢ with ¢ any constant with respect fas also a solution. Applying Condition
(18) to Equation (14), we deduce thgtdoes not depend an

po(T). (19)

Let us suppose now thag is known, and noticing that, due to boundary conditiqi,0, — Asp,) satisfies
Equation (18), existence @f is guaranteed. Now we can represgnas a function op, in a more usable form.
We definew; and x? (: = 1,2) as theY periodic solutions (up to an additive constant) of the faeilg local
problems:

oh?

A w; = , 1=1,2 (20)
dyi

Al?:%m,i:Lz (21)
dYi



The solution of Equation (15) reduces to

m@w=ﬁmw—%%wmww——mmmw. (22)

The same procedure can be used to ensure the existepgelnft in that step, the corresponding condition
(18) applied to Equation (16) becomes

/)/(3590 — Agp1 — Aspo) dy = 0. (23)

Then the main idea is to put Equation (22) into Equation (88}hat the only remaining unknowns axeand
6.

By analogy with the probabilistic framework, we denotewdythe local average of any periodic function
u:

_y 1
w (@) =g [ vl dy

By exchanging the integral and the derivation symbols, diel asome calculations, Equation (23) becomes

0 Opo 0B 0B)
Al— | =|—+=—= 24
% afEZ ( ”8@-) <8x1 + 6:102 ’ ( )
where (,j = 1,2 andj # 1)
Y
A =3 h3%
! oy
A — 0 a0
v yi oy;

and also

——Y
0
BY = B — h3%
ayl
BN
_p3dX
ayQ

3

BY =

Equation (24) deals with any periodic roughness patterrb€elooticed is the fact that the differential operator
is no more of the Reynolds type since extra tei@g,/dx;0xz; appear. The right-hand side also contains a
additive term in ther, direction. However, the link betweerR andf, is not so clear. This is a major obstacle
which prevents from getting a tractable equation. Nevéetise Assumption 6 allows us to solve the following
difficulties:



e Computation ofd}, i = 1,2:
Let us recall Equation (20) with= 1:

i (h?’%) 4 i (h?’%) = 8_h3
oy, 0y 0y 0 Oy
Sinceh30w, /0y, is Y periodic, averaging this equation ovérgives

9 (l 5 0wy ) a[h%y,
R B A —
oy oY1 Vs

B oy
where[-]y; is the averaging operator ovEyr (for i = 1, 2).
Thus we have, by integrating in the variable and using Equations(6):

)

gwn

=},
ayl]s@ 1

where(’; is a constant with respect to Let us notice that, averaging the earlier equation dyeimply gives
C, = A%,. Thus, it remains to calculatg,. Dividing each side of the previous equation/gy

h* — h?

ow C
hl o —(hi=—=| ==

and, sinceu, isY periodic, averaging over; gives

A
All — FT (25)
1
Following the same procedure, we state:
—Y
* h3
Al = h_lgy. (26)
2

e Computation of4};, i # j:

Starting from Equation (20) with= 1, sinceh® — h*0w,/dy, is Y periodic, averaging this equation ovér

gives
—96 ( [lm Oow, ] ) .
y2 692 Y1
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Thus we have, by integrating in thyg variable

LAY RGN
9ya v

whereC; is a constant with respect gf Similarly to the computation ofi’;, one has’; = A}, = A},.
Dividing each side of the equation Iy:

@ = [}ﬁ%]
h% ! 892 Y; ’

—Y
and, sinceu; is Y periodic, averaging over, givesCra;! =0, i.e.
Ay, = A5 =0. (27)

Now, it remains to calculate the right-hand side of the Ré&ysmequation.

e Computation ofB!:
Let us recall Equation (21) with= 1:

9 <h38_x?> + 0 (h33_><?> = 600h'
o oy Y2 Yo Oy

Sinceh30x?/dy, is Y periodic, averaging this equation ovérgives

9 (lhga_x?] ) _ 016ty
oy Oy Vs Oy

Thus we have, by integrating in thye variable:

1
[eoh—hi”%] — O,
ayl Ys

whereCs is a constant with respect to Clearly, we have’; = BY. Dividing each side of the equation by:

l@] _lhsa_x?] _ G
iy, ow,, W

10



and, since! is Y periodic, averaging over; gives@oh/lﬁy = Cgﬁy, le.

Y

2
=) (28)

—Y
-3
hy

e Computation ofBY:
Starting from Equation (21) with = 1, since the functiorh® — h39x? /0y, is Y periodic, averaging this

equation OVGV] giveS
592 5?J2 Y1

Thus we have, by integrating in thye variable:

O 0
h3ﬁ - 047
ay? Y;

where(, is a constant with respect gf We haveC' = BY. Then dividing each side by::

Cly _ 3aX(1)
3= ||
h? 392 Y;

—=Y
and, since\? is Y periodic, averaging ovér, givesC,h;® =0, i.e.
BY =0. (29)

Now, it is obvious that Equation (24) can be written in a mdrmepe way by using Equations (25)—(29).
Before that, let us write the terfa? in a more usable form. Defining the quantities

oy
BT: ;YhQ ) (30)
hi?
1 by
O=— |2 2) , (31)
Eyh12y< h

we getB) = © B}. Moreover, from Equations (12) and (13), we immediatelyehav

0<0O(x) <1, (32)
po(z) (1 —O(z)) =0, (33)
11



so that the homogenized equations appear to be

200 . Opo 00B}
; oz, (A“a—z) = ary (34)
po = 0, (35)
0<B6<Ll, (36)
po (1—0)=0, (37)

where A3,, A3, and By are, respectively, given by Equations (25), (26) and (30prédver, the link between a
new (smooth) “macroscopic” saturatiéhand the (oscillating) “microscopic” saturatidp is given by Equation
(31). As an important featur€) is not the average of the microscopic saturatign

2.2 Average boundary condition

When the pressure is imposed, the corresponding averagelégucondition is assigned g. When an
input flow is given on a supply line, the average flow condit®obtained following the asymptotic expansion
method. Taking account of roughness patterns, Equatidne&mes:

Y oy (2 EY 9P =
8(x)h <x 6) h <x€> (@) = @ (38)
Putting Equations (9) and (10) into Equation (38), one catevay an identification procedure:

b)) = 1) (5200 + S ) =@

Putting Equation (22) into it gives

ox? ow 3p0 Owy '\ Opy
boh — n3OX1) _ (0 ppdwz) O _
( 0 6y1> ( dy ) or, T\ oy ) oy =

Averaging overy” gives the boundary condition relatipg and© at the supply groove:

8 A* 8pg

B} — A% = — =
11 ax 12 ax2 Q:
and sinceds, = 0 and B} = ©Bj, one gets:
OB} — A}, =— O _ =qQ (39)
11 ax '

The next subsection deals with two main particular casasstrerse or longitudinal roughness.
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2.3 Particular cases
e Transverse roughness: when the roughness does not dependvenhave the homogenized equation, easily
deduced from Equations (25)—(31)

_ 2
0 —1Y ap() i 0 hsy@m _ 0 @h—y ’
0ry \}-3" 014 0T 0T 0xq =

Y

with ® = _%Y (%) and the boundary condition at the supply groove, deducex Equation (39), should
h_

be read as:

g
h—2 1 8p0

&) _ -

=37 =3 On ©

e Longitudinal roughness: when the roughness does not depend we get
0 [—v Opg 0 1 Opg 0 -y
3 =
8:61 (h 6x1> + 8:62 (FY axQ 8:61 (@h ) ’
—Y

with © = 9%—}; and the boundary condition at the supply groove should &e as:

v _ 737 0m

On — 13 - Q.

X1

3 Oblique roughness
Let us consider gaps that can be written as:

he(z) = hy (x Xl(x)) ho (x X2($)> ,

9 £

with
Xi(x) = cosyxy +siny zg,
Xy(z) = —siny x; + cosy xg,

which allows us to take into account oblique roughness (Wjtl= 1 for instance). The idea is to introduce a
change of coordinates so that the assumption of SectionrBtl2eoroughness form in the new coordinates systel
is valid. The first step is to rewrite Equation (1) in tNecoordinates:

L0 (a0 _ (h 90k
~ox; \Fox; )~ \ax; 7 7

7
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Working now in theX coordinates and using the operators defined in Section B.20(the writing in theX
coordinates), we apply the asymptotic expansion techriigjiiee earlier equation. With the formal asymptotic
expansion used in Section B.2, we have in(they) coordinates (withy = X /¢):

Aipo =0, (40)
Aipy + Agpy = B cosy — Bifysiny, (41)
Aipy + Agpy + Aspo = Byl cosy — B3 sin . (42)

As in Section B.2p, only depends on th& variable. Equation (41) allows us to determjne

. 0 0
pr(X, ) = XA(X, y) cosy — X3(X, y) siny — wy (X, y) oot (X) — wa(X, y) o2 (X).
8X1 aXQ

Then, putting the earlier expression into Equation (42ggjiv

0 dp 9, _ 0 ‘
> X, (a?ja—X[}j) =%, (b[f1 cos 7y + b, sin 'y) e (bg1 cosy + b9, sin 'y) ,

i’j

where the coefficients, which are easily computed as in @e&i2, are given byi(j = 1,2, # j):

[, v —3Y
* _p3Y 3 Wi — hj
ay =h3 —h o (43)
Y
ow;
al, = —hi—-2 =0, 44
; m (44)
and alsod,j =1,2,i # j)
—Y ——Y
B =0gh — 3L = ! 45
i 0 ayl FY( hZQ ) ( )
—Y

0
W= - hsg—zf - 0 (46)

J

Finally, as in Section B.2, defining the quantities
—5Y
. ht
| 1 (b
ol
O; = h_YFY ( h2]> ) (48)
VIR ¢



one has!, = ©;, b}, with po(1 — ©;) = 0and0 < ©; < 1.
Finally, going back to the initiat coordinates, one gets the following homogenized problem:

o (.. Opy 0BY  OBY
o (wae) = (7 5) “9)
po > 0, (50)
0<0; <1, (i=1,2), (51)
Po (1 - 91‘) =0, (Z =1, 2), (52)

with the left hand-side coefficients:
Aty = ajy — (af; — a3y) sin’ 7,
A3y = azy + (a7, — a3,) sin’ 7,
Ay = A3, = (aj, — a3y)siny cos 7,
and the right hand-side member:
BY) = 0,0t — (0,b% — O,b%) sin? 7,
BY = (©1b7 — Ozb%) siny cos,

the coefficients:%, b (i = 1, 2) being given by Equation (43and Equation (47)in thez coordinates. The link
between the “microscopic saturatiofy’and the two “macroscopic saturatiort3; (: = 1, 2) is given by Equation
(48)".

At first glance, Equation (49) is very similar to (24). A magtifference however is the anisotropic aspect o
the saturation with two saturation functio@s (: = 1, 2), one for each direction.

From a mathematical point of view, it is not clear wether thetam of Equations (49)—(52) is a closed one o
not: is a supplementary equation needed to obtain a wetgppoblem or not? Nevertheless, it can be proved th:
O, = O, is a possible choice for a solution of the system. With th&iagption, it is possible to solve Equations
(49)—(52) by using the kind of algorithms as the ones usedlte€quations (1)—(4). The only difference lies in
the modified coefficients and the fact that the direction efftw is no longer the;; axis but an oblique one.

4 Numerical results

As both Equations (1) and (24) have the same mathematidakéavarious algorithms (see [6,7,11,13,15
18, 21]) used to compute solutions of Equations (1)—(4) aadressed for the solution of Equation (24). In this
paper, we propose the characteristics method adaptedeidysséate problems to deal with nonlinear convectior
term combined with finite elements. Moreover, the nonlifglaod-Adams model for cavitation is treated by a
duality method. The combination of these numerical teameschas been explained and successfully applied f
Bayada, Chambat and Vazquez in [22].

'to be translated in the coordinates
15



4.1 Computation of homogenized coefficients
We consider effective gaps defined with either transversengitudinal roughness patterns.
Table 1 summarizes homogenized coefficients obtaineddoswerse and longitudinal cases:

Transverse roughnesd.ongitudinal roughnes

UJ

h(z,y) || hs(z) + h, sin (27y;) | hs(x) + h,sin (27ys)
(hs(2)? — h2)™”
2hg(x)? + h2
Anp(a) | () 45 by 2 |2
he(z)? — h?
2hg(x)? 4+ h2

Table 1. Homogenized coefficients

ho(z)? + g hy(z) B2

(hy(x)” — h2)°*
2hg(x)? + h2

hs()

Bi(z) | 2hs(z)

The coefficients corresponding to assumption (6) can béyeasiained from the ones that are presented i
Table 1, using products taking account of roughness effeaach direction.

The coefficients corresponding to oblique roughness carbtared by using products and linear combina-
tions of coefficients given in Table 1.

4.2 Transverse roughness tests

We adress the numerical simulation of journal bearing ad=viwith axial supply of lubricant. Indeed we
simulate a journal bearing device whose length is dendtettie mean radiu®,,, = (R, + R;)/2, R, and R,
being the bearing and journal radii respectively, and tearence is: = R, — R,. The supply flow i)z, the
lubricant viscosity ig: and the velocity of the journal iIS. Moreover, the roughless gap between the two surface
is given by:

!

X
Hy(X') = ¢ (1 +p cos (R—)) X = (XL X)) € (0,20R,) x (0, L)

where the eccentricity satisfied) < p < 1. The classical Reynolds problem, in real variabl&s= (X], X)),
should be posed as follows:

H? 0

il vj ) H
\Y (GHV ) UaX{(G ) (53)
P>0, 0<0<1, P(1—0)=0, (54)
with the boundary conditions
P =0, (55)



except on the supply groove in which

H? 0P
0H, — —= = ) 56
U 6 DX Qr (56)

Now let us introduce the dimensionless coordinates andtiigsnthat provide the effective system to be
solved:

X! X} H,
=1 22 s
o R, 2= c
¢ On R,
— P — —
P=sur, D9 @ L

Then, the dimensionless Reynolds problem becomes (0, 27) x (0, k):

0

3 —
V- (h3vp) = a—m(ahs), (57)
p=0, 0<4<1, p(1—6) =0, (58)
with the boundary conditions
oh, — 03O0 — ¢ (59)
aZEl

on the boundary corresponding to the dimensionless supptvg (namely{0} x (0, x)), and the condition
p=0, (60)

on the other boundaries. The roughless gap is holw) = 1 + p cos (z;). For the numerical tests, we have
worked on the dimensionless equations, with the followiatad

e x=1,i.e.R,, = L.
e The domain beind0, 27) x (0, 1), the rough dimensionless gap is given by:

h(z, 3/2) = hy(z) + hy (/) = 1 + peos(ay) + (1 — p)r sin (27%) |

with p = 0.75, 7 = 0.7, h, (respectivelyh,) denoting the smooth (respectively rough) contributioth®sgap.
e The dimensionless flow at the supply groov€)is= 0,,h,(0) with 6,, = 0.4571.

For various values of, FIG.2 represents the behavior of both pressure and saturtiparticular, it justifies the
formal asymptotic expansion used in Section B.2. Three ifa&its have to be observed:
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Figure 2. Pressure and saturation at T9 = 0.5 for different roughness periods

1/ The oscillations of the pressure tend to vanish, thus shpthizity tends to a smooth limit pressure (izg(x)).

2/ The oscillations of the saturation do not vanish; the gradiends to explode. Thu$(z) behaves like a
function which depends on both slow and fast variablesfj.e:, y)).

3/ The existence of two cavitation areas at both extremitigh@bearing (starvation phenomenon).

FIG.2 allows us not only to compare more precisely the convegehthe pressure to the homogenized one
but also to observe the behaviour of the saturation. The gemeed saturation may be viewed as an averag
with respect tqy, of the microsaturation weighted by roughness parameters.
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4.3 Two dimensional roughness effects
The only difference with the previous subsection lies indbgnition of the dimensionless gagz, y) defined
by Assumption 6, other data being unchanged:

hi(z,y1) =1+ 0.5cos(z1) + 0.35sin (27yy) ,
ha(x,ys) =14 0.35sin (2mys) .

FIG.3 represents the pressure at a fixgdnotice that the corresponding saturation figure is omitsaace
there is nearly no cavitation).
FIG.4 and 5 represent pressure and saturation at afixddr various values of as well as the homogenized

[P AR .. €=1/10
.. Te., — €=1/20
0.18 K t.. + Homogenized

0.16 -

0.14

0.12-

0.1f

Pressure

0.08 -

0.06

T

0.04 -

0.02 -

0 SR I I I I I I I I :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X,

Figure 3. Hydrodynamic pressure with 2D roughness patterns at 1 = 2.639

curves. Due to the number of discretized elements for sglthie real problem, it is difficult to compute solutions
for values of: smaller thanl /20. However, the convergence for the pressure is observedindiections, and
the same comments as in the transverse roughness case caddae m
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Figure 4. Hydrodynamic pressure with 2D roughness patterns at Lo = 0.5
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Figure 5.  Hydrodynamic saturation with 2D roughness patterns at To = 0.5



4.4 Oblique roughness effects
For convenience in computation, the data are not similarémnes used in the previous subsections: consi
ering the problem given in the real variables (see Equa(®8)s-(56)), we choose the following scaling process:

X! X} H,

et - hS:_7

= 2R, 2T orR c
C QR 27T'Rm
PGk, D YT FT L

Now, the dimensionless Equations (57)—(60) are considsitcthe following data:

e x=0.2,i.e.21R,, = 0.2L.
e The domain being0, 1) x (0, 0.2), the rough dimensionless gap is given by:

h(z,z/e) = hg(x) + hy(z/e) =14 0.5 cos <27r67€. x) ,

with e, = (cosv,siny), x = (z1,22) andy = x /4, h, (respectivelyr,) denoting the smooth (respectively
rough) contribution to the gap.
e The dimensionless flow at the supply groov€)is= ;,h,(0) with 6;, = 0.6.

FIG.6 shows the behaviour of the pressure at a fixgdthus clearly establishing the convergence of the
pressure. 6.7 represents the pressure on the supply line< 0), corresponding to the maximum pressure for
the homogenized solution.

FIG.8 shows the evolution of the cavitated areas wh&nds to 0. Lubricated (respectively cavitated) zone
are coloured in white (respectively black). For not too dwvelues ofz, the direction of the cavitation streamlines
is the one of the roughness pattern. This does not seem t@ lvasle for the homogenized one.

The results point out the fact that nondiagonal terms ineftedand side and extra term in the right-hand side
of the homogenized Equation (24) or (49) are actually needed

4.5 Some remarks on interasperity cavitation

In [17], Harp and Salant have proposed an average equationddelling interasperity cavitation from JFO
mass flow preserving model. Basic assumptions are the egestd# a (not too small) leading value of the period
of the roughness (length of correlatiapand that the roughness is distributed in a somewhat stochesy. Then
the value of\ does not disappear in the average equation obtained in fid7abows for a description in detail
of the saturation in the interasperity. However, this eiguas questionable for for general roughness patterns «
neither extradiagonal terms in the left hand-side nor avdeve with respect to the second direction in the right
hand-side appear in the average equation, unlike to ouepr&guation (24). This fact has been already pointe
out in [4] and is directly related to assumptions (4) in [1IA] true two dimensional roughness, it is important tc
take it into account, even without cavitation (see also)2Bdr one dimensional roughness as the one numerical
studied in [17], it is well known that these additional temslonger exist, so that some comparison can be mac
between the two approaches.

FIG.9 describes numerical results linked to Harp and Salaotsngents (in particular Example 2, p. 141
in [17]). The data are the following ones:
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Figure 7. Hydrodynamic pressure for oblique roughness patterns at 1 = 0
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0 X, 1

Figure 8. Lubricated [white] and cavitated [black] areas for different values of £: 1/20, 1/50, homogenized

e The domain is a small square bearifig/[x]0, /[ whose area i& = 0.36 mm?.

e Periodic boundary conditions are placedagn= 0 andz; = I.

e Pressure is imposed on other sides: 1.10° Pa onxz, = 0 andp = 6.10% Pa onx, = |.
e The effective gap is given by:

T1

he(x) =¢ (1 + 0.5 cos (?—))

€

with ¢ = 9.10 % m.
e The viscosity it = 0.2 N.m.s 2.
e The velocity isU = 1 m.s~!.
FIG.9 describes on the right-hand side the evolution of theattun as a function of. The related cavitated area
consists of a set of elements whose width is thiner with epsihd whose number is proportionallt¢. In the

homogenized case, the cavitation disappears.
Comparing with the results obtained in [17], we can obsenat &veraging the pressure in thedirection

gives the same kind of curves. Moreover, whdends to 0, the results are identical with both approaclsthea
jump of the pressure at the boundary, introduced in [17]rebeses with an order.

23



X,-average pressure Saturation in the whole domain

6+105 R 61072 1
0.8
£=1/10
0.6
— rough
-+~ homogenized
1+10°% - 0.4
0 6+107 0 671073
6+10° 6102 1
0.9
£=1/20 08
0.7
— rough
-~ homogenized 0.6
5L
1*10%, 10 0 poc
6+10° 6102 1
) 0.9
5
a £=1/30 5 0.8
s
— rough 0.7
_hormogenizeq ATITTTATVANSROTINOTER D
1+10% . 103 0 - gl
2 1

Figure 9. Average pressure and cavitated areas with interasperity

5 Conclusion

A solution procedure for deterministic periodic roughnessiputation has been developped. The procedul
uses homogenization multiscale approach and rigorousdgtaass flow conservation into account. Classical JF
algorithms can easily be extended to numerically compuweadtution of the homogenized Reynolds equation fo
transverse, longitudinal, obligue and even some two dimeasroughness.

However, further mathematical developments are needeanp@with general two dimensional roughness du
to anisotropic effects on the saturation.
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