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1 Introduction

These lecture notes are an expanded version of the lectures given by the second and the
fourth author in the summer school "Open Quantum Systems" held in Grenoble, June
16–July 4, 2003. We are grateful to Stéphane Attal and Alain Joye for their hospitality
and invitation to speak.

The lecture notes have their root in the recent review article [JP4] and our goal
has been to extend and complement certain topics covered in [JP4]. In particular, we
will discuss the scattering theory of non-equilibrium steady states (NESS) (this topic
has been only quickly reviewed in [JP4]). On the other hand, we will not discuss the
spectral theory of NESS which has been covered in detail in [JP4]. Although the lecture
notes are self-contained, the reader would benefit from reading them in parallel with
[JP4].

Concerning preliminaries, we will assume that the reader isfamiliar with the mate-
rial covered in the lecture notes [At, Jo, Pi]. On occasion, we will mention or use some
material covered in the lectures [D1, Ja].

As in [JP4], we will work in the mathematical framework of algebraic quantum
statistical mechanics. The basic notions of this formalismare reviewed in Section
3. In Section 4 we introduce open quantum systems and describe their basic proper-
ties. Linear response theory (this topic has not been discussed in [JP4]) is described
in Subsection 4.4. Linear response theory of open quantum systems (Kubo formu-
las, Onsager relations, Central Limit Theorem) has been studied in the recent papers
[FMU, FMSU, AJPP, JPR2].

The second part of the lecture notes (Sections 6–8) is devoted to an example. The
model we will discuss is the simplest non-trivial example ofthe Electronic Black Box
Model studied in [AJPP] and we will refer to it as theSimple Electronic Black Box
Model(SEBB). The SEBB model is to a large extent exactly solvable—its NESS and
entropy production can be exactly computed and Kubo formulas can be verified by
an explicit computation. For reasons of space, however, we will not discuss two im-
portant topics covered in [AJPP]—the stability theory (which is essentially based on
[AM, BM]) and the proof of the Central Limit Theorem. The interested reader may
complement Sections 6–8 with the original paper [AJPP] and the recent lecture notes
[JKP].

Section 5, in which we discuss statistical mechanics of a free Fermi gas, is the
bridge between the two parts of the lecture notes.

Acknowledgment. The research of V.J. was partly supported by NSERC. Part of this
work was done while Y.P. was a CRM-ISM postdoc at McGill University and Centre
de Recherches Mathématiques in Montreal.

2 Conceptual framework

The concept of reference state will play an important role inour discussion of non-
equilibrium statistical mechanics. To clarify this notion, let us consider first a classical
dynamical system with finitely many degrees of freedom and compact phase space
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X ⊂ Rn. The normalized Lebesgue measuredx onX provides a physically natural
statistics on the phase space in the sense that initial configurations sampled according
to it can be considered typical (see [Ru4]). Note that this has nothing to do with the fact
thatdx is invariant under the flow of the system—any measure of the formρ(x)dx with
a strictly positive densityρ would serve the same purpose. The situation is completely
different if the system has infinitely many degrees of freedom. In this case, there is no
natural replacement for the Lebesguedx. In fact, a measure on an infinite-dimensional
phase space physically describes a thermodynamic state of the system. Suppose for
example that the system is Hamiltonian and is in thermal equilibrium at inverse tem-
peratureβ and chemical potentialµ. The statistics of such a system is described by
the Gibbs measure (grand canonical ensemble). Since two Gibbs measures with dif-
ferent values of the intensive thermodynamic parametersβ, µ are mutually singular,
initial points sampled according to one of them will be atypical relative to the other. In
conclusion, if a system has infinitely many degrees of freedom, we need to specify its
initial thermodynamic state by choosing an appropriate reference measure. As in the
finite-dimensional case, this measure may not be invariant under the flow. It also may
not be uniquely determined by the physical situation we wishto describe.

The situation in quantum mechanics is very similar. The Schrödinger representa-
tion of a system with finitely many degrees of freedom is (essentially) uniquely deter-
mined and the natural statistics is provided by any strictlypositive density matrix on
the Hilbert space of the system. For systems with infinitely many degrees of freedom
there is no such natural choice. The consequences of this fact are however more drastic
than in the classical case. There is no natural choice of a Hilbert space in which the
system can be represented. To induce a representation, we must specify the thermo-
dynamic state of the system by choosing an appropriate reference state. The algebraic
formulation of quantum statistical mechanics provides a mathematical framework to
study such infinite system in a representation independent way.

One may object that no real physical system has an infinite number of degrees
of freedom and that, therefore, a unique natural reference state always exists. There
are however serious methodological reasons to consider this mathematical idealization.
Already in equilibrium statistical mechanics the fundamental phenomena of phase tran-
sition can only be characterized in a mathematically precise way within such an ideal-
ization: A quantum system with finitely many degrees of freedom has a unique thermal
equilibrium state. Out of equilibrium, relaxation towardsa stationary state and emer-
gence of steady currents can not be expected from the quasi-periodic time evolution of
a finite system.

In classical non-equilibrium statistical mechanics thereexists an alternative ap-
proach to this idealization. A system forced by a non-Hamiltonian or time-dependent
force can be driven towards a non-equilibrium steady state,provided the energy sup-
plied by the external source is removed by some thermostat. This micro-canonical
point of view has a number of advantages over thecanonical, infinite system idealiza-
tion. A dynamical system with a relatively small number of degrees of freedom can
easily be explored on a computer (numerical integration, iteration of Poincaré sections,
. . . ). A large body of “experimental facts” is currently available from the results of
such investigations (see [EM, Do] for an introduction to thetechniques and a lucid
exposition of the results). From a more theoretical perspective, the full machinery of
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finite-dimensional dynamical system theory becomes available in the micro-canonical
approach. TheChaotic Hypothesisintroduced in [CG1, CG2] is an attempt to exploit
this fact. It justifies phenomenological thermodynamics (Onsager relations, linear re-
sponse theory, fluctuation-dissipation formulas,...) andhas lead to more unexpected
results like the Gallavotti-Cohen Fluctuation Theorem. The major drawback of the
micro-canonical point of view is the non-Hamiltonian nature of the dynamics, which
makes it inappropriate to quantum-mechanical treatment.

The two approaches described above are not completely unrelated. For example,
we shall see that the signature of a non-equilibrium steady state in quantum mechanics
is its singularity with respect to the reference state, a fact which is well understood in
the classical, micro-canonical approach (see Chapter 10 of[EM]). More speculatively,
one can expect a generalequivalence principlefor dynamical (micro-canonical and
canonical) ensembles (see [Ru5]). The results in this direction are quite scarce and
much work remains to be done.

3 Mathematical framework

In this section we describe the mathematical formalism of algebraic quantum statisti-
cal mechanics. Our presentation follows [JP4] and is suitedfor applications to non-
equilibrium statistical mechanics. Most of the material inthis section is well known
and the proofs can be found, for example, in [BR1, BR2, DJP, Ha, OP, Ta]. The proofs
of the results described in Subsection 3.3 are given in Appendix 9.1.

3.1 Basic concepts

The starting point of our discussion is a pair(O, τ), whereO is aC∗-algebra with
a unit I and τ is a C∗-dynamics (a strongly continuous groupR ∋ t 7→ τ t of ∗-
automorphisms ofO). The elements ofO describe physical observables of the quantum
system under consideration and the groupτ specifies their time evolution. The pair
(O, τ) is sometimes called aC∗-dynamical system.

In the sequel, by the strong topology onO we will always mean the usual norm
topology ofO as Banach space. TheC∗-algebra of all bounded operators on a Hilbert
spaceH is denoted byB(H).

A stateω on theC∗-algebraO is a normalized (ω(I) = 1), positive (ω(A∗A) ≥ 0),
linear functional onO. It specifies a possiblephysical stateof the quantum mechanical
system. If the system is in the stateω at time zero, the quantum mechanical expectation
value of the observableA at timet is given byω(τ t(A)). Thus, states evolve in the
Schrödinger picture according toωt = ω ◦ τ t. The setE(O) of all states onO is a
convex, weak-∗ compact subset of the Banach space dualO∗ of O.

A linear functionalη ∈ O∗ is calledτ -invariant if η ◦ τ t = η for all t. The set
of all τ -invariant states is denoted byE(O, τ). This set is always non-empty. A state
ω ∈ E(O, τ) is called ergodic if

lim
T→∞

1

2T

∫ T

−T

ω(B∗τ t(A)B) dt = ω(A)ω(B∗B),
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and mixing if
lim

|t|→∞
ω(B∗τ t(A)B) = ω(A)ω(B∗B),

for all A,B ∈ O.
Let (Hη, πη,Ωη) be the GNS representation associated to a positive linear func-

tional η ∈ O∗. The enveloping von Neumann algebra ofO associated toη is Mη ≡
πη(O)′′ ⊂ B(Hη). A linear functionalµ ∈ O∗ is normal relative toη or η-normal,
denotedµ ≪ η, if there exists a trace class operatorρµ on Hη such thatµ(·) =
Tr(ρµπη(·)). Any η-normal linear functionalµ has a unique normal extension toMη.
We denote byNη the set of allη-normal states.µ≪ η iff Nµ ⊂ Nη.

A stateω is ergodic iff, for allµ ∈ Nω andA ∈ O,

lim
T→∞

1

2T

∫ T

−T

µ(τ t(A)) dt = ω(A).

For this reason ergodicity is sometimes called return to equilibrium in mean; see [Ro1,
Ro2]. Similarly,ω is mixing (or returns to equilibrium) iff

lim
|t|→∞

µ(τ t(A)) = ω(A),

for all µ ∈ Nω andA ∈ O.
Let η andµ be two positive linear functionals inO∗, and suppose thatη ≥ φ ≥ 0

for someµ-normalφ impliesφ = 0. We then say thatη andµ are mutually singular
(or orthogonal), and writeη ⊥ µ. An equivalent (more symmetric) definition is:η ⊥ µ
iff η ≥ φ ≥ 0 andµ ≥ φ ≥ 0 imply φ = 0.

Two positive linear functionalsη andµ in O∗ are called disjoint ifNη ∩ Nµ = ∅.
If η andµ are disjoint, thenη ⊥ µ. The converse does not hold— it is possible thatη
andµ are mutually singular but not disjoint.

To elucidate further these important notions, we recall thefollowing well-known
results; see Lemmas 4.1.19 and 4.2.8 in [BR1].

Proposition 3.1 Letµ1, µ2 ∈ O∗ be two positive linear functionals andµ = µ1 + µ2.
Then the following statements are equivalent:

(i) µ1 ⊥ µ2.

(ii) There exists a projectionP in πµ(O)′ such that

µ1(A) =
(

PΩµ, πµ(A)Ωµ

)

, µ2(A) =
(

(I − P )Ωµ, πµ(A)Ωµ

)

.

(iii) The GNS representation(Hµ, πµ,Ωµ) is a direct sum of the two GNS representa-
tions(Hµ1

, πµ1
,Ωµ1

) and(Hµ2
, πµ2

,Ωµ2
), i.e.,

Hµ = Hµ1
⊕Hµ2

, πµ = πµ1
⊕ πµ2

, Ωµ = Ωµ1
⊕ Ωµ2

.

Proposition 3.2 Letµ1, µ2 ∈ O∗ be two positive linear functionals andµ = µ1 + µ2.
Then the following statements are equivalent:
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(i) µ1 andµ2 are disjoint.

(ii) There exists a projectionP in πµ(O)′ ∩ πµ(O)′′ such that

µ1(A) =
(

PΩµ, πµ(A)Ωµ

)

, µ2(A) =
(

(I − P )Ωµ, πµ(A)Ωµ

)

.

Let η, µ ∈ O∗ be two positive linear functionals. The functionalη has a unique
decompositionη = ηn + ηs, whereηn, ηs are positive,ηn ≪ µ, andηs ⊥ µ. The
uniqueness of the decomposition implies that ifη is τ -invariant, then so areηn andηs.

To elucidate the nature of this decomposition we need to recall the notions of the
universal representation and the universal enveloping vonNeumann algebra ofO; see
Section III.2 in [Ta] and Section 10.1 in [KR].

Set

Hun ≡
⊕

ω∈E(O)

Hω, πun ≡
⊕

ω∈E(O)

πω , Mun ≡ πun(O)′′.

(Hun, πun) is a faithful representation. It is calledthe universal representationof O.
Mun ⊂ B(Hun) is its universal enveloping von Neumann algebra. For anyω ∈ E(O)
the map

πun(O) → πω(O)

πun(A) 7→ πω(A),

extends to a surjective∗-morphismπ̃ω : Mun → Mω. It follows thatω uniquely
extends to a normal statẽω(·) ≡ (Ωω, π̃ω(·)Ωω) onMun. Moreover, one easily shows
that

Ker π̃ω = {A ∈ Mun | ν̃(A) = 0 for any ν ∈ Nω}. (3.1)

SinceKer π̃ω is aσ-weakly closed two sided ideal inMun, there exists an orthogonal
projectionpω ∈ Mun ∩ M′

un such thatKer π̃ω = pωMun. The orthogonal projection
zω ≡ I − pω ∈ Mun ∩ M′

un is called thesupport projectionof the stateω. The
restriction of π̃ω to zωMun is an isomorphism between the von Neumann algebras
zωMun andMω. We shall denote byφω the inverse isomorphism.

Let nowη, µ ∈ O∗ be two positive linear functionals. By scaling, without loss of
generality we may assume that they are states. Sinceη̃ is a normal state onMun it
follows thatη̃ ◦ φµ is a normal state onMµ and hence thatηn ≡ η̃ ◦ φµ ◦ πµ defines a
µ-normal positive linear functional onO. Moreover, from the relationφµ ◦ πµ(A) =
zµπun(A) it follows that

ηn(A) = (Ωη, π̃η(zµ)πη(A)Ωη).

Setting
ηs(A) ≡ (Ωη, π̃η(pµ)πη(A)Ωη),

we obtain a decompositionη = ηn + ηs. To show thatηs ⊥ µ let ω be aµ-normal
positive linear functional onO such thatηs ≥ ω. By the unicity of the normal extension
η̃s one hasη̃s(A) = η̃(pµA) for A ∈ Mun. Sinceπun(O) is σ-strongly dense in
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Mun it follows from the inequalityη̃s ◦ πun ≥ ω̃ ◦ πun that η̃(pµA) ≥ ω̃(A) for
any positiveA ∈ Mun. Sinceω is µ-normal, it further follows from Equ. (3.1) that
ω(A) = ω̃(πun(A)) = ω̃(zµπun(A)) ≤ η̃(pµzµπun(A)) = 0 for any positiveA ∈ O,
i.e.,ω = 0. Sinceπ̃η is surjective, one has̃πη(zµ) ∈ Mη ∩ M′

η and, by Proposition
3.2, the functionalsηn andηs are disjoint.

Two statesω1 andω2 are calledquasi-equivalentif Nω1
= Nω2

. They are called
unitarily equivalent if their GNS representations(Hωj

, πωj
,Ωωj

) are unitarily equiv-
alent, namely if there is a unitaryU : Hω1

→ Hω2
such thatUΩω1

= Ωω2
and

Uπω1
(·) = πω2

(·)U . Clearly, unitarily equivalent states are quasi-equivalent.
If ω is τ -invariant, then there exists a unique self-adjoint operator L on Hω such

that
LΩω = 0, πω(τ t(A)) = eitLπω(A)e−itL.

We will call L theω-Liouvillean ofτ .
The stateω is called factor state (or primary state) if its enveloping von Neumann

algebraMω is a factor, namely ifMω ∩ M′
ω = CI. By Proposition 3.2ω is a factor

state iff it cannot be written as a nontrivial convex combination of disjoint states. This
implies that ifω is a factor state andµ is a positive linear functional inO∗, then either
ω ≪ µ or ω ⊥ µ.

Two factor statesω1 andω2 are either quasi-equivalent or disjoint. They are quasi-
equivalent iff(ω1 + ω2)/2 is also a factor state (this follows from Theorem 4.3.19 in
[BR1]).

The stateω is called modular if there exists aC∗-dynamicsσω on O such thatω
is a(σω ,−1)-KMS state. Ifω is modular, thenΩω is a separating vector forMω, and
we denote by∆ω, J andP the modular operator, the modular conjugation and the
natural cone associated toΩω. To anyC∗-dynamicsτ onO one can associate a unique
self-adjoint operatorL onHω such that for allt

πω(τ t(A)) = eitLπω(A)e−itL, e−itLP = P .

The operatorL is called standard Liouvillean ofτ associated toω. If ω is τ -invariant,
thenLΩω = 0, and the standard Liouvillean is equal to theω-Liouvillean ofτ .

The importance of the standard LiouvilleanL stems from the fact that if a stateη
is ω-normal andτ -invariant, then there exists a unique vectorΩη ∈ KerL ∩ P such
thatη(·) = (Ωη, πω(·)Ωη). This fact has two important consequences. On one hand, if
η isω-normal andτ -invariant, then some ergodic properties of the quantum dynamical
system(O, τ, η) can be described in terms of the spectral properties ofL; see [JP2, Pi].
On the other hand, ifKerL = {0}, then theC∗-dynamicsτ has noω-normal invariant
states. The papers [BFS, DJ, FM1, FM2, FMS, JP1, JP2, JP3, Me1, Me2, Og] are
centered around this set of ideas.

In quantum statistical mechanics one also encountersLp-Liouvilleans, forp ∈
[1,∞] (the standard Liouvillean is equal to theL2-Liouvillean). TheLp-Liouvilleans
are closely related to the Araki-MasudaLp-spaces [ArM].L1 andL∞-Liouvilleans
have played a central role in the spectral theory of NESS developed in [JP5]. The use
of otherLp-Liouvilleans is more recent (see [JPR2]) and they will not be discussed in
this lecture.
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3.2 Non-equilibrium steady states (NESS) and entropy production

The central notions of non-equilibrium statistical mechanics are non-equilibrium stea-
dy states (NESS) and entropy production. Our definition of NESS follows closely the
idea of Ruelle that a “natural” steady state should provide the statistics, over large time
intervals[0, t], of initial configurations of the system which are typical with respect to
the reference state [Ru3]. The definition of entropy production is more problematic
since there is no physically satisfactory definition of the entropy itself out of equilib-
rium; see [Ga1, Ru2, Ru5, Ru7] for a discussion. Our definition of entropy production
is motivated by classical dynamics where the rate of change of thermodynamic (Clau-
sius) entropy can sometimes be related to the phase space contraction rate [Ga2, RC].
The latter is related to the Gibbs entropy (as shown for example in [Ru3]) which is noth-
ing else but the relative entropy with respect to the naturalreference state; see [JPR1]
for a detailed discussion in a more general context. Thus, itseems reasonable to define
the entropy production as the rate of change of the relative entropy with respect to the
reference stateω.

Let (O, τ) be aC∗-dynamical system andω a given reference state. The NESS as-
sociated toω andτ are the weak-∗ limit points of the time averages along the trajectory
ω ◦ τ t. In other words, if

〈ω〉t ≡
1

t

∫ t

0

ω ◦ τs ds,

thenω+ is a NESS associated toω and τ if there exists a nettα → ∞ such that
〈ω〉tα

(A) → ω+(A) for all A ∈ O. We denote byΣ+(ω, τ) the set of such NESS.
One easily sees thatΣ+(ω, τ) ⊂ E(O, τ). Moreover, sinceE(O) is weak-∗ compact,
Σ+(ω, τ) is non-empty.

As already mentioned, our definition of entropy production is based on the concept
of relative entropy. The relative entropy of two density matricesρ andω is defined, by
analogy with the relative entropy of two measures, by the formula

Ent(ρ|ω) ≡ Tr(ρ(logω − log ρ)). (3.2)

It is easy to show thatEnt(ρ|ω) ≤ 0. Letϕi an orthonormal eigenbasis ofρ and bypi

the corresponding eigenvalues. Thenpi ∈ [0, 1] and
∑

i pi = 1. Let qi ≡ (ϕi, ω ϕi).
Clearly, qi ∈ [0, 1] and

∑

i qi = Trω = 1. Applying Jensen’s inequality twice we
derive

Ent(ρ|ω) =
∑

i

pi((ϕi, logω ϕi) − log pi)

≤
∑

i

pi(log qi − log pi) ≤ log
∑

i

qi = 0.

HenceEnt(ρ|ω) ≤ 0. It is also not difficult to show thatEnt(ρ|ω) = 0 iff ρ = ω;
see [OP]. Using the concept of relative modular operators, Araki has extended the
notion of relative entropy to two arbitrary states on aC∗-algebra [Ar1, Ar2]. We refer
the reader to [Ar1, Ar2, DJP, OP] for the definition of the Araki relative entropy and
its basic properties. Of particular interest to us is thatEnt(ρ|ω) ≤ 0 still holds, with
equality if and only ifρ = ω.
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In these lecture notes we will define entropy production onlyin a perturbative
context (for a more general approach see [JPR2]). Denote byδ the generator of the
groupτ i.e., τ t = etδ, and assume that the reference stateω is invariant underτ . For
V = V ∗ ∈ O we setδV ≡ δ + i[V, ·] and denote byτ t

V ≡ etδV the corresponding
perturbedC∗-dynamics (such perturbations are often calledlocal, see [Pi]). Starting
with a stateρ ∈ Nω , the entropy is pumped out of the system by the perturbationV at
a mean rate

−1

t
(Ent(ρ ◦ τ t

V |ω) − Ent(ρ|ω)).

Suppose thatω is a modular state for aC∗-dynamicsσt
ω and denote byδω the generator

of σω. If V ∈ Dom(δω), then one can prove the following entropy balance equation

Ent(ρ ◦ τ t
V |ω) = Ent(ρ|ω) −

∫ t

0

ρ(τs
V (σV )) ds, (3.3)

where
σV ≡ δω(V ),

is the entropy production observable (see [JP6, JP7]). In quantum mechanicsσV plays
the role of the phase space contraction rate of classical dynamical systems (see [JPR1]).
We define the entropy production rate of a NESS

ρ+ = w∗ − lim
α

1

tα

∫ tα

0

ρ ◦ τs
V ds ∈ Σ+(ρ, τV ),

by

Ep(ρ+) ≡ − lim
α

1

tα
(Ent(ρ ◦ τ tα

V |ω) − Ent(ρ|ω)) = ρ+(σV ).

SinceEnt(ρ ◦ τ t
V |ω) ≤ 0, an immediate consequence of this equation is that, for

ρ+ ∈ Σ+(ρ, τV ),
Ep(ρ+) ≥ 0. (3.4)

We emphasize that the observableσV depends both on the reference stateω and on
the perturbationV . As we shall see in the next section,σV is related to the thermo-
dynamic fluxes across the system produced by the perturbationV and the positivity of
entropy production is the statement of the second law of thermodynamics.

3.3 Structural properties

In this subsection we shall discuss structural properties of NESS and entropy produc-
tion following [JP4]. The proofs are given in Appendix 9.1.

First, we will discuss the dependence ofΣ+(ω, τV ) on the reference stateω. On
physical grounds, one may expect that ifω is sufficiently regular andη is ω-normal,
thenΣ+(η, τV ) = Σ+(ω, τV ).

Theorem 3.3 Assume thatω is a factor state on theC∗-algebraO and that, for all
η ∈ Nω andA,B ∈ O,

lim
T→∞

1

T

∫ T

0

η([τ t
V (A), B]) dt = 0,
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holds (weak asymptotic abelianness in mean). ThenΣ+(η, τV ) = Σ+(ω, τV ) for all
η ∈ Nω.

The second structural property we would like to mention is:

Theorem 3.4 Letη ∈ O∗ beω-normal andτV -invariant. Thenη(σV ) = 0. In partic-
ular, the entropy production of the normal part of any NESS isequal to zero.

If Ent(η|ω) > −∞, then Theorem 3.4 is an immediate consequence of the entropy
balance equation (3.3). The caseEnt(η|ω) = −∞ has been treated in [JP7] and the
proof requires the full machinery of Araki’s perturbation theory. We will not reproduce
it here.

If ω+ is a factor state, then eitherω+ ≪ ω orω+ ⊥ ω. Hence, Theorem 3.4 yields:

Corollary 3.5 If ω+ is a factor state andEp(ω+) > 0, thenω+ ⊥ ω. If ω is also a
factor state, thenω+ andω are disjoint.

Certain structural properties can be characterized in terms of the standard Liou-
villean. LetL be the standard Liouvillean associated toτ andLV the standard Li-
ouvillean associated toτV . By the well-known Araki’s perturbation formula, one has
LV = L+ V − JV J (see [DJP, Pi]).

Theorem 3.6 Assume thatω is modular.

(i) Under the assumptions of Theorem 3.3, ifKerLV 6= {0}, then it is one-dimen-
sional and there exists a unique normal,τV -invariant stateωV such that

Σ+(ω, τV ) = {ωV }.

(ii) If KerLV = {0}, then any NESS inΣ+(ω, τV ) is purely singular.

(iii) If KerLV contains a separating vector forMω, then Σ+(ω, τV ) contains a
unique stateω+ and this state isω-normal.

3.4 C∗-scattering and NESS

Let (O, τ) be aC∗-dynamical system andV a local perturbation. The abstractC∗-
scattering approach to the study of NESS is based on the following assumption:

Assumption (S)The strong limit

α+
V ≡ s − lim

t→∞
τ−t ◦ τ t

V ,

exists.

The mapα+
V is an isometric∗-endomorphism ofO, and is often called Møller

morphism.α+
V is one-to-one but it is generally not onto, namely

O+ ≡ Ranα+
V 6= O.
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Sinceα+
V ◦ τ t

V = τ t ◦ α+
V , the pair(O+, τ) is aC∗-dynamical system andα+

V is an
isomorphism between the dynamical systems(O, τV ) and(O+, τ).

If the reference stateω is τ -invariant, thenω+ = ω ◦ α+
V is the unique NESS

associated toω andτV and

w∗ − lim
t→∞

ω ◦ τ t
V = ω+.

Note in particular that ifω is a(τ, β)-KMS state, thenω+ is a(τV , β)-KMS state.
The mapα+

V is the algebraic analog of the wave operator in Hilbert spacescatter-
ing theory. A simple and useful result in Hilbert space scattering theory is the Cook
criterion for the existence of the wave operator. Its algebraic analog is:

Proposition 3.7 (i) Assume that there exists a dense subsetO0 ⊂ O such that for
all A ∈ O0,

∫ ∞

0

‖[V, τ t
V (A)]‖ dt <∞. (3.5)

Then Assumption(S)holds.

(ii) Assume that there exists a dense subsetO1 ⊂ O such that for allA ∈ O1,
∫ ∞

0

‖[V, τ t(A)]‖ dt <∞. (3.6)

ThenO+ = O andα+
V is a∗-automorphism ofO.

Proof. For allA ∈ O we have

τ−t2 ◦ τ t2
V (A) − τ−t1 ◦ τ t1

V (A) = i

∫ t2

t1

τ−t([V, τ t
V (A)]) dt,

τ−t2
V ◦ τ t2(A) − τ−t1

V ◦ τ t1(A) = −i

∫ t2

t1

τ−t
V ([V, τ t(A)]) dt,

(3.7)

and so

‖τ−t2 ◦ τ t2
V (A) − τ−t1 ◦ τ t1

V (A)‖ ≤
∫ t2

t1

‖[V, τ t
V (A)]‖ dt,

‖τ−t2
V ◦ τ t2(A) − τ−t1

V ◦ τ t1(A)‖ ≤
∫ t2

t1

‖[V, τ t(A)]‖ dt.

(3.8)

To prove Part (i), note that (3.5) and the first estimate in (3.8) imply that forA ∈ O0

the norm limit
α+

V (A) ≡ lim
t→∞

τ−t ◦ τ t
V (A),

exists. SinceO0 is dense andτ−t ◦ τ t
V is isometric, the limit exists for allA ∈ O, and

α+
V is a∗-morphism ofO. To prove Part (ii) note that the second estimate in (3.8) and

(3.6) imply that the norm limit

β+
V (A) ≡ lim

t→∞
τ−t
V ◦ τ t(A),
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also exists for allA ∈ O. Sinceα+
V ◦ β+

V (A) = A, α+
V is a∗-automorphism ofO.�

Until the end of this subsection we will assume that the Assumption (S) holds and
thatω is τ -invariant.

Let ω̃ ≡ ω ↾ O+ and let(Hω̃ , πω̃,Ωω̃) be the GNS-representation ofO+ as-
sociated toω̃. Obviously, if α+

V is an automorphism, theñω = ω. We denote by
(Hω+

, πω+
,Ωω+

) the GNS representation ofO associated toω+. Let Lω̃ andLω+

be the standard Liouvilleans associated, respectively, to(O+, τ, ω̃) and(O, τV , ω+).
Recall thatLω̃ is the unique self-adjoint operator onHω̃ such that forA ∈ O+,

Lω̃Ωω̃ = 0, πω̃(τ t(A)) = eitLω̃πω̃(A)e−itLω̃ ,

and similarly forLω+
.

Proposition 3.8 The map

Uπω̃(α+
V (A))Ωω̃ = πω+

(A)Ωω+
,

extends to a unitaryU : Hω̃ → Hω+
which intertwinesLω̃ andLω+

, i.e.,

ULω̃ = Lω+
U.

Proof. Setπ′
ω̃(A) ≡ πω̃(α+

V (A)) and note thatπ′
ω̃(O)Ωω̃ = πω̃(O+)Ωω̃, so thatΩω̃ is

cyclic for π′
ω̃(O). Since

ω+(A) = ω(α+
V (A)) = ω̃(α+

V (A)) = (Ωω̃, πω̃(α+
V (A))Ωω̃) = (Ωω̃, π

′
ω̃(A)Ωω̃),

(Hω̃, π
′
ω̃,Ωω̃) is also a GNS representation ofO associated toω+. Since GNS rep-

resentations associated to the same state are unitarily equivalent, there is a unitary
U : Hω̃ → Hω+

such thatUΩω̃ = Ωω+
and

Uπ′
ω̃(A) = πω+

(A)U.

Finally, the identities

UeitLω̃π′
ω̃(A)Ωω̃ = Uπω̃(τ t(α+

V (A)))Ωω̃ = Uπω̃(α+
V (τ t

V (A)))Ωω̃

= πω+
(τ t

V (A))Ωω+
= eitLω+πω+

(A)Ωω+

= eitLω+Uπ′
ω̃(A)Ωω̃ ,

yield thatU intertwinesLω̃ andLω+ . �

We finish this subsection with:

Proposition 3.9 (i) Assume that̃ω ∈ E(O+, τ) is τ -ergodic. Then

Σ+(η, τV ) = {ω+},

for all η ∈ Nω.
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(ii) If ω̃ is τ -mixing, then
lim

t→∞
η ◦ τ t

V = ω+,

for all η ∈ Nω .

Proof. We will prove the Part (i); the proof of the Part (ii) is similar. If η ∈ Nω, then
η ↾ O+ ∈ Nω̃ , and the ergodicity of̃ω yields

lim
T→∞

1

T

∫ T

0

η(τ t(α+
V (A))) dt = ω̃(α+

V (A)) = ω+(A).

This fact, the estimate

‖η(τ t
V (A)) − η(τ t(α+

V (A)))‖ ≤ ‖τ−t ◦ τ t
V (A) − α+

V (A)‖,

and Assumption (S) yield the statement.�

4 Open quantum systems

4.1 Definition

Open quantum systems are the basic paradigms of non-equilibrium quantum statistical
mechanics. An open system consists of a “small” systemS interacting with a large
“environment” or “reservoir”R.

In these lecture notes the small system will be a "quantum dot"—a quantum me-
chanical system with finitely many energy levels and no internal structure. The system
S is described by a finite-dimensional Hilbert spaceHS = CN and a HamiltonianHS .
Its algebra of observablesOS is the full matrix algebraMN(C) and its dynamics is
given by

τ t
S(A) = eitHSAe−itHS = etδS (A),

whereδS(·) = i[HS , · ]. The states ofS are density matrices onHS . A convenient
reference state is the tracial state,ωS(·) = Tr(·)/ dimHS . In the physics literatureωS
is sometimes called the chaotic state since it is of maximal entropy, giving the same
probability1/ dimHS to any one-dimensional projection inHS .

The reservoir is described by aC∗-dynamical system(OR, τR) and a reference
stateωR. We denote byδR the generator ofτR.

The algebra of observables of the joint systemS + R is O = OS ⊗ OR and its
reference state isω ≡ ωS⊗ωR. Its dynamics, still decoupled, is given byτ t = τ t

S⊗τ t
R.

Let V = V ∗ ∈ O be a local perturbation which couplesS to the reservoirR. The∗-
derivationδV ≡ δR + δS + i[V, · ] generates the coupled dynamicsτ t

V on O. The
coupled joint systemS +R is described by theC∗-dynamical system(O, τV ) and the
reference stateω. Whenever the meaning is clear within the context, we will identify
OS andOR with subalgebras ofO via A ⊗ IOR

, IOS
⊗ A. With a slight abuse of

notation, in the sequel we denoteIOR
andIOS

by I.
We will suppose that the reservoirR has additional structure, namely that it consists

of M partsR1, · · · ,RM , which are interpreted as subreservoirs. The subreservoirs
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are assumed to be independent—they interact only through the small system which
allows for the flow of energy and matter between various subreservoirs.

The subreservoir structure ofR can be chosen in a number of different ways and
the choice ultimately depends on the class of examples one wishes to describe. One
obvious choice is the following: thej-th reservoir is described by theC∗-dynamical
system(ORj

, τRj
) and the reference stateωRj

, andOR = ⊗ORj
, τR = ⊗τRj

,
ω = ⊗ωRj

[JP4, Ru1]. In view of the examples we plan to cover, we will choose a
more general subreservoir structure.

We will assume that thej-th reservoir is described by aC∗-subalgebraORj
⊂ OR

which is preserved byτR. We denote the restrictions ofτR andωR to ORj
by τRj

andωRj
. Different algebrasORj

may not commute. However, we will assume that
ORi

∩ ORj
= CI for i 6= j. If Ak, 1 ≤ k ≤ N , are subsets ofOR, we denote by

〈A1, · · · ,AN 〉 the minimalC∗-subalgebra ofOR that contains allAk. Without loss
of generality, we may assume thatOR = 〈OR1

, · · · ,ORM
〉.

The systemS is coupled to the reservoirRj through ajunction described by a
self-adjoint perturbationVj ∈ OS ⊗ORj

. The complete interaction is given by

V ≡
M
∑

j=1

Vj . (4.9)
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Figure 1: JunctionsV1, V2 between the systemS and subreservoirs.

An anti-linear, involutive,∗-automorphismr : O → O is called atime reversalif it
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satisfiesr(HS) = HS , r(Vj) = Vj andr ◦ τ t
Rj

= τ−t
Rj

◦ r. If r is a time reversal, then

r ◦ τ t = τ−t ◦ r, r ◦ τ t
V = τ−t

V ◦ r,

and a stateω onO is time reversal invariant ifω ◦ r(A) = ω(A∗) for all A ∈ O. An
open quantum system described by(O, τV ) and the reference stateω is called time
reversal invariant (TRI) if there exists a time reversalr such thatω is time reversal
invariant.

4.2 C
∗-scattering for open quantum systems

Except for Part (ii) of Proposition 3.7, the scattering approach to the study of NESS, de-
scribed in Subsection 3.4, is directly applicable to open quantum systems. Concerning
Part (ii) of Proposition 3.7, note that in the case of open quantum systems the Møller
morphismα+

V cannot be onto (except in trivial cases). The best one may hope for is
thatO+ = OR, namely thatα+

V is an isomorphism between theC∗-dynamical systems
(O, τV ) and(OR, τR). The next theorem was proved in [Ru1].

Theorem 4.1 Suppose that Assumption (S) holds.

(i) If there exists a dense setOR0 ⊂ OR such that for allA ∈ OR0,
∫ ∞

0

‖[V, τ t(A)]‖ dt <∞, (4.10)

thenOR ⊂ O+.

(ii) If there exists a dense setO0 ⊂ O such that for allX ∈ OS andA ∈ O0,

lim
t→+∞

‖[X, τ t
V (A)]‖ = 0, (4.11)

thenO+ ⊂ OR.

(iii) If both (4.10) and (4.11) hold thenα+
V is an isomorphism between theC∗-dyna-

mical systems(O, τV ) and(OR, τR). In particular, if ωR is a (τR, β)-KMS for
some inverse temperatureβ, thenω+ is a (τV , β)-KMS state.

Proof. The proof of Part (i) is similar to the proof of the Part (i) of Proposition 3.7. The
assumption (4.10) ensures that the limits

β+
V (A) = lim

t→∞
τ t
V ◦ τ−t(A),

exist for allA ∈ OR. Clearly,α+
V ◦β+

V (A) = A for allA ∈ OR and soOR ⊂ Ranα+
V .

To prove Part (ii) recall thatOS is aN2-dimensional matrix algebra. It has a
basis{Ek | k = 1, · · · , N2} such thatτ t(Ek) = eitθkEk for someθk ∈ R. From
Assumption (S) and (4.11) we can conclude that

0 = lim
t→+∞

eitθkτ−t([Ek, τ
t
V (A)]) = lim

t→+∞
[Ek, τ

−t ◦ τ t
V (A)] = [Ek, α

+
V (A)],

for allA ∈ O0 and hence, by continuity, for allA ∈ O. It follows thatRanα+
V belongs

to the commutant ofOS in O. SinceO can be seen as the algebraMN (OR) ofN×N -
matrices with entries inOR, one easily checks that this commutant is preciselyOR.

Part (iii) is a direct consequence of the first two parts.�
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4.3 The first and second law of thermodynamics

Let us denote byδj the generator of the dynamical groupτRj
. (Recall that this dynami-

cal group is the restriction of the decoupled dynamics to thesubreservoirRj ). Assume
thatVj ∈ Dom(δj). The generator ofτV is δV = δR + i[HS + V, · ] and it follows
from (4.9) that the total energy flux out of the reservoir is given by

d

dt
τ t
V (HS + V ) = τ t

V (δV (HS + V )) = τ t
V (δR(V )) =

M
∑

j=1

τ t
V (δj(Vj)).

Thus, we can identify the observable describing the heat fluxout of thej-th reservoir
as

Φj = δj(V ) = δj(Vj) = δR(Vj).

We note that ifr is a time-reversal, thenr(Φj) = −Φj. The energy balance equation

M
∑

j=1

Φj = δV (HS + V ),

yields the conservation of energy (the first law of thermodynamics): for anyτV -inva-
riant stateη,

M
∑

j=1

η(Φj) = 0. (4.12)

Besides heat fluxes, there might be other fluxes across the systemS + R (for ex-
ample, matter and charge currents). We will not discuss herethe general theory of such
fluxes (the related information can be found in [FMU, FMSU, TM]). In the rest of this
section we will focus on the thermodynamics of heat fluxes. Charge currents will be
discussed in the context of a concrete model in the second part of this lecture.

We now turn to the entropy production. Assume that there exists aC∗-dynamics
σt
R on OR such thatωR is (σR,−1)-KMS state and such thatσR preserves each

subalgebraORj
. Let δ̃j be the generator of the restriction ofσR to ORj

and assume
thatVj ∈ Dom(δ̃j). The entropy production observable associated to the perturbation
V and the reference stateω = ωS ⊗ ωR, whereωS(·) = Tr(·)/ dimHS , is

σV =

M
∑

j=1

δ̃j(Vj).

Until the end of this section we shall assume that the reservoirs ORj
are in thermal

equilibrium at inverse temperaturesβj . More precisely, we will assume thatωRj
is

theunique(τRj
, βj)-KMS state onORj

. Thenδ̃j = −βjδj , and

σV = −
M
∑

j=1

βjΦj .
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In particular, for any NESSω+ ∈ Σ+(ω, τV ), the second law of thermodynamics
holds:

M
∑

j=1

βj ω+(Φj) = −Ep(ω+) ≤ 0. (4.13)

In fact, it is not difficult to show thatEp(ω+) is independent of the choice of the
reference state of the small system as long asωS > 0; see Proposition 5.3 in [JP4]. In
the case of two reservoirs, the relation

(β1 − β2)ω+(Φ1) = β1 ω+(Φ1) + β2 ω+(Φ2) ≤ 0,

yields that the heat flows from the hot to the cold reservoir.

4.4 Linear response theory

Linear response theory describes thermodynamics in the regime where the “forces”
driving the system out of equilibrium are weak. In such a regime, to a very good ap-
proximation, the non-equilibrium currents depend linearly on the forces. The ultimate
purpose of linear response theory is to justify well known phenomenological laws like
Ohm’s law for charge currents or Fick’s law for heat currents. We are still far from
a satisfactory derivation of these laws, even in the framework of classical mechanics;
see [BLR] for a recent review on this matter. We also refer to [GVV6] for a rigorous
discussion of linear response theory at the macroscopic level.

A less ambitious application of linear response theory concerns transport properties
of microscopic and mesoscopic quantum devices (the advances in nanotechnologies
during the last decade have triggered a strong interest in the transport properties of
such devices). Linear response theory of such systems is much better understood, as
we shall try to illustrate.

In our current setting, the forces that drive the systemS + R out of equilibrium
are the different inverse temperaturesβ1, · · · , βM of the reservoirs attached toS. If
all inverse temperaturesβj are sufficiently close to some valueβeq, we expect linear
response theory to give a good account of the thermodynamicsof the system near
thermal equilibrium at inverse temperatureβeq.

To emphasize the fact that the reference stateω = ωS ⊗ ωR depends on theβj

we setX = (X1, · · · , XM ) with Xj ≡ βeq − βj and denote byωX this reference
state. We assume that for someǫ > 0 and all |X | < ǫ there exists a unique NESS
ωX+ ∈ Σ+(ωX , τV ) and that the functionsX 7→ ωX+(Φj) areC2. Note thatω0+ is
the (unique)(τV , βeq)-KMS state onO. We will denote it simply byωβeq

.
In phenomenological non-equilibrium thermodynamics, theduality between the

driving forcesFα, also calledaffinities,and the steady currentsφα they induce is ex-
pressed by the entropy production formula

Ep =
∑

α

Fα φα,

(see [DGM]). The steady currents are themselves functions of the affinitiesφα =
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φα(F1, · · · ). In the linear response regime, these functions are given bythe relations

φα =
∑

γ

LαγFγ ,

which define thekinetic coefficientsLαγ .
Comparing with Equ. (4.13) and using energy conservation (4.12) we obtain in our

case

Ep(ωX+) =

M
∑

j=1

Xj ωX+(Φj).

ThusXj is the affinity conjugated to the steady heat fluxφj(X) = ωX+(Φj) out of
Rj . We note in particular that the equilibrium entropy production vanishes. The kinetic
coefficientsLji are given by

Lji ≡
(

∂φj

∂Xi

)

X=0

= ∂Xi
ωX+(Φj)|X=0.

Taylor’s formula yields

φj(X) = ωX+(Φj) =

M
∑

i=1

LjiXi +O(ǫ2), (4.14)

Ep(ωX+) =

M
∑

i,j=1

LjiXiXj + o(ǫ2). (4.15)

Combining (4.14) with the first law of thermodynamics (recall (4.12)) we obtain that
for all i,

M
∑

j=1

Lji = 0. (4.16)

Similarly, (4.15) and the second law (4.13) imply that the quadratic form

M
∑

i,j=1

LjiXiXj ,

on RM is non-negative. Note that this does not imply that theM ×M -matrix L is
symmetric !

Linear response theory goes far beyond the above elementaryrelations. Its true
cornerstones are theOnsager reciprocity relations(ORR), the Kubofluctuation-dissi-
pationformula (KF) and theCentral Limit Theorem(CLT). All three of them deal with
the kinetic coefficients. The Onsager reciprocity relations assert that the matrixLji of
a time reversal invariant (TRI) system is symmetric,

Lji = Lij. (4.17)
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For non-TRI systems, similar relations hold between the transport coefficients of the
system and those of the time reversed one. For example, if time reversal invariance
is broken by the action of an external magnetic fieldB, then the Onsager-Casimir
relations

Lji(B) = Lij(−B),

hold.
The Kubo fluctuation-dissipation formula expresses the transport coefficients of a

TRI system in terms of theequilibriumcurrent-current correlation function

Cji(t) ≡
1

2
ωβeq

(τ t
V (Φj)Φi + Φiτ

t
V (Φj)), (4.18)

namely

Lji =
1

2

∫ ∞

−∞
Cji(t) dt. (4.19)

The Central Limit Theorem further relatesLji to the statistics of the current fluctu-
ations in equilibrium. In term of characteristic function,the CLT for open quantum
systems in thermal equilibrium asserts that

lim
t→∞

ωβeq

(

ei(
PM

j=1
ξj

R

t

0
τs

V (Φj) ds)/
√

t
)

= e−
1
2

PM
i,j=1

Dji ξjξi , (4.20)

where the covariance matrixDji is given by

Dji = 2Lji.

If, for a self-adjointA ∈ O, we denote by1[a,b](A) the spectral projection on the
interval[a, b] of πωβeq

(A), the probability of measuring a value ofA in [a, b] when the
system is in the stateωβeq

is given by

Probωβeq
{A ∈ [a, b]} = (Ωωβeq

, 1[a,b](A)Ωωβeq
).

It then follows from (4.20) that

lim
t→∞

Probωβeq

{

1

t

∫ t

0

τs
V (Φj) ds ∈

[

a√
t
,
b√
t

]}

=
1√

2πLjj

∫ b

a

e−x2/2L2
jj dx.

(4.21)
This is a direct translation to quantum mechanics of the classical central limit theo-
rem. Because fluxes do not commute,[Φj ,Φi] 6= 0 for j 6= i, they can not be mea-
sured simultaneously and a simple classical probabilisticinterpretation of (4.20) for
the vector variableΦ = (Φ1, · · · ,ΦM ) is not possible. Instead, the quantum fluc-
tuations of the vector variableΦ are described by the so-calledfluctuation algebra
[GVV1, GVV2, GVV3, GVV4, GVV5, Ma]. The description and study of the fluctua-
tion algebra involve somewhat advanced technical tools andfor this reason we will not
discuss the quantum CLT theorem in this lecture.

The mathematical theory of ORR, KF, and CLT is reasonably well understood in
classical statistical mechanics (see the lecture [Re]). Inthe context of open quan-
tum systems these important notions are still not completely understood (see however
[AJPP, JPR2] for some recent results).
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We close this subsection with some general comments about ORR and KF.
The definition (4.18) of the current-current correlation function involves a sym-

metrized product in order to ensure that the functionCji(t) is real-valued. The corre-
sponding imaginary part, given by

1

2
i[Φi, τ

t
V (Φj)],

is usually non-zero. However, sinceωβeq
is a KMS state, the stability condition (see

[BR2]) yields
∫ ∞

−∞
ωβeq

(i[Φi, τ
t
V (Φj)]) dt = 0, (4.22)

so that, in this case, the symmetrization is not necessary and one can rewrite KF as

Lji =
1

2

∫ ∞

−∞
ωβeq

(Φiτ
t
V (Φj)) dt.

Finally, we note that ORR follow directly from KF under the TRI assumption.
Indeed, if our system is TRI with time reversalr we have

r(Φi) = −Φi, r(τ t
V (Φj)) = −τ−t

V (Φj), ωβeq
◦ r = ωβeq

,

and therefore

Cji(t) =
1

2
ωβeq

(τ−t
V (Φj)Φi + Φiτ

−t
V (Φj)) = Cji(−t).

Sinceωβeq
is τV -invariant, this implies

Cji(t) =
1

2
ωβeq

(Φjτ
t
V (Φi) + τ t

V (Φi)Φj) = Cij(t),

and ORR (4.17) follows from KF (4.19).
In the second part of the lecture we will show that the Onsagerrelations and the

Kubo formula hold for the SEBB model. The proof of the CentralLimit Theorem for
this model is somewhat technically involved and can be foundin [AJPP].

4.5 Fermi Golden Rule (FGR) thermodynamics

Letλ ∈ R be a control parameter. We consider an open quantum system with coupling
λV and writeτλ for τλV , ωλ+ for ω+, etc.

The NESS and thermodynamics of the system can be described, to second order of
perturbation theory inλ, using the weak coupling (or van Hove) limit. This approach
is much older than the "microscopic" Hamiltonian approach discussed so far, and has
played an important role in the development of the subject. The classical references
are [Da1, Da2, Haa, VH1, VH2, VH3]. The weak coupling limit isalso discussed in
the lecture notes [D1].

In the weak coupling limit one “integrates” the degrees of freedom of the reservoirs
and follows the reduced dynamics ofS on a large time scalet/λ2. In the limit λ → 0
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the dynamics ofS becomes irreversible and is described by a semigroup, oftencalled
thequantum Markovian semigroup(QMS). The generator of this QMS describes the
thermodynamics of the open quantum system to second order ofperturbation theory.

The “integration” of the reservoir variables is performed as follows. As usual, we
use the injectionA 7→ A⊗ I to identifyOS with a subalgebra ofO. ForA ∈ OS and
B ∈ OR we set

PS(A⊗B) = AωR(B). (4.23)

The mapPS extends to a projectionPS : O → OS . The reduced dynamics of the
systemS is described by the family of mapsT t

λ : OS → OS defined by

T t
λ(A) ≡ PS

(

τ−t
0 ◦ τ t

λ(A⊗ I)
)

.

Obviously,T t
λ is neither a group nor a semigroup. LetωS be an arbitrary reference

state (density matrix) of the small system andω = ωS ⊗ ωR. Then for anyA ∈ OS ,

ω(τ−t
0 ◦ τ t

λ(A⊗ I)) = TrHS
(ωS T

t
λ(A)).

In [Da1, Da2] Davies proved that under very general conditions there exists a linear
mapKH : OS → OS such that

lim
λ→0

T
t/λ2

λ (A) = etKH(A).

The operatorKH is the QMS generator (sometimes called the Davies generator) in the
Heisenbergpicture. A substantial body of literature has been devoted to the study of
the operatorKH (see the lecture notes [D1]). Here we recall only a few basic results
concerning thermodynamics in the weak coupling limit (for additional information see
[LeSp]). We will assume that the general conditions described in the lecture notes [D1]
are satisfied.

The operatorKH generates a positivity preserving contraction semigroup on OS .
Obviously,KH(I) = 0. We will assume that zero is the only purely imaginary eigen-
value ofKH and thatKerKH = CI. This non-degeneracy condition can be naturally
characterized in algebraic terms, see [D1, Sp]. It implies that the eigenvalue0 ofKH is
semi-simple, that the corresponding eigenprojection has the formA 7→ Tr(ωS +A)I,
whereωS + is a density matrix, and that for any initial density matrixωS ,

lim
t→∞

Tr(ωSetKH(A)) = Tr(ωS +A) ≡ ωS +(A).

The density matrixωS + describes the NESS of the open quantum system in the weak
coupling limit. One further shows that the operatorKH has the form

KH =
M
∑

j=1

KH,j ,

whereKH,j is the QMS generator obtained by considering the weak coupling limit of
the coupled systemS + Rj , i.e.,

etKH,j (A) = lim
λ→0

PS
(

τ
−t/λ2

0 ◦ τ t/λ2

λ,j (A⊗ I)
)

, (4.24)
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whereτλ,j is generated byδj + i[HS + λVj , · ].
One often considers the QMS generator in the Schrödinger picture, denotedKS.

The operatorKS is the adjoint ofKH with respect to the inner product(X,Y ) =
Tr(X∗Y ). The semigroupetKS is positivity and trace preserving. One similarly de-
finesKS,j. Obviously,

KS(ωS +) = 0, KS =

M
∑

j=1

KS,j.

Recall our standing assumption that the reservoirsORj
are in thermal equilibrium at

inverse temperatureβj . We denote by

ωβ = e−βHS/Tr(e−βHS ),

the canonical density matrix ofS at inverse temperatureβ (the unique(τS , β)-KMS
state onOS). Araki’s perturbation theory of KMS-states (see [DJP, BR2]) yields that
for A ∈ OS ,

ωβj
⊗ ωRj

(τ−t
0 ◦ τ t

λ,j(A⊗ I)) = ωβj
(A) +O(λ),

uniformly in t. Hence, for allt ≥ 0,

ωβj
(etKH,j (A)) = ωβj

(A),

and soKS,j(ωβj
) = 0. In particular, if allβj ’s are the same and equal toβ, then

ωS+ = ωβ .
LetOd ⊂ OS be the∗-algebra spanned by the eigenprojections ofHS . Od is com-

mutative and preserved byKH, KH,j, KS andKS,j [D1]. The NESSωS+ commutes
with HS . If the eigenvalues ofHS are simple, then the restrictionKH ↾ Od is a gen-
erator of a Markov process whose state space is the spectrum of HS . This process has
played an important role in the early development of quantumfield theory (more on
this in Subsection 8.2).

We now turn to the thermodynamics in the weak coupling limit,which we will call
Fermi Golden Rule (FGR) thermodynamics. The observable describing the heat flux
out of thej-th reservoir is

Φfgr,j = KH,j(HS).

Note thatΦfgr,j ∈ Od. SinceKS(ωS +) = 0 we have

M
∑

j=1

ωS +(Φfgr,j) = ωS +(KH(HS)) = 0,

which is the first law of FGR thermodynamics.
The entropy production observable is

σfgr = −
M
∑

j=1

βjΦfgr,j, (4.25)
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and the entropy production of the NESSωS + is

Epfgr(ωS+) = ωS+(σfgr).

Since the semigroup generated byKS,j is trace-preserving we have

d

dt
Ent(etKS,jωS +|ωβj

)|t=0 = −βj ωS+(Φfgr,j) − Tr(KS,j(ωS+) logωS+),

where the relative entropy is defined by (3.2). The function

t 7→ Ent(etKS,jωS +|ωβj
),

is non-decreasing (see [Li]), and so

Epfgr(ωS +) =
M
∑

j=1

d

dt
Ent(etKS,jωS +|ωβj

)|t=0 ≥ 0,

which is the second law of FGR thermodynamics. Moreover, under the usual non-
degeneracy assumptions,Epfgr(ωS +) = 0 if and only if β1 = · · · = βM (see [LeSp]
for details).

Let us briefly discuss linear response theory in FGR thermodynamics using the
same notational conventions as in Subsection 4.4. The kinetic coefficients are given by

Lfgr,ji = ∂Xi
ωS +(Φfgr,j)|X=0.

For |X | < ǫ one has

ωS +(Φfgr,j) =

M
∑

i=1

Lfgr,ji Xi +O(ǫ2),

Epfgr(ωS +) =

M
∑

i,j=1

Lfgr,ji XiXj + o(ǫ2).

The first and the second law yield that for alli,

M
∑

j=1

Lfgr,ji = 0,

and that the quadratic form
M
∑

i,j=1

Lfgr,ji XiXj ,

is non-negative. The Kubo formula

Lfgr,ji =

∫ ∞

0

ωβeq
(etKH(Φj)Φi) dt, (4.26)
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and the Onsager reciprocity relations

Lfgr,ji = Lfgr,ij , (4.27)

are proven in [LeSp].
Finally, we wish to comment on the relation between microscopic and FGR thermo-

dynamics. One naturally expects FGR thermodynamics to produce the first non-trivial
contribution (inλ) to the microscopic thermodynamics. For example, the following
relations are expected to hold for smallλ:

ωλ+ = ωS+ +O(λ),

ωλ+(Φj) = λ2ωS+(Φfgr,j) +O(λ3).
(4.28)

Indeed, it is possible to prove that if the microscopic thermodynamics exists and is
sufficiently regular, then (4.28) hold. On the other hand, establishing existence and
regularity of the microscopic thermodynamics is a formidable task which has been so
far carried out only for a few models. FGR thermodynamics is very robust and the
weak coupling limit is an effective tool in the study of the models whose microscopic
thermodynamics appears beyond reach of the existing techniques.

We will return to this topic in Section 8 where we will discussthe FGR thermody-
namics of the SEBB model.

5 Free Fermi gas reservoir

In the SEBB model, which we shall study in the second part of this lecture, the reservoir
will be described by an infinitely extended free Fermi gas. Our description of the free
Fermi gas in this section is suited to this application.

The basic properties of the free Fermi gas are discussed in the lecture [Me3] and in
Examples 18 and 51 of the lecture [Pi] and we will assume that the reader is familiar
with the terminology and results described there. A more detailed exposition can be
found in [BR2] and in the recent lecture notes [D2].

The free Fermi gas is described by the so called CAR (canonical anticommutation
relations) algebra. The mathematical structure of this algebra is well understood (see
[D2] for example). In Subsection 5.1 we will review the results we need. Subsection
5.2 contains a few useful examples.

5.1 General description

Let h andh be the Hilbert space and the Hamiltonian of a single Fermion.We will
always assume thath is bounded below. LetΓ−(h) be the anti-symmetric Fock space
overh and denote bya∗(f), a(f) the creation and annihilation operators for a single
Fermion in the statef ∈ h. The corresponding self-adjoint field operator

ϕ(f) ≡ 1√
2

(a(f) + a∗(f)) ,
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satisfies the anticommutation relation

ϕ(f)ϕ(g) + ϕ(g)ϕ(f) = Re(f, g)I.

In the sequela# stands for eithera or a∗. Let CAR(h) be theC∗-algebra generated
by {a#(f) | f ∈ h}. We will refer toCAR(h) as the Fermi algebra. TheC∗-dynamics
induced byh is

τ t(A) ≡ eitdΓ(h)Ae−itdΓ(h).

The pair(CAR(h), τ) is aC∗-dynamical system. It preserves the Fermion number in
the sense thatτ t commutes with the gauge group

ϑt(A) ≡ eitdΓ(I)Ae−itdΓ(I).

Recall thatN ≡ dΓ(I) is the Fermion number operator onΓ−(h) and thatτ andϑ are
the groups of Bogoliubov automorphisms

τ t(a#(f)) = a#(eithf), ϑt(a#(f)) = a#(eitf).

To every self-adjoint operatorT onh such that0 ≤ T ≤ I one can associate a state
ωT onCAR(h) satisfying

ωT (a∗(fn) · · · a∗(f1)a(g1) · · · a(gm)) = δn,mdet{(gi, T fj)}. (5.29)

This ϑ-invariant state is usually called the quasi-free gauge-invariant state gener-
ated byT . It is completely determined by its two point function

ωT (a∗(f)a(g)) = (g, T f).

We will often call T the density operatoror simply thegeneratorof the stateωT .
Alternatively, quasi-free gauge-invariant states can be described by their action on the
field operators. For any integern we definePn as the set of all permutationsπ of
{1, . . . , 2n} such that

π(2j − 1) < π(2j), and π(2j − 1) < π(2j + 1),

for everyj ∈ {1, . . . , n}. Denote byǫ(π) the signature ofπ ∈ Pn. ωT is the unique
state onCAR(h) with the following properties:

ωT (ϕ(f1)ϕ(f2)) =
1

2
(f1, f2) − i Im(f1, T f2),

ωT (ϕ(f1) · · ·ϕ(f2n)) =
∑

π∈Pn

ǫ(π)

n
∏

j=1

ωT (ϕ(fπ(2j−1))ϕ(fπ(2j))),

ωT (ϕ(f1) · · ·ϕ(f2n+1)) = 0.

If h = h1 ⊕ h2 andT = T1 ⊕ T2, then forA ∈ CAR(h1) andB ∈ CAR(h2) one has

ωT (AB) = ωT1
(A)ωT2

(B). (5.30)
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ωT is a factor state. It is modular iffKerT = Ker (I − T ) = {0}. Two statesωT1

andωT2
are quasi-equivalent iff the operators

T
1/2
1 − T

1/2
2 and (I − T1)

1/2 − (I − T2)
1/2, (5.31)

are Hilbert-Schmidt; see [De, PoSt, Ri]. Assume thatKerTi = Ker (I − Ti) = {0}.
Then the statesωT1

andωT2
are unitarily equivalent iff (5.31) holds.

If T = F (h) for some functionF : σ(h) → [0, 1], thenωT describes a free Fermi
gas with energy density per unit volumeF (ε).

The stateωT is τ -invariant iff T commutes witheith for all t. If the spectrum ofh
is simple this means thatT = F (h) for some functionF : σ(h) → [0, 1].

For anyβ, µ ∈ R, the Fermi-Dirac distributionρβµ(ε) ≡ (1 + eβ(ε−µ))−1 induces
the uniqueβ-KMS state onCAR(h) for the dynamicsτ t ◦ ϑ−µt. This state, which
we denote byωβµ, describes the free Fermi gas at thermal equilibrium in the grand
canonical ensemble with inverse temperatureβ and chemical potentialµ.

The GNS representation ofCAR(h) associated toωT can be explicitly computed
as follows. Fix a complex conjugationf 7→ f̄ onh and extend it toΓ−(h). Denote by
Ω the vacuum vector andN the number operator inΓ−(h). Set

HωT
= Γ−(h) ⊗ Γ−(h),

ΩωT
= Ω ⊗ Ω,

πωT
(a(f)) = a((I − T )1/2f) ⊗ I + (−I)N ⊗ a∗(T̄ 1/2f̄).

The triple(HωT
, πωT

,ΩωT
) is the GNS representation of the algebraCAR(h) asso-

ciated toωT . (This representation was constructed in [AW] and if often called Araki-
Wyss representation.) IfωT is τ -invariant, the correspondingωT -Liouvillean is

L = dΓ(h) ⊗ I − I ⊗ dΓ(h̄).

If h has purely (absolutely) continuous spectrum so doesL, except for the simple eigen-
value0 corresponding to the vectorΩωT

. On the other hand,0 becomes a degenerate
eigenvalue as soon ash has some point spectrum. Thus (see the lecture notes [Pi]) the
ergodic properties ofτ -invariant, gauge-invariant quasi-free states can be described in
terms of the spectrum ofh. The stateωT is ergodic iffh has no eigenvalues. Ifh has
purely absolutely continuous spectrum, thenωT is mixing.

If ωT is modular, then its modular operator is

log ∆ωT
= dΓ(s) ⊗ I − I ⊗ dΓ(s̄),

wheres = logT (I − T )−1. The corresponding modular conjugation isJ(Φ ⊗ Ψ) =
uΨ̄ ⊗ uΦ̄, whereu = (−I)N(N+I)/2.

Let θ be the∗-automorphism ofCAR(h) defined by

θ(a(f)) = −a(f). (5.32)

A ∈ CAR(h) is called even ifθ(A) = A and odd ifθ(A) = −A. Every element
A ∈ CAR(h) can be written in a unique way as a sumA = A+ + A− whereA± =
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(A ± θ(A))/2 is even/odd. The set of all even/odd elements is a vector subspace of
CAR(h) andCAR(h) is a direct sum of these two subspaces. It follows from (5.29)
thatωT (A) = 0 if A is odd. Therefore one hasωT (A) = ωT (A+) and

ωT ◦ θ = ωT . (5.33)

The subspace of even elements is aC∗-subalgebra ofCAR(h). This subalgebra is
called even CAR algebra and is denoted byCAR+(h). It is generated by

{a#(f1) · · · a#(f2n) |n ∈ N, fj ∈ h}.

The even CAR algebra plays an important role in physics. It ispreserved byτ andϑ
and the pair(CAR+(h), τ) is aC∗-dynamical system.

We denote the restriction ofωT to CAR+(h) by the same letter. In particular,ωβµ

is the uniqueβ-KMS state onCAR+(h) for the dynamicsτ t ◦ ϑ−µt.
Let

A = a#(f1) · · · a#(fn), B = a#(g1) · · · a#(gm),

be two elements ofCAR(h), wherem is even. It follows from CAR that

‖[A, τ t(B)]‖ ≤ C
∑

i,j

|(fi, e
ithgj)|,

where one can takeC = (max(‖fi‖, ‖gj‖))n+m−2. If the functions|(fi, e
ithgj)| be-

long toL1(R, dt), then
∫ ∞

−∞
‖[A, τ t(B)]‖ dt <∞. (5.34)

Let h0 ⊂ h be a subspace such that for anyf, g ∈ h0 the functiont 7→ (f, eithg) is
integrable. LetO0 = {a#(f1) · · ·a#(fn) |n ∈ N, fj ∈ h0} and letO+

0 be the even
subalgebra ofO0. Then forA ∈ O0 andB ∈ O+

0 (5.34) holds. Ifh0 is dense inh, then
O0 is dense inCAR(h) andO+

0 is dense inCAR+(h).
Let h1 andh2 be two Hilbert spaces, and letΩh1

, Ωh2
be the vaccua inΓ−(h1) and

Γ−(h2). The exponential law for Fermions (see [BSZ] and [BR2], Example 5.2.20)
states that there exists a unique unitary mapU : Γ−(h1 ⊕ h2) → Γ−(h1) ⊗ Γ−(h2)
such that

UΩh1⊕h2
= Ωh1

⊗ Ωh2
,

Ua(f ⊕ g)U−1 = a(f) ⊗ I + (−I)N ⊗ a(g),

Ua∗(f ⊕ g)U−1 = a∗(f) ⊗ I + (−I)N ⊗ a∗(g),

UdΓ(h1 ⊕ h2)U
−1 = dΓ(h1) ⊗ I + I ⊗ dΓ(h2).

(5.35)

The presence of the factors(−I)N in the above formulas complicates the description
of a system containing several reservoirs. The following discussion should help the
reader to understand its physical origin.
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Consider two boxesR1, R2 with one particle Hilbert spaceshi ≡ L2(Ri). Denote
by R the combined boxi.e., the disjoint union ofR1 andR2. The corresponding one
particle Hilbert space ish ≡ L2(R). Identifying the wave functionΨ1 of an electron
in R1 with Ψ1 ⊕ 0 and similarly for an electron inR2 we can replaceh with the direct
sumh1 ⊕ h2.
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Figure 2: Thermal contact and open gate betweenR1 andR2.

Assume that each boxRi contains a single electron with wave functionsΨi (see
Fig. 2). If the boxes are in thermal contact, the two electrons can exchange energy,
but the first one will always stay inR1 and the second one inR2. Thus they are
distinguishable and the total wave function is justΨ1 ⊗ Ψ2. The situation is com-
pletely different if the electrons are free to move from one box into the other. In this
case, the electrons are indistinguishable and Pauli’s principle requires the total wave
function to be antisymmetric—the total wave function isΨ1 ∧ Ψ2. Generalizing this
argument to many electrons states we conclude that the second quantized Hilbert space
is Γ−(h1) ⊗ Γ−(h2) in the case of thermal contact andΓ−(h1 ⊕ h2) in the other case.
The exponential law provides a unitary mapU between these two Hilbert and one eas-
ily checks that

UΨ1 ∧ Ψ2 = Ua∗(Ψ1 ⊕ 0)a∗(0 ⊕ Ψ2)Ωh1⊕h2

= (a∗(Ψ1)(−I)N ⊗ a∗(Ψ2))Ωh1
⊗ Ωh2

= Ψ1 ⊗ Ψ2.

Denoting byOR1
,OR2

andOR the CAR (or more appropriately the CAR+) al-
gebras of the boxesR1,R2 andR, the algebra of the combined system in the case of
thermal contact isOR1

⊗ OR2
, while it is OR in the other case. We emphasize that

the unitary mapU does not yield an isomorphism between these algebrasi.e.,

UORU
∗ 6= OR1

⊗OR2
.

This immediately follows from the observation that(−I)N 6∈ OR1
(unless, of course,

OR1
is finite dimensional, see Subsection 6.3), which implies

Ua∗(0 ⊕ Ψ2)U
∗ = (−I)N ⊗ a∗(Ψ2) 6∈ OR1

⊗OR2
.

Note in particular thata∗(Ψ1) ⊗ I andI ⊗ a∗(Ψ2) commute whilea∗(Ψ1 ⊕ 0) and
a∗(0 ⊕ Ψ2) anticommute. The factor(−I)N is required in order fora∗(Ψ1) ⊗ I and
(−I)N ⊗ a∗(Ψ2) to anticommute.
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5.2 Examples

Recall that the Pauli matrices are defined by

σx ≡
[

0 1
1 0

]

, σy ≡
[

0 −i
i 0

]

, σz ≡
[

1 0
0 −1

]

.

We setσ± ≡ (σx ± iσy)/2. Clearly,σ2
x = σ2

y = σ2
z = I andσxσy = −σyσx = iσz.

More generally, with~σ = (σx, σy, σz) and~u,~v ∈ R3 one has

(~u · ~σ)(~v · ~σ) = ~u · ~v I + i(~u× ~v) · ~σ.

Example 1. Assume thatdim h = 1, i.e., that h = C and thath is the operator of
multiplication by the real constantω. ThenΓ−(h) = C ⊕ C = C2 anddΓ(h) = ωN
with

N ≡ dΓ(I) =

[

0 0
0 1

]

=
1

2
(I − σz).

Moreover, one easily checks that

a(1) =

[

0 0
1 0

]

, a∗(1) =

[

0 1
0 0

]

,

a∗(1)a(1) =

[

1 0
0 0

]

, a(1)a∗(1) =

[

0 0
0 1

]

,

(5.36)

which shows thatCAR(h) is the algebra of2 × 2 matricesM2(C) and CAR+(h)
its subalgebra of diagonal matrices. A self-adjoint operator 0 ≤ T ≤ I on H is
multiplication by a constantγ, 0 ≤ γ ≤ 1. The associated stateωT on CAR(h) is
given by the density matrix

[

1 − γ 0
0 γ

]

.

Example 2. Assume thatdim h = n. Without loss of generality we can seth = Cn

and assume thathfj = ωjfj for someωj ∈ R, where{fj} is the standard basis ofCn.
Then,

Γ−(h) = C
n ⊕ C

n ∧ C
n ⊕ · · · ⊕ (Cn)∧n ≃

n
⊗

i=1

C
2,

andCAR(h) is isomorphic to the algebra of2n × 2n matricesM2n(C). This isomor-
phism is explicitly given by

a(fj) ≃
(

⊗j−1
i=1σz

)

⊗ σ+ ⊗
(

⊗n
i=j+1I

)

,

for j = 1, . . . , n. It follows that

a∗(fj)a(fj) ≃
1

2

(

⊗j−1
i=1 I

)

⊗ (I − σz) ⊗
(

⊗n
i=j+1I

)

.
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The map described by the above formulas is called the Jordan-Wigner transformation.
It is a useful tool in the study of quantum spin systems (see [LMS, AB, Ar3]). For
β, µ ∈ R, the quasi-free gauge-invariant state associated toT = (I + eβ(h−µ))−1 is
given by the density matrix

e−β(H−µN)

Tr e−β(H−µN)
,

with

H ≡ dΓ(h) =

n
∑

j=1

ωj a
∗(fj)a(fj), N ≡ dΓ(I) =

n
∑

j=1

a∗(fj)a(fj).

It is an instructive exercise to work out the thermodynamicsof the finite dimensional
free Fermi gas following Section 3 in [Jo].

Example 3. In this example we will briefly discuss the finite dimensionalapprox-
imation of a free Fermi gas. Assume thath is a separable Hilbert space and let
Λn ⊂ Domh be an increasing sequence of finite dimensional subspaces. The algebras
CAR(Λn) are identified with subalgebras ofCAR(h). We also assume that∪nΛn is
dense inh. Let pn be the orthogonal projection onΛn. Sethn = pnhpn and letτn be
the correspondingC∗-dynamics onCAR(Λn). Sincepn converges strongly toI one
has, forf ∈ H,

lim
n→∞

‖a#(pnf) − a#(f)‖ = 0, lim
n→∞

‖τ t
n(a#(pnf)) − τ t(a#(f))‖ = 0.

Let ωT be the gauge-invariant quasi-free state onCAR(h) associated toT . Let Tn =
pnTpn. Then

lim
n→∞

ωTn
(a∗(pnf)a(png)) = ωT (a∗(f)a(g)).

Assume thatµ andη are two faithfulωT -normal states and letEnt(µ|η) be their Araki
relative entropy. Letµn andηn be the restrictions ofµ andη to CAR+(Λn). Then the
function

n 7→ Ent(µn|ηn) = TrΛn
(µn(logµn − log ηn)),

is monotone increasing and

lim
n→∞

Ent(µn|ηn) = Ent(µ|η).

Additional information about the last result can be found in[BR2], Proposition 6.2.33.

Example 4.The tight binding approximation for an electron in a single Bloch band of
ad-dimensional (cubic) crystal is defined byh ≡ ℓ2(Zd) with the translation invariant
Hamiltonian

(hψ)(x) ≡ 1

2d

∑

|x−y|=1

ψ(y), (5.37)

where|x| ≡ ∑

i |xi|. In the sequelδx denotes the Kronecker delta function atx ∈ Zd.
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Writing ax ≡ a(δx), the second quantized energy and number operators are given
by

dΓ(h) =
1

2d

∑

|x−y|=1

a∗xay, dΓ(I) =
∑

x

a∗xax.

The Fourier transform̂ψ(k) ≡ ∑

x ψ(x) e−ix·k mapsh unitarily onto

ĥ ≡ L2([−π, π]d,
dk

(2π)d
).

The set[−π, π]d is the Brillouin zone of the crystal andk is the quasi-momentum
of the electron. The Fourier transform diagonalizes the Hamiltonian which becomes
multiplication by the band functionε(k) ≡ 1

d

∑

i cos(ki). Thush has purely absolutely
continuous spectrumσ(h) = [−1, 1], and in particular is bounded.

A simple stationary phase argument shows that

(f, eithg) = O(t−n),

for arbitraryn providedf̂ andĝ are smooth and vanish in a neighborhood of the critical
set{k | |∇kε(k)| = 0}. Since this set has Lebesgue measure0, such functions are
dense inh. If f andg have bounded support inZd, then

(f, eithg) = O(t−d/2).

Example 5. The tight binding approximation of a semi-infinite wire is obtained by
restricting the Hamiltonian (5.37), ford = 1, to the space of odd functionsψ ∈ ℓ2(Z)
and identifying suchψ with elements ofℓ2(Z+), whereZ+ ≡ {1, 2, · · · }. This is
clearly equivalent to imposing a Dirichlet boundary condition atx = 0 and

h =
1

2

∞
∑

x=1

((δx, · )δx+1 + (δx+1, · )δx) .

The Fourier-sine transform̃ψ(k) ≡ ∑

x∈Z+
ψ(x) sin(kx) maps unitarilyℓ2(Z+) onto

the spaceL2([0, π], 2dk
π ) and the Hamiltonian becomes multiplication bycos k. By

a simple change of variabler = cos k we obtain the spectral representation of the
Hamiltonianh:

(hψ)#(r) = rψ#(r),

where

ψ#(r) ≡
√

2

π
√

1 − r2
ψ̃(arccos(r)),

maps unitarily the Fourier spaceL2([0, π], 2dk
π ) ontoL2([−1, 1], dr). A straightfor-

ward integration by parts shows that

(f, eithg) = O(t−n),
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if f#, g# ∈ Cn
0 ((−1, 1)). A more careful analysis shows that

(f, eithg) = O(t−3/2),

if f andg have bounded support inZ+.

Example 6. The non-relativistic spinless Fermion of massm is described in the posi-
tion representation by the Hilbert spaceL2(Rd, dx) and the Hamiltonianh = −∆/2m,
where∆ is the usual Laplacian inRd. The cases of physical interest ared = 1, 2, 3.
In the momentum representation the Hilbert space of the Fermion isL2(Rd, dk) and
its Hamiltonian (which we will again denote byh) is the operator of multiplication by
|k|2/2m.

The spectrum ofh is purely absolutely continuous. Integration by parts yields that

(f, eithg) = O(t−n),

for arbitraryn provided f̂ and ĝ are smooth, compactly supported and vanish in a
neighborhood of the origin. Such functions are dense inh. If f, g ∈ h are compactly
supported in the position representation, then

(f, eithg) = O(t−d/2).

6 The simple electronic black-box (SEBB) model

In the second part of this lecture we shall study in detail thenon-equilibrium statisti-
cal mechanics of the simplest non-trivial example of the electronic black box model
introduced in [AJPP]. The electronic black-box model is a general, independent elec-
tron model for a localized quantum deviceS connected toM electronic reservoirs
R1, · · · ,RM . The device is called black-box since, according to the scattering ap-
proach introduced in Subsection 4.2, the thermodynamics ofthe coupled system is
largely independent of the internal structure of the device. The NESS and the steady
currents are completely determined by the Møller morphism which in our simple model
further reduces to the one-particle wave operator.

6.1 The model

The black-box itself is a two level system. Its Hilbert spaceisHS ≡ C2, its algebra of
observables isOS ≡M2(C), and its Hamiltonian is

HS ≡
[

0 0
0 ε0

]

.

The associatedC∗-dynamics isτ t
S(A) = eitHSA e−itHS . The black-box has a one-

parameter family of steady states with density matrices

ωS ≡
[

1 − γ 0
0 γ

]

, γ ∈ [0, 1],
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which we shall use as the reference states.
According to Example 1 of Subsection 5.2, we can also think ofS as a free Fermi

gas overC, namelyHS = Γ−(C),HS = dΓ(ε0) = ε0a
∗(1)a(1) andOS = CAR(C).

In this picture, the black-boxS can only accommodate a single Fermion of energy
ε0. We denote byNS = a∗(1)a(1) the corresponding number operator. In physical
terms,S is a quantum dot without internal structure. We also note that ωS is the quasi-
free gauge-invariant state generated byTS ≡ γ. Therefore, we can interpretγ as the
occupation probability of the box.

Let hR be a Hilbert space andhR a self-adjoint operator onhR. We setOR ≡
CAR(hR) and

τ t
R(A) ≡ eitdΓ(hR)A e−itdΓ(hR).

The reference state of the reservoir,ωR, is the quasi-free gauge-invariant state associ-
ated to the radiation density operatorTR. We assume thathR is bounded from below
and thatTR commutes withhR.

To introduce the subreservoir structure we shall assume that

hR = ⊕M
j=1hRj

, hR = ⊕M
j=1hRj

, TR = ⊕M
j=1TRj

.

The algebra of observables of thej-th reservoir isORj
≡ CAR(hRj

) and its dynamics
τRj

≡ τR ↾ ORj
is generated by the HamiltoniandΓ(hRj

). The stateωRj
= ωR ↾

ORj
is the gauge-invariant quasi-free state associated toTRj

. If pj is the orthogonal
projection onhRj

, thenNRj
= dΓ(pj) is the charge (or number) operator associated

to thej-th reservoir. The total charge operator of the reservoir isNR =
∑M

j=1NRj
.

The algebra of observables of the joint systemS+R isO ≡ OS⊗OR, its reference
state isω = ωS ⊗ ωR, and its decoupled dynamics isτ0 = τS ⊗ τR. Note that

τ t
0(A) = eitH0A e−itH0 ,

where
H0 ≡ HS ⊗ I + I ⊗ dΓ(hR).

The junction between the boxS and the reservoirRj works in the following way:
The box can make a transition from its ground state to its excited state by absorbing an
electron ofRj in statefj/‖fj‖. Reciprocally, the excited box can relax to its ground
state by emitting an electron in statefj/‖fj‖ in Rj . These processes have a fixed rate
λ2‖fj‖2. More precisely, the junction is described by

λVj ≡ λ (a(1) ⊗ a∗(fj) + a∗(1) ⊗ a(fj)) ,

whereλ ∈ R and thefj ∈ hj . The normalization is fixed by the condition
∑

j ‖fj‖2 =
1. The complete interaction is given by

λV ≡
M
∑

j=1

λVj = λ(a(1) ⊗ a∗(f) + a∗(1) ⊗ a(f)),

wheref ≡ ⊕M
j=1fj . Note that “charge” is conserved at the junction,i.e.,V commutes

with the total number operatorN ≡ NS ⊗ I + I ⊗NR.
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The full Hamiltonian is
Hλ ≡ H0 + λV,

and the correspondingC∗-dynamics

τ t
λ(A) ≡ eitHλA e−itHλ ,

is charge-preserving. In other words,τλ commutes with the gauge group

ϑt(A) ≡ eitNA e−itN ,

and[Hλ, N ] = 0. TheC∗-dynamical system(O, τλ) with its decoupled dynamicsτ t
0

and the reference stateω = ωS ⊗ωR is oursimple electronic black box model (SEBB).
This model is an example of the class of open quantum systems described in Section 4.

6.2 The fluxes

The heat flux observables have been defined in Subsection 4.3.The generator ofτRj

is given byδj(·) = i[dΓ(hRj
), · ]. Note thatVj ∈ Dom δj iff fj ∈ DomhRj

. If
Vj ∈ Dom δj , then the observable describing the heat flux out ofRj is

Φj = λδj(Vj) = λ(a(1) ⊗ a∗(ihRj
fj) + a∗(1) ⊗ a(ihRj

fj)).

In a completely similar way we can define the charge current. The rate of change of
the charge in the boxS is

d

dt
τ t
λ(NS)|t=0 = i [dΓ(Hλ), NS ]

= −λ i [NS , V ] = λ i [NR, V ] =

M
∑

j=1

λ i [NRj
, V ],

(6.38)

which allows us to identify

Jj ≡ λ i [NRj
, V ]

= λ i [NRj
, Vj ] = λ i [NR, Vj ] = λ(a(1) ⊗ a∗(ifj) + a∗(1) ⊗ a(ifj),

as the observable describing the charge current out ofRj .
Let us make a brief comment concerning these definitions. IfhRj

is finite dimen-
sional, then the energy and the charge ofRj are observables, given by the Hamiltonian
dΓ(hRj

) and the number operatorNRj
= dΓ(pj), and

− d

dt
τ t
λ(dΓ(hRj

))|t=0 = λ i[dΓ(hRj
), Vj ] = Φj ,

− d

dt
τ t
λ(dΓ(pj))|t=0 = λ i[dΓ(pj), Vj ] = Jj .

WhenhRj
becomes infinite dimensional (recall Example 3 in Subsection 5.2),NRj

anddΓ(hRj
) are no longer observables. However, the flux observablesΦj andJj are
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still well-defined and they are equal to the limit of the flux observables corresponding
to finite-dimensional approximations.

The first law of thermodynamics (energy conservation) has been verified in Sub-
section 4.3—for anyτλ-invariant stateη one has

M
∑

j=1

η(Φj) = 0.

The analogous statement for charge currents is proved in a similar way. By (6.38),

M
∑

j=1

Jj =
d

dt
τ t
λ(NS)|t=0,

and so for anyτλ-invariant stateη one has

M
∑

j=1

η(Jj) = 0. (6.39)

6.3 The equivalent free Fermi gas

In this subsection we shall show how to use the exponential law for fermionic systems
to map the SEBB model to a free Fermi gas. Let

h ≡ C ⊕ hR = C ⊕





M
⊕

j=1

hRj



 , Õ ≡ CAR(h), h0 ≡ ε0 ⊕ hR,

and, with a slight abuse of notation, denote by1, f1, · · · , fM the elements ofh canon-
ically associated with1 ∈ C andfj ∈ hRj

. Then

vj ≡ (1, · )fj + (fj , · )1,

is a finite rank, self-adjoint operator onh and so is the sumv ≡ ∑M
j=1 vj . We further

set
hλ ≡ h0 + λv, (6.40)

and define the dynamical group

τ̃ t
λ(A) ≡ eitdΓ(hλ)A e−itdΓ(hλ),

on Õ. Finally, we set
T̃ ≡ TS ⊕ TR,

and denote bỹω be the quasi-free gauge-invariant state onÕ generated bỹT .

Theorem 6.1 LetU : Γ−(C ⊕ hR) → Γ−(C) ⊗ Γ−(hR) be the unitary map defined
by the exponential law (5.35) and setφ(A) ≡ U−1AU .



Topics in non-equilibrium quantum statistical mechanics 37

(i) φ : O → Õ is a∗-isomorphism.

(ii) For any λ, t ∈ R one hasφ ◦ τ t
λ = τ̃ t

−λ ◦ φ.

(iii) ω = ω̃ ◦ φ.

(iv) For j = 1, · · · ,M , one has

Φ̃j ≡ φ(Φj) = −λ (a∗(ihjfj)a(1) + a∗(1)a(ihjfj)) ,

and
J̃j ≡ φ(Jj) = −λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

Proof. Clearly,φ is a∗-isomorphism fromB(Γ−(C ⊕ h)) ontoB(Γ−(C) ⊗ Γ−(h)).
Using the canonical injectionsC → h andhR → h we can identifyOS andOR
with the subalgebras of̃O generated bya(1 ⊕ 0) and{a(0 ⊕ f) | f ∈ hR}. With this
identification, (5.35) gives

φ(a(α) ⊗ I + (−I)NS ⊗ a(f)) = a(α) + a(f),

for α ∈ C andf ∈ hR. We conclude that

φ(A ⊗ I) = A, (6.41)

for anyA ∈ OS . In particular, sinceb ≡ (−I)NS = [a(1), a∗(1)] ∈ OS , we have
φ(b ⊗ I) = b. Relationb2 = I yieldsφ(I ⊗ a(f)) = b a(f). Since[b, a(f)] = 0, we
conclude that forA ∈ OR

φ(I ⊗A) =

{

A if A ∈ O+
R,

bA if A ∈ O−
R,

(6.42)

whereO±
R denote the even and odd parts ofOR. Equ. (6.41) and (6.42) show that

φ(O) ⊂ Õ. SinceÕ =
〈

OS ,O+
R,O−

R
〉

, it follows from φ(OS ⊗ I) = OS , φ(I ⊗
O+

R) = O+
R andφ(b ⊗O−

R) = O−
R thatφ(O) ⊃ Õ. This proves Part (i).

From (5.35) we can see thatU−1H0U = dΓ(h0) and from (6.41) and (6.42) that

U−1VjU = φ(Vj) = a(1) b a∗(fj) + a∗(1) b a(fj).

Since it also follows from CAR that

a(1) b = −a(1), a∗(1) b = a∗(1), (6.43)

we get

U−1VjU = −a(1) a∗(fj) + a∗(1) a(fj) = −a(1) a∗(fj) − a(fj) a
∗(1) = −dΓ(vj).

ThereforeU−1HλU = dΓ(h−λ) from which Part (ii) follows. A similar computation
yields Part (iv).
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It remains to prove Part (iii). Using the morphismθ (recall Equ. (5.32)) to express
the even and odd parts ofB ∈ OR, we can rewrite (6.41) and (6.42) as

φ(A⊗B) = A(B + θ(B))/2 +Ab (B − θ(B))/2,

from which we easily get

φ(A⊗B) = Aa(1)a∗(1)B +Aa∗(1)a(1)θ(B).

It follows from the factorization property (5.30) and the invariance property (5.33) of
quasi-free states that

ω̃ ◦ φ(A ⊗B) = ω̃(Aa(1)a∗(1))ω̃(B) + ω̃(Aa∗(1)a(1))ω̃(B)

= ω̃(Aa(1)a∗(1)B +Aa∗(1)a(1)B)

= ω̃(AB) = ω̃(A)ω̃(B)

= ωS(A)ωR(B) = ω(A⊗B).

�

By Theorem 6.1, the SEBB model can be equivalently describedby theC∗-dyna-
mical system(Õ, τ̃−λ) and the reference stateωT̃ . The heat and charge flux observables
areΦ̃j andJ̃j . Since the changeλ → −λ affects neither the model nor the results,in
the sequel we will work with the system(Õ, τ̃λ) and we will drop the∼. Hence, we
will use theC∗-algebraO = CAR(C ⊕ hR) andC∗-dynamics

τ t
λ(A) = eitdΓ(hλ)Ae−itdΓ(hλ),

with the reference stateω, the quasi-free gauge-invariant state generated byT = TS ⊕
TR. The corresponding heat and charge flux observables are

Φj ≡ λ (a∗(ihjfj)a(1) + a∗(1)a(ihjfj)) ,

Jj ≡ λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

The entropy production observable associated toω is computed as follows. Assume
that forj = 1, · · · ,M one hasKerTRj

= Ker (I − TRj
) = {0} and set

sj ≡ − logTRj
(I − TRj

)−1, sR = ⊕M
j=1sj .

We also assume that0 < γ < 1 and setsS = log γ(1−γ)−1. Lets ≡ −sS⊕sR. Under
the above assumptions, the reference stateω is modular and its modular automorphism
group is

σt
ω(A) = eitdΓ(s)A e−itdΓ(s).

If fj ∈ Dom(sj), then the entropy production observable is

σ = −λ (a∗(f)a(isS) + a∗(isS)a(f))−λ (a∗(isRf)a(1) + a∗(1)a(isRf)) . (6.44)
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The entropy balance equation

Ent(ω ◦ τ t
λ|ω) = −

∫ t

0

ω(τs
λ(σ)) ds,

holds and so, as in Subsection 3.2, the entropy production ofany NESSω+ ∈ Σ+(ω, τλ)
is non-negative. In fact, it is not difficult to show that the entropy production ofω+ is
independent ofγ as long asγ ∈ (0, 1) (see Proposition 5.3 in [JP4]).In the sequel,
whenever we speak about the entropy production, we will assume thatγ = 1/2 and
hence that

σ = −λ (a∗(isRf)a(1) + a∗(1)a(isRf)) . (6.45)

In particular, if
TRj

= (I + eβj(hRj
−µj)),

thensj = −βj(hRj
− µj), and

σ = −
M
∑

j=1

βj(Φj − µjJj). (6.46)

We finish with the following remark. In the physics literature, the Hamiltonian
(6.40) is sometimes called theWigner-Weisskopf atom[WW] (see [JKP] for references
and additional information). The operators of this type arealso often calledFriedrich
Hamiltonians[Fr]. The point we wish to emphasize is that such Hamiltonians are
often used as toy models which allow for simple mathematicalanalysis of physically
important phenomena.

6.4 Assumptions

In this subsection we describe a set of assumptions under which we shall study the
thermodynamics of the SEBB model.

Assumption (SEBB1)hRj
= L2((e−, e+), dr) for some−∞ < e− < e+ ≤ ∞ and

hRj
is the operator of multiplication byr.

The assumption (SEBB1) yields thathR = L2((e−, e+), dr; CM ) and thathR
is the operator of multiplication byr. With a slight abuse of the notation we will
sometimes denotehRj

andhR by r. Note that the spectrum ofhR is purely absolutely
continuous and equal to[e−, e+] with uniform multiplicity M . With the shorthand
f ≡ (f1, · · · , fM ) ∈ hR, the Hamiltonian (6.40) acts onC ⊕ hR and has the form

hλ = ε0 ⊕ r + λ((1, · )f + (f, · )1). (6.47)

Assumption (SEBB2)The functions

gj(t) ≡
∫ e+

e−

eitr |fj(r)|2 dr,
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belong toL1(R, dt).

Assumption (SEBB2) implies that the function

G(z) ≡
∫ e+

e−

|f(r)|2
r − z

dr = −i

∫ ∞

0

g(t) e−itz dt,

which is obviously analytic in the lower half-planeC− ≡ {z | Im z < 0}, is continuous
and bounded on its closurēC−. We denote byG(r − io) the value of this function at
r ∈ R.

Assumption (SEBB3)For j = 1, · · · ,M , the generatorTRj
is the operator of mul-

tiplication by a continuous functionρj(r) such that0 < ρj(r) < 1 for r ∈ (e−, e+).
Moreover, if

sj(r) ≡ log

[

ρj(r)

1 − ρj(r)

]

,

we assume thatsj(r)fj(r) ∈ L2((e−, e+), dr).

Assumption (SEBB3) ensures that the reference stateωR of the reservoir is modu-
lar. The functionρj(r) is the energy density of thej-th reservoir. The second part of
this assumption ensures that the entropy production observable (6.44) is well defined.

The study of SEBB model depends critically on the spectral and scattering prop-
erties ofhλ. Our final assumption will ensure that Assumption (S) of Subsection 3.4
holds and will allow us to use a simple scattering approach tostudy SEBB.

Assumption (SEBB4)ε0 ∈ (e−, e+) and|f(ε0)| 6= 0.

We set

F (r) ≡ ε0 − r − λ2G(r − io) = ε0 − r − λ2

∫ e+

e−

|f(r′)|2
r′ − r + io

dr′. (6.48)

By a well-known result in harmonic analysis (see, e.g., [Ja]or any harmonic analysis
textbook),

ImF (r) = λ2π|f(r)|2, (6.49)

for r ∈ (e−, e+). We also mention that for anyg ∈ hR = L2((e−, e+), dr; CM ), the
function

r 7→
∫ e+

e−

f̄(r′) · g(r′)
r′ − r + io

dr′,

is also inhR.
The main spectral and scattering theoretic results onhλ are given in the following

Theorem which is an easy consequence of the techniques described in [Ja]. Its proof
can be found in [JKP].
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Theorem 6.2 Suppose that Assumptions(SEBB1), (SEBB2)and(SEBB4)hold. Then
there exists a constantΛ > 0 such that, for any0 < |λ| < Λ:

(i) The spectrum ofhλ is purely absolutely continuous and equal to[e−, e+].

(ii) The wave operators
W± ≡ s − lim

t→±∞
eith0 e−ithλ ,

exist and are complete, i.e.,RanW± = hR andW± : h → hR are unitary.
Moreover, ifψ = α⊕ g ∈ h, then

(W−ψ)(r) = g(r) − λF (r)−1

[

α− λ

∫ e+

e−

f̄(r′) · g(r′)
r′ − r + io

dr′
]

f(r). (6.50)

Needless to say, the thermodynamics of the SEBB model can be studied under
much more general assumptions than (SEBB1)-(SEBB4). However, these assumptions
allow us to describe the results of [AJPP] with the least number of technicalities.

Parenthetically, we note that the SEBB model is obviously time-reversal invariant.
Write fj(r) = eiθj(r)|fj(r)|, and let

j(α ⊕ (g1, · · · , gM )) = ᾱ⊕ (e2iθ1 ḡ1, · · · , e2iθM ḡM ),

where ·̄ denotes the usual complex conjugation. Then the map

r(A) = Γ(j)AΓ(j−1).

is a time reversal andω is time reversal invariant.
Finally, as an example, consider a concrete SEBB model whereeach reservoir is a

semi-infinite wire in the tight-binding approximation described in Example 5 of Sub-
section 5.2. Thus, for eachj, hRj

= ℓ2(Z+) andhRj
is the discrete Laplacian onZ+

with Dirichlet boundary condition at0. Choosingfj = δ1 we obtain, in the spectral
representation ofhRj

,

hRj
= L2((−1, 1), dr),

hRj
= r,

f#
j (r) =

√

2

π
(1 − r2)1/4.

Thus, Assumptions (SEBB1) and (SEBB4) hold. Since, ast→ ∞, one has

∫ 1

−1

eitr|f#(r)|2 dr =
2M

t
J1(t) = O(t−3/2),

whereJ1 denotes a Bessel function of the first kind, Assumption (SEBB2) is also
satisfied. Hence, ifǫ0 ∈ (−1, 1), then the conclusions of Theorem 6.2 hold. In fact one
can show that in this case

Λ =

√

1 − |ε0|
2M

.
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7 Thermodynamics of the SEBB model

Throughout this and the next section we will assume that Assumptions (SEBB1)-
(SEBB4) hold.

7.1 Non-equilibrium steady states

In this subsection we show that the SEBB model has a unique NESSωλ+ which does
not depend on the choice of the initial stateη ∈ Nω . Recall that the reference stateω
of the SEBB model is the quasi-free gauge-invariant state generated byT = TS ⊕ TR,
whereTS = γ ∈ (0, 1) andTR = ⊕jρj(r).

Theorem 7.1 LetΛ > 0 be the constant introduced in Theorem 6.2. Then, for any real
λ such that0 < |λ| < Λ the following hold:

(i) The limit
α+

λ (A) ≡ lim
t→∞

τ−t
0 ◦ τ t

λ(A), (7.51)

exists for allA ∈ O. Moreover,Ranα+
λ = OR andα+

λ is an isomorphism
between theC∗-dynamical systems(O, τλ) and(OR, τR).

(ii) Let ωλ+ ≡ ωR ◦ α+
λ . Then

lim
t→∞

η ◦ τ t
λ = ωλ+,

for all η ∈ Nω .

(iii) ωλ+ is the gauge-invariant quasi-free state onO generated by

T+ ≡W ∗
−TRW−,

whereW− is the wave operator of Theorem 6.2.

Proof. Recall thatτ t
λ is a group of Bogoliubov automorphisms,i.e., τ t

λ(a#(f)) =
a#(eithλf). Hence, for any observable of the form

A = a#(ψ1) · · · a#(ψn), (7.52)

τ−t
0 ◦ τ t

λ(A) = a#(e−ith0eithλψ1) · · · a#(e−ith0eithλψn).

It follows from Theorem 6.2 that

lim
t→∞

τ−t
0 ◦ τ t

λ(A) = a#(W−ψ1) · · · a#(W−ψn).

Since the linear span of set of elements of the form (7.52) is dense inO, the limit (7.51)
exists and is given by the Bogoliubov morphismα+

λ (a#(f)) = a#(W−f). SinceW−
is a unitary operator betweenh andhR, Ranα+

λ = CAR(hR) = OR, which proves
Part (i).
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SincehR has purely absolutely continuous spectrum, it follows fromour discussion
of quasi-free states in Subsection 5.1 thatωR is mixing for τ t

0. Part (ii) is thus a
restatement of Proposition 3.9.

If A = a∗(ψn) · · · a∗(ψ1)a(φ1) · · · a(φm) is an element ofO, then

ω+(A) = ωR(a∗(W−ψn) · · · a∗(W−ψ1)a(W−φ1) · · · a(W−φm))

= δn,m det {(W−φi, TRW−ψj)}
= δn,m det {(φi, T+ψj)}.

and Part (iii) follows.�

7.2 The Hilbert-Schmidt condition

Sinceω andωλ+ are factor states, they are either quasi-equivalent (Nω = Nωλ+
)

or disjoint (Nω ∩ Nωλ+
= ∅). SinceKerT = Ker (I − T ) = {0}, we also have

KerT+ = Ker (I − T+) = {0}, and soω andωλ+ are quasi-equivalent iff they are
unitarily equivalent.

Let α > 0. A functionh : (e−, e+) → C is α-Hölder continuous if there exists a
constantC such that for allr, r′ ∈ (e−, e+), |h(r) − h(r′)| ≤ C|r − r′|α.

Theorem 7.2 Assume that all the densitiesρj(r) are the same and equal toρ(r). As-
sume further that the functionsρ(r)1/2 and(1− ρ(r))1/2 areα-Hölder continuous for
someα > 1/2. Then the operators

(T+)1/2 − T 1/2 and (I − T+)1/2 − (I − T )1/2

are Hilbert-Schmidt. In particular, the reference stateω and the NESSωλ+ are unitar-
ily equivalent andEp(ωλ+) = 0.

Remark. We will prove this theorem in Appendix 9.2. Although the Hölder continuity
assumption is certainly not optimal, it covers most cases ofinterest and allows for a
technically simple proof.

Theorem 7.2 requires a comment. By the general principles ofstatistical mechan-
ics, one expects thatEp(ωλ+) = 0 if and only if all the reservoirs are inthermal
equilibriumat the same inverse temperatureβ and chemical potentialµ (see Section
4.3 in [JP4]). This is not the case in the SEBB model because the perturbationsVj

are chosen in such a special way that the coupled dynamics is still given by a Bogoli-
ubov automorphism. Following the strategy of [JP4], one canshow that the Planck law
ρ(r) = (1 + eβ(r−µ))−1 can be deduced from the stability requirementEp(ωλ+) = 0
for a more general class of interactionsVj . For reasons of space we will not discuss
this subject in detail in these lecture notes (the interested reader may consult [AJPP]).

We will see below that the entropy production of the SEBB model is non-vanishing
whenever the density operators of the reservoirs are not identical.



44 Aschbacher, Jakšić, Pautrat, Pillet

7.3 The heat and charge fluxes

Recall that the observables describing heat and charge currents out of thej-th reservoir
are

Φj = λ(a∗(irfj)a(1) + a∗(1)a(irfj)),

Jj = λ(a∗(ifj)a(1) + a∗(1)a(ifj)).

The expectation of the currents in the stateωλ+ are thus

ωλ+(Φj) = iλωλ+

(

a∗(rfj)a(1) − a∗(1)a(rfj)
)

= 2λIm (rfj , T+1)

= 2λIm (W−rfj , TRW−1),

and

ωλ+(Jj) = iλωλ+

(

a∗(fj)a(1) − a∗(1)a(fj)
)

= 2λIm (fj , T+1)

= 2λIm (W−fj , TRW−1).

Setting

Gj(r) ≡
∫ e+

e−

r|fj(r
′)|2

r′ − r + io
dr′,

it easily follows from Formula (6.50) that fork = 1, · · · ,M ,

(TRW−1)k(r) = −λρk(r)fk(r)

F (r)
,

(W−rfj)k(r) = δkj rfj(r) + λ2Gj(r)fk(r)

F (r)
,

from which we obtain

(W−rfj , TRW−1) = −λ
M
∑

k=1

∫ e+

e−

|fk(r)|2ρk(r)

|F (r)|2
[

rF̄ (r)δkj + λ2Ḡj(r)
]

dr.

From Equ. (6.49) we haveIm F̄ (r) = −λ2π|f(r)|2. Similarly Im Ḡj(r) = πr|fj(r)|2
and hence,

ωλ+(Φj) = 2πλ4
M
∑

k=1

∫ e+

e−

r|fk(r)|2ρk(r)

|F (r)|2
[

|f(r)|2δkj − |fj(r)|2
]

dr.

Since|f |2 =
∑

k |fk|2, the last formula can be rewritten as

ωλ+(Φj) = 2πλ4
M
∑

k=1

∫ e+

e−

|fj(r)|2|fk(r)|2(ρj(r) − ρk(r))
rdr

|F (r)|2 . (7.53)
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In a completely similar way one obtains

ωλ+(Jj) = 2πλ4
M
∑

k=1

∫ e+

e−

|fj(r)|2|fk(r)|2(ρj(r) − ρk(r))
dr

|F (r)|2 . (7.54)

An immediate consequence of Formulas (7.53) and (7.54) is that all the fluxes van-
ish if ρ1 = · · · = ρM . Note also the antisymmetry ink andj of the integrands which
ensures that the conservation laws

M
∑

j=1

ωλ+(Φj) =

M
∑

j=1

ωλ+(Jj) = 0,

hold.

7.4 Entropy production

By the Assumption (SEBB3) the entropy production observable of the SEBB model is
well defined and is given by Equ. (6.45) which we rewrite as

σ = −λ
M
∑

j=1

(a∗(isjfj)a(1) + a∗(1)a(isjfj)) . (7.55)

Proceeding as in the previous section we obtain

ωλ+(σ) = −2λ
M
∑

j=1

Im (W−sjfj, TRW−1),

which yields

ωλ+(σ) = 2πλ4
M
∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) ρk(r) dr.

Finally, symmetrizing the sum overj andk we get

ωλ+(σ) = πλ4
M
∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) (ρk(r) − ρj(r)) dr.

Sinceρj = (1 + esj )−1 is a strictly decreasing function ofsj,

(sj(r) − sk(r))(ρk(r) − ρj(r)) ≥ 0,

with equality if and only ifρk(r) = ρj(r). We summarize:

Theorem 7.3 The entropy production ofωλ+ is

ωλ+(σ) = πλ4
M
∑

j,k=1

∫ e+

e−

|fj(r)|2|fk(r)|2
|F (r)|2 (sj(r) − sk(r)) (ρk(r) − ρj(r)) dr.

In particular, Ep(ω+) ≥ 0 (something we already know from the general principles)
andEp(ω+) = 0 if and only ifρ1 = · · · = ρM .
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Sinceω andωλ+ are factor states, they are either quasi-equivalent or disjoint. By
Theorem 3.4, ifEp(ωλ+) > 0, thenωλ+ is notω-normal. Hence, Theorem 7.3 implies
that if the densitiesρj are not all equal, then the reference stateω and the NESSωλ+

are disjoint states.
Until the end of this section we will assume that the energy density of thej-th

reservoir is

ρβjµj
(r) ≡ 1

1 + eβj(r−µj)
,

whereβj is the inverse temperature andµj ∈ R is the chemical potential of thej-th
reservoir. Then, by (6.46),Ep(ωλ+) can be written as

Ep(ωλ+) = Epheat(ωλ+) + Epcharge(ωλ+),

where

Epheat(ωλ+) = −
M
∑

j=1

βjωλ+(Φj),

is interpreted as the entropy production due to the heat fluxes and

Epcharge(ωλ+) =
M
∑

j=1

βjµjωλ+(Jj).

as the entropy production due to the electric currents.

7.5 Equilibrium correlation functions

In this subsection we compute the integrated current-current correlation functions

Lρ(A,B) ≡ lim
T→∞

1

2

∫ T

−T

ωρ+(τ t
λ(A)B) dt,

whereA andB are heat or charge flux observables andωρ+ denotes the NESSωλ+

in the equilibrium caseρ1 = · · · = ρM = ρ. To do this, note thatΦl = dΓ(ϕl) and
Jl = dΓ(jl) where

ϕl = i[hRl
, λv] = −i[hλ, hRj

],

jl = i[pj , λv] = −i[hλ, pj ],

are finite rank operators. We will only considerLρ(Φj ,Φk), the other cases are com-
pletely similar.

Using the CAR, Formula (5.29) and the fact thatωρ+(Φl) = 0, one easily shows
that

ωρ+(τ t
λ(Φj)Φk) = Tr (T+eithλϕje

−ithλ(I − T+)ϕk).

Since

eithλϕje
−ithλ = − d

dt
eithλhRj

e−ithλ ,
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the integration can be explicitly performed and we have

Lρ(Φj ,Φk) = − lim
T→∞

1

2
Tr (T+eithλhRj

e−ithλ(I − T+)ϕk)

∣

∣

∣

∣

T

−T

.

Writing eithλhRj
e−ithλ = eithλe−ith0hRj

eith0e−ithλ and using the fact thatϕk is
finite rank, we see that the limit exists and can be expressed in terms of the wave
operatorsW± as

Lρ(Φj ,Φk) =
1

2

{

Tr (T+W
∗
−hRj

W−(I − T+)ϕk)

− Tr (T+W
∗
+hRj

W+(I − T+)ϕk)
}

.

The intertwining property of the wave operators gives

T+ = W ∗
−ρ(hR)W− = ρ(hλ) = W ∗

+ρ(hR)W+,

from which we obtain

Lρ(Φj ,Φk) =
1

2
Tr (TR(I − TR)hRj

(W−ϕkW
∗
− −W+ϕkW

∗
+)),

with TR = ρ(hR). Time reversal invariance further gives

W+ = jW− j, jϕk j = −ϕk,

and so

Lρ(Φj ,Φk) =
1

2
Tr (TR(I − TR)hRj

(W−ϕkW
∗
− + jW−ϕkW

∗
− j))

= Tr (TR(I − TR)hRj
W−ϕkW

∗
−).

The last trace is easily evaluated (use the formulaϕk = λi[hRk
, v] and follow the steps

of the computation in Subsection 7.3). The result is

Lρ(Φj ,Φk) = −2πλ4

∫ e+

e−

|fj(r)|2
[

|fk(r)|2 − δjk|f(r)|2
]

ρ(r)(1 − ρ(r))
r2dr

|F (r)|2 ,

Lρ(Jj ,Φk) = −2πλ4

∫ e+

e−

|fj(r)|2
[

|fk(r)|2 − δjk|f(r)|2
]

ρ(r)(1 − ρ(r))
rdr

|F (r)|2 ,

Lρ(Φj ,Jk) = −2πλ4

∫ e+

e−

|fj(r)|2
[

|fk(r)|2 − δjk|f(r)|2
]

ρ(r)(1 − ρ(r))
rdr

|F (r)|2 ,

Lρ(Jj ,Jk) = −2πλ4

∫ e+

e−

|fj(r)|2
[

|fk(r)|2 − δjk|f(r)|2
]

ρ(r)(1 − ρ(r))
dr

|F (r)|2 .

(7.56)

Note the following symmetries:

Lρ(Φj ,Φk) = Lρ(Φk,Φj),

Lρ(Jj ,Jk) = Lρ(Jk,Jj),

Lρ(Φj ,Jk) = Lρ(Jk,Φj).

(7.57)

Note also thatLρ(Φj ,Φk) ≤ 0 andLρ(Jj ,Jk) ≤ 0 for j 6= k while Lρ(Φj ,Φj) ≥ 0
andLρ(Jj ,Jj) ≥ 0.
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7.6 Onsager relations. Kubo formulas.

Let βeq andµeq be given equilibrium values of the inverse temperature and the chemi-
cal potential. The affinities (thermodynamic forces) conjugated to the currentsΦj and
Jj are

Xj = βeq − βj , Yj = βjµj − βeqµeq.

Indeed, it follows from the conservations laws (4.12) and (6.39) that

Ep(ωλ+) =

M
∑

j=1

(Xj ωλ+(Φj) + Yj ωλ+(Jj)) .

Since

ρβjµj
(r) =

1

1 + eβeq(r−µeq)−(Xjr+Yj)
,

we have

∂Xk
ρβjµj

(r)|X=Y =0 = δkj ρ(r)(1 − ρ(r)) r,

∂Yk
ρβjµj

(r)|X=Y =0 = δkj ρ(r)(1 − ρ(r)),

whereρ ≡ ρβeqµeq
. Using these formulas, and explicit differentiation of thesteady

currents (7.53) and (7.54) and comparison with (7.56) lead to

∂Xk
ωλ+(Φj)|X=Y =0 = Lρ(Φj ,Φk),

∂Yk
ωλ+(Φj)|X=Y =0 = Lρ(Φj ,Jk),

∂Xk
ωλ+(Jj)|X=Y =0 = Lρ(Jj ,Φk),

∂Yk
ωλ+(Jj)|X=Y =0 = Lρ(Jj ,Jk),

which are theKubo Fluctuation-Dissipation Formulas. The symmetry (7.57) gives the
Onsager reciprocity relations

∂Xj
ωλ +(Φk)|X=Y =0 = ∂Xk

ωλ +(Φj)|X=Y =0,

∂Yj
ωλ +(Jk)|X=Y =0 = ∂Yk

ωλ +(Jj)|X=Y =0,

∂Yj
ωλ +(Φk)|X=Y =0 = ∂Xk

ωλ +(Jj)|X=Y =0.

The fact thatLρ(Φj ,Φj) ≥ 0 andLρ(Jj ,Jj) ≥ 0 while Lρ(Φj ,Φk) ≤ 0 and
Lρ(Jj ,Jk) ≤ 0 for j 6= k means that increasing a force results in an increase of the
conjugated current and a decrease of the other currents. This is not only true in the
linear regime. Direct differentiation of (7.53) and (7.54)yields

∂Xk
ωλ +(Φk) = 2πλ4

∑

j 6=k

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
r2dr

|F (r)|2 ≥ 0,

∂Yk
ωλ +(Jk) = 2πλ4

∑

j 6=k

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
dr

|F (r)|2 ≥ 0,

∂Xk
ωλ +(Φj) = −2πλ4

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
r2dr

|F (r)|2 ≤ 0,

∂Yk
ωλ +(Jj) = −2πλ4

∫ e+

e−

|fj(r)|2|fk(r)|2ρβkµk
(r)(1 − ρβkµk

(r))
dr

|F (r)|2 ≤ 0.



Topics in non-equilibrium quantum statistical mechanics 49

Note that these derivatives do not depend on the reference states of the reservoirsRj

for j 6= k.

8 FGR thermodynamics of the SEBB model

Forj = 1, · · · ,M , we set

g̃j(t) ≡
∫ e+

e−

eitrρj(r)|fj(r)|2 dr.

In addition to (SEBB1)-(SEBB4) in this section we will assume

Assumption (SEBB5)g̃j(t) ∈ L1(R, dt) for j = 1, · · · ,M .

8.1 The weak coupling limit

In this subsection we study the dynamics restricted to the small system on the van Hove
time scalet/λ2.

Recall that by Theorem 6.1 the algebra of observablesOS of the small system is
the 4-dimensional subalgebra ofO = CAR(C ⊕ hR) generated bya(1). It is the full
matrix algebra of the subspacehS ⊂ Γ−(C⊕hR) generated by the vectors{Ω, a(1)Ω}.
In this basis, the Hamiltonian and the reference state of thesmall system are

HS =

[

0 0
0 ε0

]

, ωS =

[

1 − γ 0
0 γ

]

.

Let A ∈ OS be an observable of the small system. We will study the expectation
values

ω(τ
t/λ2

λ (A)), (8.58)

asλ→ 0. If A = a#(1), then (8.58) vanishes, so we need only to consider the Abelian
2-dimensional even subalgebraO+

S ⊂ OS . Sincea∗(1)a(1) = NS anda(1)a∗(1) =
I −NS , it suffices to considerA = NS . In this case we have

ω ◦ τ t/λ2

λ (NS) = ω(a∗(eithλ/λ2

1)a(eithλ/λ2

1))

= (eithλ/λ2

1, (γ ⊕ TR)eithλ/λ2

1). (8.59)

Using the projectionpj on the Hilbert spacehRj
of thej-th reservoir we can rewrite

this expression as

ω ◦ τ t/λ2

λ (NS) = γ|(1, eithλ/λ2

1)|2 +

M
∑

j=1

(pje
ithλ/λ2

1, TRj
pje

ithλ/λ2

1).

Theorem 8.1 Assume that Assumptions(SEBB1)-(SEBB5)hold.
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(i) For any t ≥ 0,

lim
λ→0

|(1, eithλ/λ2

1)|2 = e−2πt|f(ε0)|2 . (8.60)

(ii) For any t ≥ 0 andj = 1, · · · ,M ,

lim
λ→0

(pje
ithλ/λ2

1, TRj
pj eithλ/λ2

1) =
|fj(ε0)|2
|f(ε0)|2

ρj(ε0)
(

1 − e−2πt|f(ε0)|2
)

.

(8.61)

The proof of Theorem 8.1 is not difficult—for Part (i) see [Da1, D1], and for Part (ii)
[Da2]. These proofs use the regularity Assumption (SEBB5).An alternative proof of
Theorem 8.1, based on the explicit form of the wave operatorW−, can be found in
[JKP].

Theorem 8.1 implies that

γ(t) ≡ lim
λ→0

ω ◦ τ t/λ2

λ (NS)

= γ e−2πt|f(ε0)|2 +
(

1 − e−2πt|f(ε0)|2
)

M
∑

j=1

|fj(ε0)|2
|f(ε0)|2

ρj(ε0),

from which we easily conclude that for allA ∈ OS one has

lim
λ→0

ω ◦ τ t/λ2

λ (A) = Tr(ωS(t)A),

where

ωS(t) =

[

1 − γ(t) 0
0 γ(t)

]

.

According to the general theory described in Section 4.5 we also have

ωS(t) = etKSωS ,

whereKS is the QMS generator in the Schrödinger picture. We shall nowdiscuss its
restriction to the algebra of diagonal2 × 2-matrices. In the basis

[

1 0
0 0

]

,

[

0 0
0 1

]

, (8.62)

of this subalgebra we obtain the matrix representation

KS = 2π

M
∑

j=1

|fj(ε0)|2
[

−ρj(ε0) 1 − ρj(ε0)
ρj(ε0) −(1 − ρj(ε0))

]

.

In the Heisenberg picture we have

lim
λ→0

ωS ◦ τ t/λ2

λ (A) = Tr(ωS etKHA),
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whereKH is related toKS by the duality

Tr(KS(ωS)A) = Tr(ωSKH(A)).

The restriction ofKH to the subalgebra of diagonal2 × 2-matrices has the following
matrix representation relative to the basis (8.62),

KH = 2π

M
∑

j=1

|fj(ε0)|2
[

−ρj(ε0) ρj(ε0)
1 − ρj(ε0) −(1 − ρj(ε0))

]

.

We stress thatKS andKH are the diagonal parts of the full Davies generators in the
Schrödinger and Heisenberg pictures discussed in the lecture notes [D1].

As we have discussed in Section 4.5, an important property ofthe generatorsKS

andKH is the decomposition

KS =

M
∑

j=1

KS,j, KH =

M
∑

j=1

KH,j ,

whereKS,j andKH,j are the generators describing interaction ofS with thej-th reser-
voir only. Explicitly,

KS,j = 2π|fj(ε0)|2
[

−ρj(ε0) 1 − ρj(ε0)
ρj(ε0) −(1 − ρj(ε0))

]

,

KH,j = 2π|fj(ε0)|2
[

−ρj(ε0) ρj(ε0)
1 − ρj(ε0) −(1 − ρj(ε0))

]

.

Finally, we note that

ωS+ ≡ lim
t→∞

ωS(t) =

M
∑

j=1

|fj(ε0)|2
|f(ε0)|2

[

1 − ρj(ε0) 0

0 ρj(ε0)

]

.

ωS+ is the NESS on the Fermi Golden Rule time scale: for any observableA of the
small system,

lim
t→∞

lim
λ→0

ω ◦ τ t/λ2

λ (A) = Tr(ωS+A) = ωS+(A).

In the sequel we will refer toωS+ as the FGR NESS.

8.2 Historical digression—Einstein’s derivation of the Planck law

Einstein’s paper [Ei], published in 1917, has played an important role in the historical
development of quantum mechanics and quantum field theory. In this paper Einstein
made some deep insights into the nature of interaction between radiation and matter
which have led him to a new derivation of the Planck law. For the history of these early
developments the interested reader may consult [Pa].
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The original Einstein argument can be paraphrased as follows. Consider a two-
level quantum systemS with energy levels0 and ε0, which is in equilibrium with
a radiation field reservoir with energy densityρ(r). Due to the interaction with the
reservoir, the systemS will make constant transitions between the energy levels0 and
ε0. Einsteinconjecturedthat the corresponding transition rates (transition probabilities
per unit time) have the form

k(ε0, 0) = Aε0
(1 − ρ(ε0)), k(0, ε0) = Bε0

ρ(ε0),

whereAε0
andBε0

are the coefficients which depend on the mechanics of the interac-
tion. (Of course, in 1917 Einstein considered the bosonic reservoir (the light)—in this
case in the first formula one has1+ρ(ε0) instead of1−ρ(ε0)). These formulas are the
celebrated Einstein’sA andB laws. Letp̄0 andp̄ε0

be probabilities that in equilibrium
the small system has energies0 andε0 respectively. IfS is in thermal equilibrium at
inverse temperatureβ, then by the Gibbs postulate,

p̄0 = (1 + e−βε0)−1, p̄ε0
= e−βε0(1 + e−βε0)−1.

The equilibrium condition

k(0, ε0)p̄0 = k(ε0, 0)p̄ε0
,

yields

ρ(ε0) =
Aε0

Bε0

(1 − ρ(ε0))e
−βε0 .

In 1917 Einstein naturally could not compute the coefficientsAε0
andBε0

. However,
if Aε0

/Bε0
= 1 for all ε0, then the above relation yields the Planck law for energy

density of the free fermionic reservoir in thermal equilibrium,

ρ(ε0) =
1

1 + eβε0
.

In his paper Einstein points out that to compute the numerical value ofAε0
andBε0

one
would need an exact [quantum] theory of electro-dynamical and mechanical processes.

The quantum theory of mechanical processes was developed inthe 1920’s by Hei-
senberg, Schrödinger, Jordan, Dirac and others. In 1928, Dirac extended quantum
theory to electrodynamical processes and computed the coefficientsAε0

andBε0
from

the first principles of quantum theory. Dirac’s seminal paper [Di] marked the birth of
quantum field theory. To computeAε0

andBε0
Dirac developed the so-called time-

dependent perturbation theory, which has been discussed inlecture notes [D1, JKP]
(see also Chapter XXI in [Mes], or any book on quantum mechanics). In his 1949
Chicago lecture notes [Fer] Fermi called the basic formulasof Dirac’s theory the
Golden Rule, and since then they have been calledthe Fermi Golden Rule.

In this section we have described the mathematically rigorous Fermi Golden Rule
theory of the SEBB model. In this context Dirac’s theory reduces to the computation of
KS andKH since the matrix elements of these operators give the transition probabilities
k(ε0, 0) andk(0, ε0). In particular, in the case of a single reservoir with energydensity
ρ(r),

Aε0
= Bε0

= 2π|f(ε0)|2.
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Einstein’s argument can be rephrased as follows: if the energy densityρ is such that

ωS+ = e−βHS/Tr(e−βHS ) = (1 + e−βε0)−1

[

1 0
0 e−βε0

]

,

for all ε0 (namelyHS ), then

ρ(ε0) =
1

1 + eβε0
.

8.3 FGR fluxes, entropy production and Kubo formulas

Any diagonal observableA ∈ O+
S of the small system is a function of the Hamiltonian

HS . We identify such an observable with a functiong : {0, ε0} → R. Occasionally, we
will write g as a column vector with componentsg(0) andg(ε0). In the sequel we will
use such identifications without further comment. A vectorν is called a probability
vector ifν(0) ≥ 0, ν(ε0) ≥ 0 andν(0) + ν(ε0) = 1. The diagonal part of any density
matrix defines a probability vector. We denote the probability vector associated to
FGR NESSωS+ by the same letter. Similarly, to a probability vector one uniquely
associates a diagonal density matrix. With these conventions, the Hamiltonian and the
number operator of the small system are

HS = ε0a
∗(1)a(1) =

[

0
ε0

]

, NS = a∗(1)a(1) =

[

0
1

]

.

The Fermi Golden Rule (FGR) heat and charge flux observables are

Φfgr,j = KH,j(HS) = 2πε0|fj(ε0)|2
[

ρj(ε0)
−(1 − ρj(ε0))

]

,

Jfgr,j = KH,j(NS) = 2π|fj(ε0)|2
[

ρj(ε0)
−(1 − ρj(ε0))

]

.

The steady heat and the charge currents in the FGR NESS are given by

ωS+(Φfgr,j) = 2π

M
∑

k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

ε0(ρj(ε0) − ρk(ε0)),

ωS+(Jfgr,j) = 2π
M
∑

k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρj(ε0) − ρk(ε0)).

(8.63)

The conservation laws

M
∑

j=1

ωS+(Φfgr,j) = 0,

M
∑

j=1

ωS+(Jfgr,j) = 0,

follow from the definition of the fluxes and the relationKS(ωS+) = 0. Of course, they
also follow easily from the above explicit formulas.
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Until the end of this subsection we will assume that

ρj(r) =
1

1 + eβj(r−µj)
.

Using Equ. (8.63), we can also compute the expectation of theentropy production
in the FGR NESSωS+. The natural extension of the definition (4.25) is

σfgr ≡ −
M
∑

j=1

βj (Φfgr,j − µj Jfgr,j) ,

from which we get

ωS+(σfgr) = 2π

M
∑

j,k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρk(ε0) − ρj(ε0))βj(ε0 − µj). (8.64)

Writing

sj ≡ log
ρj(ε0)

1 − ρj(ε0)
= βj(ε0 − µj),

and symmetrizing the sum in Equ. (8.64) we obtain

ωS+(σfgr) = π
M
∑

j,k=1

|fj(ε0)|2|fk(ε0)|2
|f(ε0)|2

(ρk(ε0) − ρj(ε0))(sj − sk),

which is non-negative sinceρl(ε0) is a strictly decreasing function ofsl. The FGR
entropy production vanishes iff allsj ’s are the same. Note however that this condition
does not require that all theβj ’s andµj ’s are the same.

Let βeq andµeq be given equilibrium values of the inverse temperature and chemi-
cal potential, and

ωSeq = e−βeq(HS−µeq)/Tr(e−βeq(HS−µeq)) =

[

(1 + e−βeqε0)−1 0
0 (1 + eβeqε0)−1

]

,

the corresponding NESS. As in Subsection 7.6, the affinities(thermodynamic forces)
areXj = βeq − βj andYj = βjµj − βeqµeq. A simple computation yields the FGR
Onsager reciprocity relations

∂Xj
ωS+(Φfgr,k)|X=Y =0 = ∂Xk

ωS+(Φfgr,j)|X=Y =0,

∂Yj
ωS+(Jfgr,k)|X=Y =0 = ∂Yk

ωS+(Jfgr,i)|X=Y =0,

∂Yj
ωS+(Φfgr,k)|X=Y =0 = ∂Xk

ωS+(Jfgr,i)|X=Y =0.

(8.65)

We set

Lfgr(A,B) =

∫ ∞

0

ωSeq(e
tKH(A)B) dt,
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whereA andB are the FGR heat or charge flux observables. Explicit computations
yield the FGR Kubo formulas

∂Xk
ωS+(Φfgr,j)|X=Y =0 = Lfgr(Φfgr,j,Φfgr,k),

∂Yk
ωS+(Φfgr,j)|X=Y =0 = Lfgr(Φfgr,j,Jfgr,k),

∂Xk
ωS+(Jfgr,j)|X=Y =0 = Lfgr(Jfgr,j ,Φfgr,k),

∂Yk
ωS+(Jfgr,j)|X=Y =0 = Lfgr(Jfgr,j ,Jfgr,k).

(8.66)

8.4 From microscopic to FGR thermodynamics

At the end of Subsection 4.5 we have briefly discussed the passage from the micro-
scopic to the FGR thermodynamics. We now return to this subject in the context of the
SEBB model. The next theorem is a mathematically rigorous version of the heuristic
statement that the FGR thermodynamics is the first non-trivial contribution (inλ) to
the microscopic thermodynamics.

Theorem 8.2 (i) For any diagonal observableA ∈ OS ,

lim
λ→0

ωλ+(A) = ωS+(A).

(ii) For j = 1, · · · ,M ,

lim
λ→0

λ−2ωλ+(Φj) = ωS+(Φfgr,j), lim
λ→0

λ−2ωλ+(Jj) = ωS+(Jfgr,j).

(iii) Let sj ≡ log ρj(ε0)/(1 − ρj(ε0)) and define the FGR entropy production by

σfgr ≡ 2π

M
∑

j=1

|fj(ε0)|2sj

[

−ρj(ε0)
1 − ρj(ε0)

]

.

Then
lim
λ→0

λ−2 Ep(ωλ+) = ωS+(σfgr).

The proof of this theorem is an integration exercise. We willrestrict ourselves to
an outline of the proof of Part (i) and several comments. LetA = NS = a∗(1)a(1).
Then

ωλ+(A) = (W−1, TRW−1) =

M
∑

j=1

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr,

and

ωS+(A) =

M
∑

j=1

|fj(ε0)|2
|f(ε0)|2

ρj(ε0).

Hence, to prove Part (i) we need to show that

lim
λ→0

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr =

|fj(ε0)|2
|f(ε0)|2

ρj(ε0).
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By Assumption (SEBB2),R(r) ≡ ReG(r − io) andπ|f(r)|2 = ImG(r − io) are
bounded continuous functions. The same is true forρj(r) by Assumption (SEBB3).
Since

F (r) = ε0 − r − λ2R(r) + iλ2π|f(r)|2,
we have

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr =

∫ e+

e−

|fj(r)|2ρj(r)

(r − ε0 + λ2R(r))2 + π2λ4|f(r)|4 dr.

Using the above-mentioned continuity and boundedness properties it is not hard to
show that

lim
λ→0

λ2

∫ e+

e−

|fj(r)|2
|F (r)|2 ρj(r) dr

= ρj(ε0)|fj(ε0)|2 lim
λ→0

λ2

∫ e+

e−

dr

(r − ε0 + λ2R(r))2 + π2λ4|f(r)|4

= ρj(ε0)|fj(ε0)|2 lim
λ→0

λ2

∫ ∞

−∞

dr

r2 + π2λ4|f(ε0)|4

=
|fj(ε0)|2
|f(ε0)|2

ρj(ε0).

The proofs of Parts (ii) and (iii) are similar. Clearly, under additional regularity as-
sumptions one can get information on the rate of convergencein Parts (i)-(iii). Finally,
it is not difficult to show, using the Kubo formulas describedin Subsection 7.6 and 8.3,
that

lim
λ→0

λ−2Lρ(A,B) = Lfgr(Afgr, Bfgr),

whereA,B are the microscopic heat or charge flux observables andAfgr,Bfgr are their
FGR counterparts.

9 Appendix

9.1 Structural theorems

Proof of Theorem 3.3 Recall thatπω(O)′′ is the Banach space dual ofNω. If A ∈ O
andÃ ∈ πω(O)′′ is a weak-∗ accumulation point of the net

1

t

∫ t

0

πω(τs
V (A)) ds,

t ≥ 0, it follows from the asymptotic abelianness in mean thatÃ ∈ πω(O)′. Sinceω is
a factor state we haveπω(O)′ ∩ πω(O)′′ = CI and therefore, for anyη ∈ Nω, one has

η(Ã) = ω(Ã). (9.67)
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Let µ, ν ∈ Nω andµ+ ∈ Σ+(µ, τV ). Let tα → ∞ be a net such that

lim
α

1

tα

∫ tα

0

µ ◦ τs
V (A) ds = µ+(A),

for all A ∈ O. Passing to a subnet, we may also assume that for allA ∈ O and some
ν+ ∈ Σ+(ν, τV ),

lim
α

1

tα

∫ tα

0

ν ◦ τs
V (A) ds = ν+(A).

By the Banach-Alaoglu theorem, for anyA ∈ O there exists a subnettγ(A) of the net
tα andA# ∈ πω(O)′′ such that, for allη ∈ Nω

lim
γ

1

tγ(A)

∫ tγ(A)

0

η(πω(τs
V (A))) ds = η(A#).

Hence,µ+(A) = µ(A#) andν+(A) = ν(A#). By (9.67) we also haveµ(A#) =
ω(A#) = ν(A#) and soµ+(A) = ν+(A). We conclude thatµ+ = ν+ and that

Σ+(µ, τV ) ⊂ Σ+(ν, τV ).

By symmetry, the reverse inclusion also holds and

Σ+(µ, τV ) = Σ+(ω, τV )

for all µ ∈ Nω . �

Proof of Theorem 3.6 To prove this theorem we use the correspondence between
ω-normal states and elements of the standard coneP obtained fromω (see Proposition
37 in [Pi]); this is possible sinceω is modular by assumption.

Note that ifKerLV 6= {0}, then there is anω-normal,τV -invariant stateη. By
Theorem 3.3,Σ+(ω, τV ) = Σ+(η, τV ) and obviouslyΣ+(η, τV ) = {η}. Two non-
zero elements inKerLV therefore yield the same vector state and are represented by
the same vector in the standard cone,i.e.,KerLV ∩ P is a one-dimensional half-line.
Recall that anyζ ∈ hω can be uniquely decomposed as

ζ = ζ1 − ζ2 + iζ3 − iζ4,

with ζi in P . SinceeitLV preserves the standard cone,eitLV ζ = ζ iff eitLV ζi = ζi for
all i (i.e., ζi ∈ KerLV ∩ P for all i). Hence,KerLV is one-dimensional and Part (i)
follows.

The proof of Part (ii) is simple. Any NESSη ∈ Σ+(ω, τV ) can be uniquely de-
composed asηn + ηs whereηn ≪ ω andηs ⊥ ω. Sinceη is τV -invariant,ηn and
ηs are alsoτV -invariant. Thereforeηn is represented by a vectorζ in KerLV ∩ P . If
KerLV = {0}, thenηn = 0 andη ⊥ ω.
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It remains to prove Part (iii) (see Theorem 44 in the lecture notes [Pi]). Letϕ ∈
KerLV be a separating vector forMω. LetB ∈ πω(O)′ be such that‖Bϕ‖ = 1 and
let νB be the vector state associated toBϕ, νB(·) = (Bϕ, ·Bϕ). For anyA ∈ πω(O),

1

t

∫ t

0

νB

(

τs
V (A)

)

ds =
1

t

∫ t

0

(

Bϕ, eisLV πω(A)e−isLV Bϕ
)

ds

=

(

1

t

∫ t

0

e−isLV B∗B ϕds, πω(A)ϕ

)

.

Hence, by the von Neumann ergodic theorem,

νB+(A) ≡ lim
t→∞

1

t

∫ t

0

νB

(

τs
V (A)

)

ds =
(

PKer LV
B∗B ϕ, πω(A)ϕ

)

,

wherePKer LV
is the projection onKerLV . Sinceϕ is cyclic for πω(O)′, for every

n ∈ N we can find aBn such that‖ω − νBn
‖ < 1/n. The sequenceνBn

is Cauchy in
norm and for allω+ ∈ Σ+(ω, τV ),

‖ω+ − νBn+‖ ≤ ‖ω − νBn
‖ < 1/n.

This implies that the norm limit ofνBn
is the unique NESS inΣ+(ω, τV ). Since

νBn+ ∈ Nω andNω is a norm closed subset ofO∗, this NESS isω-normal.�

9.2 The Hilbert-Schmidt condition

Proof of Theorem 7.2 We will prove thatT 1/2
+ −T 1/2 is Hilbert-Schmidt. The proof

that(I−T+)1/2−(I−T )1/2 is also Hilbert-Schmidt is identical. For an elementary in-
troduction to Hilbert-Schmidt operators (which suffices for the proof below) the reader
may consult Section VI.6 in [RS].

By our general assumptions, the functionsf(r) andF (r)−1 are bounded and con-
tinuous. By the assumption of Theorem 7.2, all the densitiesρj(r) are the same and
equal toρ(r). Hence,

TR =
M

⊕

j=1

ρj(r) = ρ(hR).

Let pR be the orthogonal projection on the reservoir Hilbert spacehR. SinceT 1/2 −
T

1/2
R = T

1/2
S , T 1/2

+ (I − pR), (I − pR)T
1/2
+ are obviously Hilbert-Schmidt, it suffices

to show thatpRT
1/2
+ pR −T

1/2
R is a Hilbert-Schmidt operator on the Hilbert spacehR.

Since
pRT

1/2
+ pR − T

1/2
R = −pRW ∗

−[W−pR, T
1/2
R ],

it suffices to show thatK ≡ [W−pR, T
1/2
R ] is a Hilbert-Schmidt operator onhR. By

Theorem 6.2, forg ∈ hR,

(Kg)(r) = λ2 f(r)

F (r)

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2

r′ − r + io
f̄(r′) · g(r′) dr′.
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LetKij be an operator onL2((e−, e+), dr) defined by

(Kijh)(r) = λ2 fi(r)

F (r)

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2

r′ − r + io
f̄j(r

′)h(r′) dr′.

To prove thatK is Hilbert-Schmidt onhR, it suffices to show thatKij is Hilbert-
Schmidt onL2((e−, e+), dr) for all i, j.

Let h1, h2 ∈ L2((e−, e+), dr) be bounded continuous functions. Then

(h1,Kijh2) = λ2

∫ e+

e−

h̄1(r)fi(r)g2(r)

F (r)
dr, (9.68)

where

g2(r) = lim
ǫ↓0

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2

r′ − r + iǫ
f̄j(r

′)h2(r
′) dr′.

Using the identity

1

r′ − r + iǫ
=

r′ − r

(r′ − r)2 + ǫ2
− iǫ

(r′ − r)2 + ǫ2
,

and the fact that, forr ∈ (e−, e+), one has

lim
ǫ↓0

ǫ

∫ e+

e−

ρ(r′)1/2 − ρ(r)1/2

(r′ − r)2 + ǫ2
f̄j(r

′)h2(r
′) dr′ = π(ρ(r)1/2 − ρ(r)1/2)f̄j(r)h2(r)

= 0,

(see the Lecture [Ja]), we obtain

g2(r) = lim
ǫ↓0

∫ e+

e−

(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)

(r′ − r)2 + ǫ2
f̄j(r

′)h2(r
′) dr′.

Sincefj andh2 are bounded andρ(r)1/2 is 1
2 -Hölder continuous, we have

sup
ǫ>0,r∈(e−,e+)

∣

∣

∣

∣

∣

∫ e+

e−

(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)

(r′ − r)2 + ǫ2
f̄j(r

′)h2(r
′) dr′

∣

∣

∣

∣

∣

≤ C sup
r∈(e−,e+)

∫ e+

e−

f̄j(r
′)h2(r

′)

|r′ − r|1/2
dr′ <∞.

Moreover, sincēh1(r)F (r)−1fi(r) ∈ L1((e−, e+), dr), we can invoke the dominated
convergence theorem to rewrite Equ. (9.68) as

(h1,Kijh2) = lim
ǫ↓0

(h1,Kij,ǫh2) (9.69)

whereKij,ǫ is the integral operator onL2((e−, e+), dr) with kernel

kǫ(r, r
′) = λ2 fi(r)f̄j(r

′)

F (r)

(r′ − r)(ρ(r′)1/2 − ρ(r)1/2)

(r′ − r)2 + ǫ2
.
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We denote by‖ · ‖HS the Hilbert-Schmidt norm. Then

‖Kij,ǫ‖2
HS =

∫

|kǫ(r, r
′)|2 dr dr′.

Sinceρ(r)1/2 isα-Hölder continuous forα > 1/2 andF (r)−1 is bounded there exists
a constantC such that, forr, r′ ∈ (e−, e+) andǫ > 0, one has the estimate

|kǫ(r, r
′)|2 ≤ C

|fi(r)|2|fj(r
′)|2

|r − r′|2(1−α)
.

Therefore, since2(1 − α) < 1, we conclude that

sup
ǫ>0

‖Kij,ǫ‖2
HS = sup

ǫ>0

∫

|kǫ(r, r
′)|2 dr dr′ <∞.

The Hilbert-Schmidt class of operators onL2((e−, e+), dr) is a Hilbert space with the
inner product(X,Y ) = Tr(X∗Y ). Since{Kij,ǫ}ǫ>0 is a bounded set in this Hilbert
space, there is a sequenceǫn → 0 and a Hilbert-Schmidt operator̃Kij such that for
any Hilbert-Schmidt operatorX onL2((e−, e+), dr),

lim
n→∞

Tr(X∗Kij,ǫn
) = Tr(X∗K̃ij).

TakingX = (h1, ·)h2, wherehi ∈ L2((e−, e+), dr) are bounded and continuous, we
derive from (9.69) that(h1, K̃ijh2) = (h1,Kijh2). Since the set of suchh’s is dense
in L2((e−, e+), dr), K̃ij = Kij and soKij is Hilbert-Schmidt.�
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