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Relations between values at T -tuples of negative integers

of twisted multivariable zeta series

associated to polynomials of several variables.

Marc de Crisenoy ∗ & Driss Essouabri†

26th May 2005

Abstract. We give a new and very concise proof of the existence of a holomorphic continuation for a
large class of twisted multivariable zeta functions. To do this, we use a simple method of “decalage” that
avoids using an integral representation of the zeta function. This allows us to derive explicit recurrence
relations between the values at T−tuples of negative integers. This also extends some earlier results
of several authors where the underlying polynomials were products of linear forms.

Mathematics Subject Classifications: 11M41; 11R42.
Key words: twisted Multiple zeta-function; Analytic continuation; special values.

1 Introduction

Let Q,P1, . . . , PT ∈ R[X1, . . . ,XN ] and µ1, . . . , µN ∈ C−{1}, each of modulus 1. To this data we can
associate the following “twisted” multivariable zeta series:

Z(Q;P1, . . . , PT ;µ1, . . . , µN ; s1, . . . , sT ) =
∑

m1≥1,...,mN≥1

(
∏N

n=1 µmn
n )Q(m1, . . . ,mN )

∏T
t=1 Pt(m1, . . . ,mN )st

where (s1, . . . , sT ) ∈ CT .
In this article we will always assume that:

∀t ∈ {1, . . . , T} ∀x ∈ [1,+∞[N Pt(x) > 0 and

T
∏

t=1

Pt(x) −−−−−→
|x|→+∞
x∈JN

+∞ (#)

It is not difficult to see that condition (#) implies that Z(Q;P1, . . . , PT ;µ1, . . . , µN ; s1, . . . , sT ) is an
absolutely convergent series when ℜ(s1), . . . ,ℜ(sT ) are sufficiently large.
Cassou-Nogus ([6]) and Chen-Eie ([7]) prooved in the case T = 1, and P = P1 a polynomial with
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positive coefficients, that the above series can be holomorphically continued to the whole complex
plane and obtained very nice formulas for their values at negative integers. In [8] de Crisenoy extended
these results by allowing T > 1 and introducing the (HDF) hypothesis (see definition 2 in §2) that is
much weaker than positivity of coefficients. The Main result of [8] is the following:

Theorem ([8]). Let Q,P1, ..., PT ∈ R[X1, ...,XN ] and µ ∈ (T \ {1})N .
Assume that:

For each t = 1, . . . , T Pt satisfies the (HDF) hypothesis and that
T
∏

t=1

Pt(x) −−−−−→
|x|→+∞

x∈JN

+∞.

Then:

• Z(Q;P1, . . . , PT ;µ; ·) can be holomorphically extended to CT ;

• For all k1, ..., kT ∈ N if we set Q

T
∏

t=1

P kt
t =

∑

α∈S

aαXα, we have:

Z(Q;P1, ..., PT ;µ;−k1, ...,−kT ) =
∑

α∈S

aα

N
∏

n=1

ζµn(−αn).

where for all µ ∈ T, ζµ(s) =
∑+∞

m=1
µm

ms .

To obtain this theorem he used an integral representation for the zeta series. The proof of the
holomorphic continuation of the resulting integral is long and complicated.
By restricting to hypoelliptics polynomials (see definition 1 in §2) we can avoid the integrals:
the first result of this article gives a new proof of the holomorphic continuation of these series under
the assumption that P1, . . . , PT are hypoelliptic. Our proof uses the ”decalage” method of Essouabri
([12]). Of particular interest for this paper is that this method does not use an integral representation
for the zeta series. And the resulting proof is very concise and much simple.
The second result is relations between the values at T−tuples of negative integers of these series,
relations that are true under the HDF hypothesis, and that give a mean to calculate by induction
the values.
These relations are very simple in the case of linear forms, particularly interesting because of its link
with the zeta functions of number fields ([5]). Similar results have been obtain by severals authors
in particular cases of linear forms (see [1], [3] and [4]). Our method allows one also to obtain new
relations even in the cases of linear forms.

2 Notations and preliminaries:

First, some notations:

1. Set N = {0, 1, 2, . . . }, N∗ = N − {0}, J = [1,+∞[, and T = {z ∈ C | |z| = 1}.

2. The real part of s ∈ C will be denoted ℜ(s) = σ and its imaginary part ℑ(s) = τ .

3. Set 0 = (0, . . . , 0) ∈ RN and 1 = (1, . . . , 1) ∈ RN .

4. For x = (x1, . . . , xN ) ∈ RN we set |x| = |x1| + . . . + |xN |.
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5. For z = (z1, . . . , zN ) ∈ CN and α = (α1, . . . , αN ) ∈ RN
+ we set zα = zα1

1 . . . z
αN

N .

6. The notation f(λ,y,x) ≪y g(x) (uniformly in x ∈ X and λ ∈ Λ) means that there exists
A = A(y) > 0, that depends neither on x nor λ, but could a priori depend on other parameters,
and in particular on y, such that: ∀x ∈ X ∀λ ∈ Λ |f(λ,y,x)| ≤ Ag(x).
When there is no ambiguity, we will omit the word uniformly and the index y.

7. The notation f ≍ g means that we have both f ≪ g and g ≪ f .

8. For a ∈ RN
+ and P ∈ R[X1, . . . ,XN ], we define ∆aP ∈ R[X1, . . . ,XN ] by

∆aP (X) = P (X + a) − P (X). If no ambiguity, we will note simply ∆aP by ∆P .

9. Let a ∈ NN , N ∈ N∗, I ⊂ {1, . . . , N}, q = #I, Ic = {1, . . . , N} \ I and
b = (bi)i∈Ic ∈

∏

i∈Ic{0, . . . , ai}. Set I = {i1, . . . , iq} and Ic = {j1, . . . , jN−q}. Then:

(a) For all d = (d1, . . . , dq) ∈ Nq we define ma,I,b(d) = (m1, . . . ,mN ) ∈ NN by
∀k = 1, . . . , q, mik = aik + dk and ∀k = 1, . . . , N − q, mjk

= bjk
;

(b) For all f : NN → C we define fa,I,b : Nq → C by fa,I,b(d) = f
(

ma,I,b(d)
)

.

Convention: In this work we will say that a series defined by a sum over N ≥ 1 variables is conver-
gent when it is absolutely convergent.

Let us recall some definitions:

Definition 1. P ∈ R[X1, . . . ,XN ] is said to be hypoelliptic if:

∀x ∈ JN P (x) > 0 and ∀α ∈ NN \ {0}
∂αP

P
(x) −−−−−→

|x|→+∞
x∈JN

0.

Definition 2. Let P ∈ R[X1, . . . ,XN ].
P is said to satisfy the weak decreasing hypothesis (denoted HDF in the rest of the article) if:

• ∀x ∈ JN P (x) > 0,

• ∃ǫ0 > 0 such that for α ∈ NN and n ∈ {1, . . . , N}: αn ≥ 1 ⇒
∂αP

P
(x) ≪ x−ǫ0

n (x ∈ JN ).

Remark 1. It follows from Hörmander ([13], p.62) (see also Lichtin ([14], P.342) that if
P ∈ R[X1, . . . ,XN ] is hypoelliptic then there exists ǫ > 0 such that ∀α ∈ NN \ {0}
∂αP

P
(x) ≪ x−ǫ1 (x ∈ JN ). Therefore P satisfy also the HDF hypothesis.

3 Main results:

We first give a new and concise proof of the existence of a holomorphic continuation for our series when
each polynomial is hypoelliptic. The procedure uses the ”decalage” method, and does not require an
integral representation.
A consequence of this method is found in corollaries 1 and 2. This gives simple recurrent relations
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between the values at T−tuples of negative integers when the polynomials Pi are products of linear
polynomials or a class of quadratic polynomials. This procedure is different from that in [8] where the
calculation of the special values was not an immediate consequence of the holomorphic continuation
of the zeta series.

Theorem 1. Let µ ∈ (T \ {1})N and Q,P1, . . . , PT ∈ R[X1, . . . ,XN ].
We assume that P1, . . . , PT are hypoelliptic and that at least one of them is not constant.
Then Z(Q;P1, . . . , PT ;µ; ·) can be holomorphically extended to CT .
Let a ∈ NN . We set E(a) = {m ∈ N∗N | m � a + 1} =

{

m ∈ N∗N | ∃n ∈ {1, . . . , N} mn ≤ an

}

.
Then for all k ∈ NT we have the following relation:

(1 − µa)Z(Q;P1, . . . , PT ;µ;−k) =µa
∑

0≤u<k

(

k

u

)

Z

(

Q(X + a)
T
∏

t=1

(∆aPt)
kt−ut ;P1, . . . , PT ;µ;−u

)

+ µaZ(∆Q;P1, . . . , PT ;µ;−k) + Za
N−1(−k).

Where Za
N−1(s) =

∑

m∈E(a)

µmQ(m)

T
∏

t=1

Pt(m)−st . By using notation (9) above it’s easy to see that:

Za
N−1(s) =

N−1
∑

q=1

∑

I⊂{1,...,N}
#I=q

∑

b=(bi)∈
∏

i∈Ic{0,...,ai}

(

∏

i∈Ic

µbi

i

)

Z
(

Qa,I,b;P a,I,b
1 , . . . , P

a,I,b
T ; (µi)i∈I ; s

)

.

In particular, it is clear that Za
N−1 is a finite linear combination of zeta series Z associated to hypoel-

liptic polynomials of at most N − 1 variables.

Remark 2. When µa 6= 1 (and we can of course choose a such that this is satisfied, this formula
allows us to compute the values at T−tuples of negative integers of the series Z by recurrence because
in each term on the right a integral value is strictly less than the corresponding value on the left:
|u| < |k|, deg(∆Q) < deg Q, N − 1 < N .

Now, using theorem A of [8](that gives the existence of the holomorphic continuation under the
HDF hypothesis) and theorem B of [8] (that gives closed formula for the values, still under HDF) and
the preeceding theorem, we show that the relations remain true under the HDF hypothesis:

Theorem 2. Let µ ∈ (T \ {1})N and Q,P1, . . . , PT ∈ R[X1, . . . ,XN ].

We assume that P1, . . . , PT satisfies the HDF hypothesis and that

T
∏

t=1

Pt(x) −−−−−→
|x|→+∞
x∈JN

+∞.

Then, the relations of theorem 1 are still true.

Now we deal with the particular case of linear forms. In this case the relations become particularly
simple!
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Corollary 1. Let µ ∈ (T \ {1})N and L1, . . . , LT linear forms with positive coefficients.
We assume that for each n there exists t such that Lt really depends on Xn.
We set Z(µ; ·) = Z(1;L1, . . . , LT ;µ; ·).
Let a ∈ NN . We set E(a) = {m ∈ N∗N | m � a + 1} =

{

m ∈ N∗N | ∃n ∈ {1, . . . , N} mn ≤ an

}

.
For all t ∈ {1, . . . , T} we set: δt = Lt(X + a) − Lt(X). δt ∈ R.
Then, for all k ∈ NT we have the following relation:

(1 − µa)Z(µ;−k) = µa
∑

0≤u<k

δk−u

(

k

u

)

Z (µ;−u) + Za
N−1(µ,−k)

Where Za
N−1(s) =

∑

m∈E(a)

µm

T
∏

t=1

Lt(m)−st . By using notation (9) above it’s easy to see that:

Za
N−1(s) =

N−1
∑

q=1

∑

I⊂{1,...,N}
#I=q

∑

b=(bi)∈
∏

i∈Ic{0,...,ai}

(

∏

i∈Ic

µbi

i

)

Z
(

1;La,I,b
1 , . . . , L

a,I,b
T ; (µi)i∈I ; s

)

.

In particular, it is clear that Za
N−1 is a finite linear combination of zeta series Z associated to linear

forms of at most N − 1 variables.

Remark 3. Of course, here as well this formulaes allows a calculus by induction.

Since the works of Cassou-Nogus and Shintani, we know that the case of linear forms is particulaly
interesting for algebraic number theory because of the link with the zetas functions of number fields.
See also [16] for more motivations.

Remark 4. Let us assume that P ∈ R[X1, . . . ,XN ] is a product of linear forms: P =
T
∏

t=1

Lt where

L1, . . . , LT have real positive coefficients, and that we want to evaluate the numbers Z(1;P ;µ;−k)
where k ∈ N.
We could use theorem I, but it seems more interesting to note that
∀s ∈ C Z(1;P ;µ; s) = Z(1;L1, . . . , LT ;µ; s, . . . , s) and then to consider the numbers
Z(1;P ;µ;−k) = Z(1;L1, . . . , LT ;µ;−k, . . . ,−k) inside the family Z(1;L1, . . . , LT ;µ;−k1, . . . ,−kT )
because of the simple relations between these numbers given by the preceeding proposition.

The particular case of linear forms is not the only case when relations of theorems 1 and 2 become
particularly simple. The great flexibility in the assumptions of this theorems, allowed one to obtain
also very simple relations in somes others cases as in the following:

Corollary 2. Let µ ∈ (T\{1})N and let P1, . . . , PT ∈ R[X1, . . . ,XN ] be polynomials of degree at most
2. Suppose that for all t = 1, . . . , T :

Pt(X) = Pt(X1, . . . ,XN ) =

rt
∑

k=1

(

〈αt,k,X〉
)2

+
N
∑

n=1

ct,nXn + dt

where αt,k ∈ RN , ct,i ∈ R∗
+ and dt ∈ R+ ∀t, k, i.

Assume that there exist a ∈ NN \ {0} such that 〈αt,k,a〉 = 0 for all t, k.
Then:
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1. for all t ∈ {1, . . . , T}, δt := Pt(X + a) − Pt(X) ∈ R;

2. the relations of Corollary 1 are still true.

4 Proof of theorem 1

Let t ∈ {1, . . . , T}. It’s clear that there exists α ∈ NN such that ∂αPt is a no vanishing constant
polynomial. So the hypoellipticity of Pt implies that Pt(x) → +∞ when |x| → +∞ (x ∈ [1,+∞[N ).
By using Tarski-Seidenberg (see for example [11], Lemme 1), we know that there exists δ > 0 such
that Pt(x) ≫ (x1 . . . xN )δ uniformly in x ∈ [1,+∞[N . Therefore, its clear that there exists σ0 such
that if σ1, . . . , σT > σ0 then Z(Q,P1, . . . , PT ,µ, s) converges.
By Remark 2.1 above, there exist also a fixed ǫ > 0 such that ∀t ∈ {1, . . . , T} we have

∀α ∈ NN \ {0}
∂αP

P
(x) ≪ x−ǫ1 (x ∈ JN ).

Step 1: we establish a formula (∗).

Proof of step 1:
P1, . . . , PT are fixed in the whole proof so we will denote Z(Q,µ, ·) instead of Z(Q,P1, . . . , PT ,µ, ·).
With this notation for all s such that σ1, . . . , σT > σ0 we have:

Z(Q,µ, s) =
∑

m∈N∗N

µmQ(m)

T
∏

t=1

Pt(m)−st

=
∑

m≥a+1

µmQ(m)
T
∏

t=1

Pt(m)−st + Za
N−1(s)

= µa
∑

m∈N∗N

µmQ(m + a)

T
∏

t=1

Pt(m + a)−st + Za
N−1(s)

U ∈ N is set for the whole step.
We have gU : C × C\] −∞,−1] → C holomorphic and satisfying:

∀s ∈ C ∀z ∈ C\] −∞,−1] (1 + z)s =

U
∑

u=0

(

s

u

)

zu + zU+1gU (s, z).

∀k ∈ N vrifiant k ≤ U et ∀z ∈ C\] −∞,−1], gU (k, z) = 0.

For t ∈ {1, . . . , T} we define ∆t = ∆aPt.
For t ∈ {1, . . . , T} and m ∈ N∗N , we define Ht,m,U : C → C by:

Ht,m,U(st) =

U
∑

ut=0

(

−st

ut

)

∆t(m)utPt(m)−ut .
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∀t ∈ {1, . . . , T} we have:

Pt(m + a)−st = [Pt(m) + ∆t(m)]−st

= Pt(m)−st
[

1 + ∆t(m)Pt(m)−1
]−st

= Pt(m)−st

[

Ht,m,U(st) + ∆t(m)U+1Pt(m)−(U+1)gU

(

−st,∆t(m)Pt(m)−1
)

]

For x1, . . . , xT , y1, . . . , yT ∈ R, we have

T
∏

t=1

(xt + yt) =
∑

ǫ∈{0,1}T

T
∏

t=1

x1−ǫt

t yǫt

t , so:

T
∏

t=1

Pt(m+ a)−st =
∑

ǫ∈{0,1}T

T
∏

t=1

Ht,m,U(st)
1−ǫt∆t(m)ǫt(U+1)Pt(m)−st−ǫt(U+1)gU

(

−st,∆t(m)Pt(m)−1
)ǫt

For m ∈ N∗N and ǫ ∈ {0, 1}T we define fm,U,ǫ : CT → C thanks to the following formula:

fm,U,ǫ(s) =

T
∏

t=1

Ht,m,U(st)
1−ǫt∆t(m)ǫt(U+1)Pt(m)−st−ǫt(U+1)gU

(

−st,∆t(m)Pt(m)−1
)ǫt

So for all m ∈ N∗N and s ∈ CT we have:

T
∏

t=1

Pt(m + a)−st =
∑

ǫ∈{0,1}T

fm,U,ǫ(s).

We define ZU (Q,µ, ·) by: ZU (Q,µ, s) :=
∑

ǫ∈{0,1}T \{0}

∑

m∈N∗N

µmQ(m + a)fm,U,ǫ(s).

We will see in step 2 that for U large enough ZU (Q,µ, ·) exists and is holomorphic on

{

s ∈ CT | σ1, . . . , σT > σ0

}

.

It’s clear that ZU (Q,µ, s) =
∑

m∈N∗N

µmQ(m + a)
∑

ǫ∈{0,1}T \{0}

fm,U,ǫ(s).

So Z(Q,µ, s) = µa
∑

m∈N∗N

µmQ(m + a)fm,U,0(s) + µaZU (Q,µ, s) + Za
N−1(s).

By definition fm,U,0(s) =

T
∏

t=1

Ht,m,U(st)Pt(m)−st so:

fm,U,0(s) =

T
∏

t=1

U
∑

ut=0

(

−st

ut

)

∆t(m)utPt(m)−(st+ut)

=
∑

0≤u1,...,uT ≤U

T
∏

t=1

(

−st

ut

)

∆t(m)utPt(m)−(st+ut)

=
∑

u∈{0,...,U}T

(

−s

u

) T
∏

t=1

∆t(m)utPt(m)−(st+ut)
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then, for all s such that σ1, . . . , σT > σ0, we have:

∑

m∈N∗N

µmQ(m + a)fm,U,0(s) =
∑

m∈N∗N

µmQ(m + a)
∑

u∈{0,...,U}T

(

−s

u

) T
∏

t=1

∆t(m)utPt(m)−(st+ut)

=
∑

u∈{0,...,U}T

(

−s

u

)

∑

m∈N∗N

µmQ(m + a)

T
∏

t=1

∆t(m)utPt(m)−(st+ut)

=
∑

u∈{0,...,U}T

(

−s

u

)

Z

(

Q(X + a)

T
∏

t=1

∆ut
t ,µ, s + u

)

The combination of the precedings results gives us:

Z(Q,µ, s) = µa
∑

u∈{0,...,U}T

(

−s

u

)

Z

(

Q(X + a)

T
∏

t=1

∆ut

t ,µ, s + u

)

+ µaZU (Q,µ, s) + Za
N−1(s)

The following (∗) formula is now clear:

(∗) (1 − µa)Z(Q,µ, s) =µa
∑

u∈{0,...,U}T \{0}

(

−s

u

)

Z

(

Q(X + a)
T
∏

t=1

∆ut
t ,µ, s + u

)

+ µaZ(∆Q,µ, s) + Za
N−1(s) + µaZU (Q,µ, s)

Step 2: For all a ∈ R+ there exists U0 ∈ N such that for all U ≥ U0, ZU (Q,µ, ·) exists and is
holomorphic on

{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

.

Proof of step 2:
Let a ∈ R. Let K be a compact of CT included in

{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

.
⋆ Let t ∈ {1, . . . , T}.
We know that Pt(x) ≫ 1 (x ∈ JN ) so it’s easy to seen that : Pt(x)−st ≪ Pt(x)a (x ∈ JN s ∈ K).
Let denote p = max

{

degXn
Pt | 1 ≤ n ≤ N 1 ≤ t ≤ T

}

.

From now we assume a > 0. So Pt(x)a ≪ xpa1 (x ∈ JN ).
As a conclusion we have: Pt(x)−st ≪ xpa1 (x ∈ JN s ∈ K).

Let U ∈ N∗ and ǫ ∈ {0, 1}T . By definition Ht,m,U(s) =

U
∑

ut=0

(

−st

ut

)(

∆t(m)

Pt(m)

)ut

, so hypoellipticity of

Pt implies that Ht,m,U(s) ≪ 1 (m ∈ N∗N , s ∈ K).

It implies also that there exists a compact of ]− 1,+∞[ containing all the
∆t(m)

Pt(m)
where m is in N∗N

so: gU

(

−st,∆t(m)Pt(m)−1
)ǫt ≪ 1 (m ∈ N∗N s ∈ K).

Thanks to the Taylor formula and to the choice of ǫ we have
∆t(m)

Pt(m)
≪ m−ǫ1 (m ∈ N∗N ).

From what preceeds we deduce that we have, uniformely in m ∈ N∗N and s ∈ K:

Ht,m,U(s)1−ǫt

(

∆t(m)

Pt(m)

)ǫt(U+1)

Pt(m)−stgU

(

−st,∆t(m)Pt(m)−1
)ǫt ≪ mpa1m−ǫǫt(U+1)1.
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⋆ By definition

fm,U,ǫ(s) =
T
∏

t=1

Ht,m,U(s)1−ǫt

(

∆t(m)

Pt(m)

)ǫt(U+1)

Pt(m)−stgU

(

−st,∆t(m)Pt(m)−1
)ǫt

Since ǫ 6= 0, we have: fm,U,ǫ(s) ≪ mTpa1m−ǫ(U+1)1 (m ∈ N∗N ).
We denote q = max

{

degXn
Q | 1 ≤ n ≤ N

}

(obviously we can assume that Q 6= 0).

We see that Q(m + a)fm,U,ǫ(s) ≪ m(q+Tpa−ǫ(U+1))1 (m ∈ N∗N ).
So it is enough to have q + Tpa − ǫ(U + 1) ≤ −2, for U to fit.

Thus it is enough to choose U ∈ N such that U ≥ U0 :=

[

q + Tpa + 2

ǫ

]

+ 1.

Convention:
let us take a convention, that we will use until the end of the proof. Let a ∈ R. We will say that a
function Y is an entire combination until a of the functions Y1, . . . , Yk if there exists:
⋆ entire functions λ1, . . . , λk : CT → C,
⋆ one function λ :

{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > a
}

→ C holomorphic,

such that Y = λ +

k
∑

i=1

λiYi.

A definition and a remark:
for u ∈ NT and Q ∈ R[X1, . . . ,XN ], we denote Eu(Q) the subspace of R[X1, . . . ,XN ] generated by the

polynomials of the following form: ∂βQ

T
∏

t=1

∏

k∈Ft

∂ft(k)Pt where:

⋆ β ∈ NN ,
⋆ F1, . . . , FT are finite subset of N satisfying |Ft| = ut,
⋆ ∀t ∈ {1, . . . , T} ft is a function from Ft into NN \ {0}.

We remark that Eu(Q) is stable under partial derivations.

We are now beginning the proof of the existence of an holomorphic continuation.
The proof is by recurrence on N ; it will be clear that the proof that rank N − 1 implies rank N − 1
gives the result at rank N = 1.
Let N ≥ 1. We assume that the result is true at rank N − 1.

Step 3:
Let Q ∈ R[X1, . . . ,XN ] and a ∈ R+.
Then Z(Q,µ, s) is an entire combination until −a of functions of the type Z(R,µ, s + u) where
u ∈ NN \ {0} and R ∈ Eu(Q).

Proof of step 3:
we are going to show by recurrence on d ∈ N that if deg Q < d then the result is true.
For d = 0 it is clear.
Let us assume the result for d ≥ 1.
Let Q ∈ R[X1, . . . ,XN ] such that deg Q < d + 1.
Thanks to step 2 we set U such that ZU (Q,µ, ·) is holomorphic on

{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

.
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We are now going to use the formula (∗) obtained in step 1. We look at each of the 4 term on the
right.
• Let u ∈ {0, . . . , U}T \ {0}.

Thanks to the Taylor formula, it is easy to see that Q(X + a)

T
∏

t=1

∆ut

t ∈ Eu(Q).

• deg ∆Q < d so the recurrence hypothesis on d implies that, Z(∆Q,µ, s) is an entire combination
until −a of functions of the type Z(R,µ, s + u) where u ∈ NN \ {0} and R ∈ Eu(∆Q).
Furthermore, clearly, Eu(∆Q) ⊂ Eu(Q).
• Thanks to the recurrence hypothesis on N , Za

N−1 can be holomorphically extended to CT .

• We chose U so that ZU (Q,µ, ·) is holomorphic on
{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

.
So the formula (∗) gives the result.

Step 4: R ∈ Eu(Q) and S ∈ Ev(R) ⇒ S ∈ Eu+v(Q).

Proof of step 4:

S is a linear combination of terms of the form ∂βR

T
∏

t=1

∏

k∈F ′
t

∂f ′
t(k)Pt where:

β ∈ NN , F ′
1, . . . , F

′
T are finite subset of N such that ∀t |F ′

t | = vt, and f ′
t : F ′

t → NN \ {0}.

R ∈ Eu(Q) so ∂βR ∈ Eu(Q) and then ∂βR is a linear combination of terms of the form: ∂γQ

T
∏

t=1

∏

k∈Ft

∂ft(k)Pt

where:
γ ∈ NN , F1, . . . , FT are finite subset of N such that ∀t |Ft| = ut, ft : Ft → NN \ {0}.

We can assume that ∀t, t′ ∈ {1, . . . , T} Ft ∩ F ′
t′ = ∅.

To conclude it is enough to show that:

U
def
= ∂γQ





T
∏

t=1

∏

k∈Ft

∂ft(k)Pt









T
∏

t=1

∏

k∈F ′
t

∂f ′
t(k)Pt



 is in Eu+v(Q).

For t ∈ {1, . . . , T} we define gt : Ft ⊔ F ′
t → NN \ {0} in the following way:

gt(k) = ft(k) if k ∈ Ft, gt(k) = f ′
t(k) if k ∈ F ′

t .

Then U = ∂γQ

T
∏

t=1

∏

k∈Ft⊔F ′
t

∂gt(k)Pt and ∀t ∈ {1, . . . , T} |Ft ⊔ F ′
t | = ut + vt.

So it is now clear that U ∈ Eu+v(Q).
Step 5:
Let Q ∈ R[X1, . . . ,XN ], a ∈ R and b ∈ N∗.
Then Z(Q,µ, s) is an entire combination until −a of functions of the type Z(R,µ, s+u) where u ∈ NN

satisfies |u| ≥ b and R ∈ Eu(Q).

Proof of step 5:
the proof is by recurrence on b ∈ N∗.
For b = 1, it comes from step 3.
The combination of step 3 and step 4 allows us to deduce the result at rank b + 1 from the result at
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rank b.

Last step: conclusion:
let Q ∈ R[X1, . . . ,XN ] and a ∈ R+.
We wish to show that Z(Q,µ, ·) can be holomorphically extended until −a.
Let b ∈ N. The value of b will be precised in the sequel.
By step 5 Z(Q,µ, s) is an entire combination until −a of functions of the type Z(R,µ, s + u) where
u ∈ NN satisfies |u| ≥ b and R ∈ Eu(Q).
Let us consider u ∈ NN satisfying |u| ≥ b and R ∈ Eu(Q).

R is a linear combination of polynomials of the form S = ∂βQ

T
∏

t=1

∏

k∈Ft

∂ft(k)Pt where:

β ∈ NN , F1, . . . , FT are finite subsets of N satisfying ∀t |Ft| = ut and ft : Ft → NN \ {0}.

∏T
t=1

∏

k∈Ft
∂ft(k)Pt

∏T
t=1 P ut

t

(m) =
T
∏

t=1

∏

k∈Ft

∂ft(k)Pt

Pt
(m)

≪
T
∏

t=1

∏

k∈Ft

m−ǫ1 (m ∈ N∗N )

≪
T
∏

t=1

m−ǫut1 (m ∈ N∗N )

≪ m−ǫ|u|1 (m ∈ N∗N )

≪ m−ǫb1 (m ∈ N∗N )

Let K be a compact of CT included in
{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

.

As in step 2 : ∂βQ(m)

T
∏

t=1

Pt(m)−st ≪ mq1+Tpa1 (m ∈ N∗N s ∈ K).

S(m)

T
∏

t=1

Pt(m)−(st+ut) = ∂βQ(m)

T
∏

t=1

Pt(m)−st

∏T
t=1

∏

k∈Ft
∂ft(k)Pt

∏T
t=1 P ut

t

(m)

so S(m)

T
∏

t=1

Pt(m)−(st+ut) ≪ m(q+Tpa−ǫb)1 (m ∈ N∗N s ∈ K).

We choose b ∈ N satisfying b ≥
q + Tpa + 2

ǫ
so that q + Tpa − ǫb ≤ −2.

We see that Z(R,µ, s+u) is holomorphic on
{

s ∈ CT | ∀t ∈ {1, . . . , T} σt > −a
}

, so the proof is done.
To obtain the formula of the theorem, it suffices to make s = −k in the formula (∗) prooved in step 1
and to remark that ZU (Q,µ,−k) = 0 when we choose U such that U > max{k1, . . . , kT }.
This ends the proof of theorem 1.
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5 Proof of theorem 2

Let µ ∈ (T \ {1})N and k ∈ NN fixed. Let d ∈ N be fixed.
We denote Rd[X1, . . . ,XN ] the set of the real polynomials of N variables with degree at most d.
Let D = card{α ∈ NN | |α| ≤ d}.

Let φ : RD → Rd[X1, . . . ,XN ] defined by: A = (aα)|α|≤d 7→ φ(A) =
∑

|α|≤d

aαxα.

It is an isomorphism of real vector spaces.
Thanks to theorem B of [8], we know that there exists a polynomial G ∈ R[X1, . . . ,XD(T+1)] such

that for all B,A1, . . . , AT ∈ RD such that φ(A1), . . . , φ(AT ) satisfy assumptions of theorem II, we have
Z(φ(B);φ(A1), . . . , φ(AT );µ;−k) = G(B,A1, . . . , AT ).

Theorem B of [8] implies that if we restrain to polynomials of degree at most d with P1, .., PT

satisfying assumptions of theorem II, the following relation, that we want to establish:

(1 − µℓ)Z(Q;P1, . . . , PT ;µ;−k) =µℓ
∑

0<u≤k

(

k

u

)

Z

(

Q(X + ℓ)

T
∏

t=1

(∆Pt)
ut ;P1, . . . , PT ;µ;−k + u

)

+ µℓZ(∆Q;P1, . . . , PT ;µ;−k) + Zℓ
N−1(−k)

is equivalent to G1(B,A1, . . . , AT ) = G2(B,A1, . . . , AT ) (with B = φ−1(Q) et ∀t At = φ−1(Pt)) with
G1, G2 ∈ R[X1, . . . ,XD(T+1)] depending only on k, d,N, T and µ and repectively associated to the
right side and left side.
It is easy to see that if A ∈ R∗D

+ then φ(A) is hypoelliptic and non constant.
Therefore theorem I implies that for all B ∈ RD, and for all A1, . . . , AT ∈ R∗D

+ , G1(B,A1, . . . , AT ) =
G2(B,A1, . . . , AT ). Since G1 and G2 are polynomials, this implies that G1 = G2.
This end the poof of theorem 2.

6 Proof of corollaries:

Corollary 1 is a direct consequence of theorem 1.
Point 1 of corollary 2 follows from assumption on a by easy computation.
Proof of the point 2 of corollary 2: By using theorem 1, to finish the proof of corollary 2, it’s
enough to verifies that each polynomial Pt is hypoelliptic.
Let t ∈ {1, . . . , T} and n ∈ {1, . . . , N} fixed. We have uniformly in [1,+∞[N :

∂Pt(x)

∂xn
Pt

−1(x) ≪

∑rt

k=1 α
t,k
n |〈αt,k,x〉| + ct,n

∑rt

k=1 (〈αt,k,x〉)2
+
∑N

j=1 ct,jxj + dt

≪
1

√

∑rt

k=1 (〈αt,k,x〉)2 +
∑N

j=1 ct,jxj + dt

≪
1

(x1 + .. + xN )1/2
.

But degPt ≤ 2. So the previous implies that Pt is an hypoelliptic polynomial. This completes the
proof of corollary 2.
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