Computable infinite dimensional filters with applications to discretized diffusion processes.

Abstract : Let us consider a pair signal-observation ((xn,yn),n 0) where the unobserved signal (xn) is a Markov chain and the observed component is such that, given the whole sequence (xn), the random variables (yn) are independent and the conditional distribution of yn only depends on the corresponding state variable xn. The main problems raised by these observations are the prediction and filtering of (xn). We introduce sufficient conditions allowing to obtain computable filters using mixtures of distributions. The filter system may be finite or infinite dimensional. The method is applied to the case where the signal xn = Xn is a discrete sampling of a one dimensional diffusion process: Concrete models are proved to fit in our conditions. Moreover, for these models, exact likelihood inference based on the observation (y0,...,yn) is feasable.
Type de document :
Pré-publication, Document de travail
2005
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00004889
Contributeur : Serena Benassù <>
Soumis le : lundi 9 mai 2005 - 19:22:25
Dernière modification le : mardi 10 octobre 2017 - 11:22:02
Document(s) archivé(s) le : jeudi 1 avril 2010 - 21:26:17

Identifiants

Collections

Citation

Mireille Chaleyat-Maurel, Valentine Genon-Catalot. Computable infinite dimensional filters with applications to discretized diffusion processes.. 2005. 〈hal-00004889〉

Partager

Métriques

Consultations de
la notice

222

Téléchargements du document

81