Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench

Clément Sire 1
1 Physique Statistique des Systèmes Complexes (LPT)
LPT - Laboratoire de Physique Théorique - IRSAMC
Abstract : We study the autocorrelation function of a conserved spin system following a quench at the critical temperature. Defining the correlation length $L(t)\\sim t^{1/z}$, we find that for times $t\'$ and $t$ satisfying $L(t\')\\ll L(t)\\ll L(t\')^\\phi$ well inside the scaling regime, the autocorrelation function behaves like $\\sim L(t\')^{-(d-2+\\eta)}[{L(t\')}/{L(t)}]^{\\lambda^\\prime_c}$. For the O(n) model in the $n\\to\\infty$ limit, we show that $\\lambda^\\prime_c=d+2$ and $\\phi=z/2$. We give a heuristic argument suggesting that this result is in fact valid for any dimension $d$ and spin vector dimension $n$. We present numerical simulations for the conserved Ising model in $d=1$ and $d=2$, which are fully consistent with this result.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00004879
Contributor : Clément Sire <>
Submitted on : Monday, May 9, 2005 - 1:34:35 PM
Last modification on : Monday, April 29, 2019 - 5:17:02 PM

Links full text

Identifiers

Collections

Citation

Clément Sire. Autocorrelation exponent of conserved spin systems in the scaling regime following a critical quench. Physical Review Letters, American Physical Society, 2004, 93, pp.130602. ⟨10.1103/PhysRevLett.93.130602⟩. ⟨hal-00004879⟩

Share

Metrics

Record views

68