
HAL Id: hal-00004818
https://hal.science/hal-00004818

Submitted on 29 Apr 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Storage and Management of Similar Images
Geneviève Jomier, Maude Manouvrier, Marta Rukoz

To cite this version:
Geneviève Jomier, Maude Manouvrier, Marta Rukoz. Storage and Management of Similar Images.
Journal of the Brazilian Computer Society, 2000, 3(6), pp.13-26. �hal-00004818�

https://hal.science/hal-00004818
https://hal.archives-ouvertes.fr


Storage and Management of Similar Images�Genevi�eve Jomier, Maude Manouvrier Marta RukozxLAMSADE - University Paris-Dauphine University of Central FloridaPlace du Mar. de Lattre de Tassigny School of Computer Science - P.O. Box 16236275775 Paris Cedex 16 - France Orlando Fl 32816-2362 - USAFax. (33 1) 44 05 40 91 Fax. (407) 823-5419e-mail: fjomier,manouvrierg@lamsade.dauphine.fr e-mail: mrukoz@
ynn.ciens.ucv.veAbstractNumerical images are becoming more and more im-portant and an increasing emphasis on multimediaapplications has resulted in large volumes of images.However, images need a large memory space to bestored, so their e�cient storage and retrieval gener-ate challenges to the database community. This pa-per proposes a new algorithm for an e�cient storageof sets of images. It is based on a version approachused in databases. It shows how to store and operateon similar images; two images are de�ned as similarif the quad-trees encoding them have only few di�er-ent nodes. A data structure called Generic Quad-Tree(GQT) is proposed. It optimizes the memory space re-quired to store similar images and allows an e�cientnavigation among them. An Image Tree stores the an-cestors and descendants of an image, like a version hi-erarchy. Using the Image Tree, the Generic Quad-Treeallows an image to share common parts with its ances-tors and descendants. The GQT approach and somealgorithms for reading, modifying or removing imagesfrom the Generic Quad-Tree are described. Examplesusing black and white images and gray scale imagesare presented.Keywords: Generic Quad-Tree, operations on quad-trees, image representation, image comparison, opti-mization of memory space, image processing applica-tion.�This work was supported by the CNRS in France andby CONICIT (accord numbers 5485 and 7202) and CDCH inVenezuela.xOn leave from Centro de Computaci�on Paralela y Dis-tribuida - Fac. de Ciencias - Universidad Central de Venezuela.

1 IntroductionIt is commonly required in image processing andmanagement systems to store di�erent similar imagesrepresenting the same "reality". Measures on imagesimilarity have been proposed on color [19, 4, 25, 28],texture [30, 31, 32] or shape [29, 7, 8]. These similar-ity measures are mainly used in image databases toretrieve the images which are the most similar to animage example.In this paper, a new measure is de�ned on image sim-ilarity. It is based on a distance computed from thedi�erences between the quad-trees encoding images.This measure on image similarity, called Q-similarity,is de�ned in order to optimize the memory space re-quired to store images. Such similar images appear inimage processing systems [1], where new images aregenerated as the result of an operation or a sequenceof operations applied on an initial image where onlyfew areas are modi�ed [16]. In Geographic InformationSystems [32], similar images occur when pictures of anarea are taken from time to time or at �xed dates tofollow its global evolution, or the evolution of some ofits parts. In medical domain, images representing thesame kind of pathology may be considered as similar[29]. For instance [27] shows the result of retrieval bysimilarity of brain images obtained using MRI (Mag-netic Resonance Image).Image storage and retrieval are big challenges becauseof the increasing number of images, particularly inmedical domain. For instance, a typical radiologydepartment currently generates between 100,000 and10,000,000 images per year, requiring about 1.5 ter-abytes [15]. As the size of an image is large or verylarge [11], in kilo or megabytes, and as the number ofimages to be managed may be large too, various pro-1



cesses of compression and compacting have been pro-posed. They use di�erent kinds of coding [39, 38, 40] orwavelets [9, 23]. As opposed to these approaches wherethe compression or compacting process is applied toeach image separately, the data structure proposedin this paper and called Generic Quad-Tree (GQT)[12], uses Q-similarity between images to improve theirstorage. The Generic Quad-Tree considers images or-ganized in quad-trees. A quad-tree is an e�cient datastructure used for representing 2D images [33, 34]. TheGQT approach allows an e�cient memory space op-timization by sharing common parts of images. It al-lows operations on similar images, like comparison ofimages, or comparison of the same region in di�erentimages, for instance to follow consequences of process-ing on di�erent images or on the same area in di�erentimages. Moreover, the set of images is not supposedto be organized in a total order.This paper is organized in the following way. Section2 describes a medical application, where the presentwork takes place and brie
y recalls the principles ofquad-trees for image representation. Section 3 de-scribes the principles of the Generic Quad-Tree ap-proach. Section 4 describes the primitive operationson images stored in a Generic Quad-Tree. Section 5presents examples of Generic Quad-Tree implementa-tions. Section 6 compares this approach with othersproposals. Section 7 concludes and gives some researchdirections to go farther.2 Work contextThis paper proposes a structure to manage and tostore images commonly occurring in image process-ing applications. To be more precise, let us describe amedical application, which is used as a reference in theSIMA project 1 [21]. The purpose of the processing isto "improve" images according to criteria prede�nedby biologists. It comes down to make some elementsappear more distinctly, to show some characteristicsor salient features, or emphasize di�erences. Figures 1to 4 present examples of image processing operations.The quadrants cut up in images are recursively iden-ti�ed according to a Z function as shown in �gure 5.Figure 1 presents an image (on the left) containingcells. In the right area of this image (at the beginningof the arrow), biologists cannot correctly determinethe presence of cells. In order to improve the quality1SIMA Project number S1-9500710 CONICIT Venezuela.

Figure 1: Modi�cation of an image area.
Figure 2: Example of image area dilatation.of this area, the quadrant is cut in four parts. Eachsub-quadrant is di�erently darkened.Figures 2, 3 and 4 represent di�erent steps of an imageprocessing. First, the image is recursively subdividedin four quadrants (see �gure 2). A dilatation [35] isapplied to areas identi�ed by 012 and 013, in order toclose irregular cell shapes. Then, a sharpening algo-rithm is applied to the image. A zoom on areas 012and 013 allows biologists to see more distinctly someelements (see arrows on �gure 4) which are not visiblein the initial image.In order to succeed, biologists work in a trial and errorprocess, using operations which generate a new imageas a result. These operations can be applied to the2



Figure 4: Objects detection after area dilatation in sharpened images of �gure 3.
Figure 3: Sharpened images and areas dilatation.whole image or to a well chosen part of it (see �gures1-2) because an operation can improve some parts ofan image and damage some others. Thus it is bet-ter to improve locally some parts of an image and torecompose the entire image using its improved parts.Moreover, it is common to modify some image elementmanually. At the end of the process of "improving" animage, a fair number of images have been created, spe-cially when di�erent experts have been processing inparallel from the same initial image. Throughout theprocess, the created images must be saved in order toallow starting again from an intermediate image if theresult of a sequence of operations is satisfying, or iftrying another sequence of operations could generatea better result.Biologists use a quad-tree to cut images in regions(or quadrants). A quad-tree is a hierarchical struc-ture built by recursive divisions of the space in fourdisjoint quadrants. H. Samet [33] gives a detailed de-scription of this structure. Quad-trees are used for dif-

ferent types of data, like curves, surfaces or volumes[34]. The most widely known quad-tree allows to cutan image in regions (or quadrants) according to a cri-terion (see �gure 5). An image is recursively cut infour disjoint quadrants or squares of the same size sothat a node of the quad-tree represents each quadrant.The root node represents the initial quadrant contain-ing the whole image. If an image is not homogeneous- according to the criterion -, the quad-tree root hasfour son nodes representing the four �rst level imagequadrants: northwestern, northeastern, southwesternand southeastern. A node is a leaf when its corre-sponding image quadrant is homogeneous; otherwisethe node is internal. As a consequence, the leaf nodesof a quad-tree are not all at the same level. Each in-ternal node has exactly four sons.Di�erent functions are used for associating an iden-ti�er with a quadrant [33]. Here we use a Z func-tion, as shown on �gure 5. A quad-tree node uses theidenti�er of the quadrant it represents. For example,in �gure 5, the number 0 identi�es the initial quad-rant representing the whole image. Numbers 0, 1, 2or 3, following their parent node identi�er 0, identifythe four �rst level image quadrants. Recursively, sub-quadrants of an image quadrant n are identi�ed by nkwhere k 2 [0; 3].Quad-trees can be implemented using pointers tonodes. This kind of implementation, called hierar-chical, is costly in memory space [?]. To avoid thisproblem, di�erent techniques of linear storage of quad-tree have been proposed. A linear representation of aquad-tree is a list of values, which saves the hierarchi-cal tree structure. It is generally used for black and3



white images. Node values, and particularly leaf nodevalues, are encoded following depth-�rst order [14] orwidth-�rst order [39].
Figure 5: An example of image quad-tree.3 The Generic Quad-Tree approachA Generic Quad-Tree (GQT) is a new tool for rep-resenting and managing similar images [12, 13]. It isbased on the Database Version Approach [6]. Thisstructure minimizes the memory space of a set of im-ages and speeds up several operations applied to im-ages like image comparison. In fact, GQT is more thana storage structure. It is designed to be inserted inan environment for image management and processing[20, 21], because it allows user to extract one or severalimages easily and to work on them using his/her im-age processing tools in his/her working environment.He/she can modify preexisting images, insert new im-ages or delete some of them, compare images, extractimages, to build image sequences, etc.In this section and in the following one, the GenericQuad-Tree approach is presented in a simple particularcase where each point has only two values: black andwhite. This choice of simpli�cation is to make clearthe description of the approach. However, it may beapplied to any other case of storage of set of imagesusing quad-trees.The GQT approach is based on a principle of shar-ing parts of image quad-trees, which is presented insubsection 3.1. The similarity between images, usedin this paper, is de�ned in subsection 3.2. The imagesof the database are organized in a special structure de-�ned in subsection 3.3. Then, the Generic Quad-Treeis presented in subsection 3.4 and the end user view of

images is described in subsection 3.5.Below, when no confusion is possible, image and imageidenti�er are indi�erently used.3.1 Sharing parts of image quad-treesThe Generic Quad-Tree approach is based on aprinciple of sharing of quadrant values between im-ages. Let S be a set of images. If a quadrant q hasthe same value in a set of images S0 � S, this value isstored only once and is associated with the set of im-age identi�ers of S0. In that case the sharing is calledexplicit, because the identi�er of each image sharingthe value is explicitly present in the list.If a tree order is introduced in the set of images S,each image, except the tree root, has a unique parentand an inde�nite number of children. Thus the follow-ing rule of implicit sharing may be introduced: exceptif the identi�er of an image i is explicitly associatedwith another value v, image i shares the value with itsparent image.If the image tree is stored, this implicit rule of sharingallows a very compact representation of a set of imageswhen a large number of images share quadrant valuesalong the Image Tree branches3.2 Similarity between imagesThe Q-similarity between two images is de�ned asthe number of nodes having the same identi�er butdi�erent values, divided by the cardinal of the unionof their nodes.More formally, let S(i; i0) be the set of nodes hav-ing the same identi�er but di�erent values in quad-trees of images i and i0. Let U (i; i0) be the union ofthe set of node identi�ers existing in the quad-treeof image i and the set of nodes identi�ers existing inthe quad-tree of image i0. Let Card(S(i; i0)) (resp.Card(U (i; i0)) ) be the cardinal of S(i; i0) (resp. ofU (i; i0) ), Card(U (i; i0)) 6= 0. The Q-similarity be-tween images i and i0, d(i; i0), is computed accordingto equation 1. d(i; i0) = Card(S(i; i0))Card(U (i; i0)) (1)� d(i; i0) 2 [0; 1], it is a distance [24].� d(i; i0) = 0 () image i and image i0 share alltheir nodes.4



03

030 031 032 033

00 0301 02

0

01 0200

Quad-tree of image a

Legend:

in both quad-trees

0

nodes whose value is the same

Quad-tree of image bFigure 6: The Q-similarity computation between images a and b.� d(i; i0) = 1() image i and image i0 don't shareany node.For example, the Q-similarity between image a andimage b (whose quad-trees are represented in �gure 6)is equal to: d(a; b) = Card(S(a; b))=Card(U (a; b)) =5=9� Card(S(a; b)) = 5 because nodes 03, 030 to 033have the same identi�er but a di�erent value inthe quad-trees of image a and image b. Nodes030 to 033 have a special value, doesn't exist, inthe quad-tree of image a.� Card(U (a; b)) = 9 because nodes 0, 00 to 03 and030 to 033 appear in the union of node identi�ersof both quad-trees.3.3 Image TreeCommon values of quad-tree nodes are stored onceonly in the Generic Quad-Tree and are associated witha set of image identi�ers. The explicit sharing of nodevalues optimizes the memory space used for imagestorage. The implicit sharing diminishes the numberof image identi�ers associated with the stored values.To use the rule of implicit sharing, explained abovein section 3.1, all the images represented using theGeneric Quad-Tree approach are organized in a treestructure called Image Tree. An image j is insertedin the Image Tree as a child of an image i if the Q-similarity between i and j has the smallest value inthe database: 8i0 2; i 6= i0; d(i; j) � d(i0; j). Imageinsertion is detailed in section 4.3.As the Image Tree is only devoted to save memoryspace, it is ignored by end users. The way end usersview the image set is explained below in section 3.5.

Figure 7 represents an Image Tree with four imagesa, b, c and d.
a

b c

d
Image Tree

Image sequence

Image a Image cImage b Image dFigure 7: Images are organized in an Image Tree.3.4 Generic NodesSimilar images are stored in a Generic Quad-Tree.Its nodes are called generic nodes or fat nodes. Foreach node appearing in an image quad-tree and rep-resenting a quadrant, there is a node with the sameidenti�er in the Generic Quad-Tree. A generic noden represents all nodes n of the quad-trees of imagesbelonging to the database. It contains the whole in-formation necessary to rebuild the value of the nodewith the same identi�er n in each image quad-tree.Each generic node may be seen as a table with twocolumns and one or several lines (see �gure 8). Eachline l of a generic node n contains a list of image iden-ti�ers and a value v of quad-tree node. The meaningis: v is the value of node n in each image quad-treewhose identi�er i appears in line l (see generic node02 in �gure 8; it contains two lines, while generic node01 has only one line).Moreover, applying the sharing rule (see section 3.1),all the nodes n of the quad-trees representing imagesdescendant of image i implicitly share the value v;this implicit sharing is stopped by a descendant image5



0

01 0200 03

030 031 032 033

I

I

T T T T

a

a

a a a a

a a a a

b

b

b b b b

c

d

c, d

Image Tree
Generic Quad-TreeFigure 8: The Image Tree and the Generic Quad-Tree of the images represented in �gure 7.identi�er appearing in another line of generic node n,i.e. associated with another value v0 (see generic node01 in �gure 8, all the images share the value black).The value of a generic node is either ?, meaning thenode does not exist in quad-trees of images appearingin the corresponding line (see generic node 030 in �g-ure 8), either I, meaning the node is internal - it hasfour sons - (see generic node 0 in �gure 8), either ablack square if it is a black leaf, either a white squareif it is a white leaf.Figure 8 represents the Image Tree and the GenericQuad-Tree of the images represented in �gure 7.Generic node 0 contains only one line with value I.This means that all nodes 0 are internal in the quad-trees of images a, b, c and d. Value I is explicitlyassociated with image a . This value is implicitly asso-ciated with images b, c and d, descendants of a in theImage Tree, because they don't appear in any otherline of generic node 0. On the other hand, genericnode 02 contains two lines. The �rst line means: node02 is black in the quad-tree of image a. By implicitsharing, as image b is not appearing in any line and ischild of image a in the Image Tree, node 02 is black inthe quad-tree of image b. However, the quad-trees ofimages c and d do not share this value, because identi-�ers c and d appear in the second line of generic node02. The value of node 02 in the quad-trees of imagesc and d is white. Nodes 03k, k 2 [0; 3], do not existin the quad-tree of image a and image c. The valueexplicitly associated with image a in generic nodes 03kis ?. The quad-tree of image c, child of image a in theImage Tree, implicitly shares this value.

3.5 End user view of imagesAt this point it must be stressed that end usersidentify images in a way relevant to their applications.The external identi�cation (a, b, c and d on the pre-ceding examples) which is the only one known by endusers, is translated to internal identi�ers optimizingsearch through the Generic Quad-Tree. To optimizeGeneric Quad-Tree algorithms, the internal identi�ca-tion is built in such a way that from the identi�er ofan image in the Image Tree, all its ancestors can im-mediately be deduced [6, 17].This point is very important because the physical im-plementation of similar images is completely separatedfrom the way end users see their images. More pre-cisely, end users can read images and their correspond-ing quad-trees from the Generic Quad-Tree and orderthem in the way they want. For instance they canbuild sequences of images ordered according to spe-ci�c criteria. As a consequence, it is useful to asso-ciate meta-data, containing information on each im-age: date of creation, author, process of creation, etc.,with each image. Image meta-data are used for im-age retrieval in several contexts, for instance, digitallibraries.4 Operations on imagesThe primitive operations on images stored in aGeneric Quad-Tree are:1. Image reading,2. Image modi�cation,6



3. Image insertion,4. Deletion of an image,5. Comparison, union and intersection of images.4.1 Image readingTo read an image i from a Generic Quad-Tree, theGeneric Quad-Tree is read from its generic root node,identi�ed by 0. The value of this node for image quad-tree i is determined according to the sharing rule pre-sented in section 3.1. If the value of a node n is I forimage quad-tree i, the node is internal in the quad-tree of i and the generic nodes, children of n, are read.Otherwise, the node n is a leaf of image quad-tree iand the value found out is its color.For example, the following steps describe the readingof image c in the Generic Quad-Tree of �gure 8:� Generic root node 0 is read. Image c identi�erdoes not appear in node 0. Thus image c sharesthe value of node 0 with image a, parent of c inthe Image Tree. Value I, meaning internal node,is associated with image a. As a consequence,node 0 is internal in the quad-tree of c. The fournodes, children of node 0, are read (see followingitems).� Implicit sharing appears in nodes 00 and 01. Thesystem deduces, using the sharing rule, that nodes00 and 01 are respectively white and black in thequad-tree of c.� The value white explicitly associated with c ingeneric node 02 corresponds with the value ofnode 02 in the quad-tree of c.� Finally, image c and its parent image a implicitlyshare the value white of generic node 03.4.2 Image modi�cationModifying an image updates its quad-tree. Twocases occur, illustrated by the modi�cations of imageb in �gure 9 compared to �gure 7.1. The modi�cation preserves the image quad-treestructure and only values of leaf nodes arechanged. For example in �gure 9, quadrant 00of image b is changed from white (see �gure 7) toblack (see �gure 9). As a consequence leaf node00 is modi�ed in the quad-tree of b.

Image b

Quadrant 00
was white and 
becomes black

its sub-quadrants 
disappear

Quadrant 03 becomes
homogenous,

Quadrant 01 becomes 
not homogenous,

its sub-quadrants appearFigure 9: Modi�cation of image b.2. The modi�cation alters the image quad-treestructure:(a) nodes may disappear because quadrantswhich were not homogeneous become homo-geneous. For example nodes 03k, k 2 [0; 3],disappear in the quad-tree of b, becausequadrant 03 in image b becomes homoge-neous.(b) or nodes may appear because quadrants,which were previously homogeneous, are nomore homogeneous. For example nodes 01k,k 2 [0; 3], appear in the quad-tree of image b,because an homogeneous quadrant (01) be-comes non homogeneous.All cases may occur simultaneously, for di�erent nodesof the original image.4.2.1 Value modi�cation of a quad-tree nodePerforming a value modi�cation of quad-tree node ngenerates changes in the Generic Quad-Tree. The newvalue v:new of node n for the modi�ed image quad-tree imust be implicitly or explicitly associated with i.However, to avoid the propagation of the modi�cationto the possible descendant images of i, the implicitsharing between i and its image children, in the ImageTree, must be cut. Thus each image child of i, notexplicitly associated with a value in generic node nbefore the modi�cation, must be explicitly associatedwith the old value v:old that it was implicitly sharingwith i before the modi�cation.For instance, before the modi�cation of image b, im-age b and image a were implicitly sharing the valuewhite of generic node 00 (see �gure 8). After the mod-i�cation of image b (see �gure 9), the value black ofgeneric node 00 is explicitly associated with image b7



0

01 0200 03

I I

030 031 032 033T TTT T T T

I

T

010 011 012 013

a
a

a a

a a a a

b

b b

b b b b

c

d

a, d a, d a, d a, d

c, d d

d dd d

Image Tree
a, d a, dFigure 10: The Generic Quad-Tree after image b modi�cation.in �gure 10. Image d, child of b in the Image Tree, isexplicitly associated with value white, because it wasthe value of node 00 in the quad-tree of b before themodi�cation and because the quad-trees of images band d were implicitly sharing this value.4.2.2 Deletion of quad-tree nodesWhen a modi�cation implies the deletion of nodes (atleast four: n0, n1, n2 and n3) in an image quad-treei, the corresponding generic nodes must be updatedfor image quad-tree i, and only for i, by value ?,meaning does not exist. In order not to modify theimages descendant of i, image i and its children mustnot implicitly share the value?. This operation is per-formed exactly as explained in section 4.2.1, above. Ifa generic node n:k (k = 0::3) contains only the value?, this node does not exist anymore in any imagequad-tree. As a consequence it may be deleted fromthe Generic Quad-Tree. The deletion of four nodes,which are brothers identi�ed by n0, n1, n2 and n3, ina quad-tree entails a modi�cation of their parent noden: it was internal and becomes a leaf. As a conse-quence the generic parent node must be updated.For example, node 03, which was internal (see �gure8) in the quad-tree of image b becomes white (see �g-ure 10). In the Generic Quad-Tree, image b is removedfrom the image identi�ers list associated with value Iof generic node 03. Thus, image d, child of b in the Im-age Tree, is explicitly associated with value I of genericnode 03. Then, image b identi�er is associated withvalue white of generic node 03. As this value exists ingeneric node 03 and is associated with image a, parentof b in the Image Tree, image b implicitly shares valuewhite with image a. After the modi�cation of node

03, nodes 03k, k 2 [0; 3], are removed from the quad-tree of image b. As a consequence, image b implicitlyshares the value ? of generic nodes 03k with imagea, because image a is explicitly associated with value? of generic nodes 03k and b is the child of a in theImage Tree. Finally, image d is explicitly associatedwith the black and white values of nodes 03k beforethe updating of b.4.2.3 Creation of quad-tree nodesFinally, new nodes of image quad-tree (at least four:n0, n1, n2 and n3) may appear after updating imagei. This operation updates the value of the parent noden, which becomes internal. The value I of the genericparent node n is associated with image i, and onlywith i (i.e. no side e�ect on other images descendantof i). If image i and its children in the Image Tree wereimplicitly sharing a value in the generic parent noden, this implicit sharing must disappear. For each newnode n:k (k 2 [0; 3]) created in the quad-tree of imagei, a new generic node n:k is created in the GenericQuad-Tree, if it doesn't exist. First, this node is cre-ated empty: value ? is associated with the root of theImage Tree. Then, the generic node n:k is updatedand the corresponding value of node n:k in the quad-tree of i is associated with i in generic node n:k (seesection 4.2.1).This situation is illustrated in �gure 10. Nodes 01k,k 2 [0; 3], are created in the quad-tree of b, becauseregion 01 is not homogeneous any longer (see �gures7 and 9). The corresponding generic nodes 01k donot exist in the Generic Quad-Tree. They are createdwith value ? associated with image a, root of the Im-age Tree. Nodes 01k are updated in order to associate8



the value white or black with image b. Image d, childof b in the Image Tree, is explicitly associated withvalue ? in generic nodes 01k, because these nodes donot exist in the quad-tree of image d. A new line isadded in generic node 01. This line associates value Iwith image b. Image d, child of b in the Image Tree,is explicitly associated with the value black of genericnode 01, because it was the value of node 01 in thequad-tree of b before the updating.4.2.4 Other modi�cationsAfter all these examples, it appears easy to performother operations by modi�cations of generic nodes :1. Modi�cation of a part of an image by copyingthe corresponding part of another image. In factcopying corresponds to two simultaneous updates.2. Performing the same modi�cation simultaneouslyin several images. For instance, it is easy to prop-agate a modi�cation of node n performed on im-age i to all images descendant of i. This operationconsists in modifying the value of generic node nassociated with image i, and in deleting the iden-ti�ers of the descendants of image i in genericnode n. Thus all the images descendant of i im-plicitly share the value of node n with image i.Modifying an image i changes the implicit sharing be-tween i and its descendants. After many image modi-�cations, it may happen that the implicit sharing be-tween images deceases. A reorganization of the ImageTree may improve it. Algorithms for Image Tree reor-ganization are detailed in [24].4.3 Image insertion
Image a Image b Image c Image d Image eFigure 11: Creation of image e as a logical copy ofimage a.Two modes of insertion of a new image in a GenericQuad-Tree are provided, according to users needs. The�rst mode corresponds to the creation of a new im-age by modi�cation of a preexisting image without de-stroying that one. The other mode is the insertion ofa new image created outside the Generic Quad-Tree,

a

b c e

dFigure 12: Image Tree modi�cation after the insertionof image e.e.g. by an image-processing tool.For the �rst case, users are provided with an oper-ation which creates a new image x:i by logical copyof a preexisting image x. The new image x:i is in-serted as the ith child of x in the Image Tree. As itis a copy of x, it has exactly the same content and itshares the value of all its quad-tree nodes with x. As aconsequence, no updates of Generic Quad-Tree nodesare required; this is the reason why this operation iscalled logical copy. This case of logical copy of imageis illustrated on �gure 11: a new image e is createdas a child of image a in the Image Tree. Figure 12represents the Image Tree modi�cation. The GenericQuad-Tree does not change and is still the one repre-sented in �gure 10.In the second case, a new image i0 built outside theGeneric Quad-Tree must be inserted. It may be pro-duced by an external source or as the result of an imageprocessing operation performed on an image extractedfrom the Generic Quad-Tree. The quad-tree of i0 isbuilt. It is easy to compare the value of each quad-tree node n of image i0 with the corresponding genericnode n and to detect the node values that image i0and other images will share. If the place of i0 in theImage Tree is not well chosen, the sharing will mainlybe explicit. To improve the implicit sharing, i0 mustbe inserted in the Image Tree as a child of an imagesharing the maximum number of node values with i0.For that, for each node n of i0, the list of all imagessharing the value of n with i0 is built using the infor-mation contained in generic node n. The set of images,sharing the maximum number of node values with i0,is determined. The image i parent of i0 is chosen inthis set and i0 is inserted as a leaf in the image Tree.Then the Image Tree and the Generic Quad-Tree areupdated to introduce if necessary values of nodes ofimage quad-tree i0 ; They can be unshared, explicitly9



shared, or implicitly shared with i. Algorithms forinsertion of external image are detailed in [24].4.4 Image deletionThe deletion of an image can be logical and physi-cal.When an image is logically deleted it does not ap-pear any longer to end users. So it does not appearany longer in the set of images and in the Image Treewhere the corresponding node of the image quad-treeis no longer visible to users. A deletion indicator, as-sociated with each image in the Image Tree, is usedto perform this deletion. When the indicator of i ispositioned, i is logically deleted. Nothing else is done.Due to the sharing mechanism, the Generic Quad-Treeremains unchanged: the references to a deleted imagein generic nodes still exist, hidden to users. The ImageTree is preserved.Another step in deletion of image consists in deletingthe value corresponding to i in all the generic nodes, ifthis value is not shared with any other image. This isuseful when the deleted values are large on the pointof view of memory space.Another step consists in deleting all explicit or im-plicit references to i in the Generic Quad-Tree. Thisis performed by changing to explicit sharing all thecases of implicit sharing between i and its image chil-dren and then in deleting the identi�er i from all thegeneric nodes.The last step deletes image i from the Image Tree.Thus the Image Tree structure is modi�ed with conse-quences on internal image identi�ers. Therefore, thisphysical deletion is only used in case of archiving ordestroying a subset of images stored in the GenericQuad-Tree (for instance a sub-tree).4.5 Other operations on imagesUsing Generic Quad-Tree, other operations involv-ing several images and very useful for applications, likecomparison, can be easily performed.The comparison of values of an area in any two imagesij and ik can be performed by a top-down comparisonof the values extracted from generic nodes. It beginsat the generic node of the smallest quadrant includingthe considered area. Similarly the comparison of anytwo images can be performed.

It is also interesting to extract the regions which arecommon to several images or which are di�erent. If,from the user point of view, the compared images areordered according to their validity time, this kind ofcomparison is useful to study spatio-temporal evolu-tion. This is a hot topic in Geographic InformationSystems.Using the technique of generic node modi�cation il-lustrated in 4.2 above, and provided that these oper-ations are de�ned for the values stored in the GenericQuad-Tree, it is easy to compute inside the GenericQuad-Tree an image whose content is the result of:1. the complementary of an image or a part of animage,2. the union, intersection or di�erence of any twoimages, or of the same region in any two images.5 Examples of GQT implementations
Figure 13: An example of three processed images.Until now in this paper we have considered thatthe only constraint on quad-trees is homogeneity ofthe leaf quadrants according to a prede�ned criterion.As a consequence, instead of black or white quadrant,gray scale, colors, textures etc. can be used withoutany change in the algorithms of the Generic Quad-Tree. Moreover, to limit the number of levels in quad-tree divisions a threshold on the quadrant value canbe chosen.In image processing, particularly in medical domain,quad-trees are interesting to delimit image quadrants10



Figure 14: Images of �gure 13 stored in a Generic Quad-Tree.whose size can be as small as required. For instance, aquadrant may represent an interesting area for a biolo-gist, because it contains speci�c cells. These quadrantsare subject to image operations in order to improve thequality. This situation happens in the medical applica-tion of SIMA and is illustrated by �gures 13. In orderto improve the quality of quadrant 011 in image A twodi�erent processes have been carried out starting fromimage A. Thus, two images, B and C, have been cre-ated. The image B has been obtained by applicationof an image improvement operation on the contrast ofquadrant 011 of imageA. On the other hand, imageChas been obtained by applying darkening algorithmson quadrants 0110 and 0111 of image A. Figure 14represents the Generic Quad-Tree storing images A,B and C. The quadrants of the images are subject toimage operations. Their values, which are smaller im-ages, are too large to be stored inside a generic node.As a consequence the quadrant values are stored out-side the Generic Quad-Tree, for instance in �les, andthe generic nodes contain references to these �les, forinstance �le identi�ers.
6 Comparison with other approachesFirst, this section rapidly compares the GenericQuad-Tree approach with other approaches using im-age versions. Then, the Generic Quad-Tree ap-proach is compared in detail to approaches using quad-trees for managing images and for optimizing memoryspace.6.1 Approaches using image versionsThe authors of [1, 16] propose an approach to man-age image versions in an image processing system. Animage version is de�ned as the result of processing al-gorithms on an initial image. Each version of an imagei is associated with a speci�c object containing the his-tory of the image processing of i. All images, all imageversions and all operations applied on image versionsare stored in a database. Users can reuse an existingimage version to apply processing algorithms storedin the database or created outside. They can use animage history to create new image versions or operateon them. In this approach, each image is consideredas a whole and each version corresponds to an entireimage. There is no image memory space optimization.6.2 Overlapping approaches11



03

00 0301 02

0

00 0301 02

0

Quad-tree of image a

00

03

0

01

030 031 032

02

B0

030 031 032 033

Quad-tree of image a

A

033

Legend:

Nodes whose values are different in both quad-trees

Legend:

Pointer to a shared node

Quad-tree of image b

Quad-tree of image b

Figure 15: Overlapping between two image quad-trees.Storage of similar images has been considered indi�erent articles. Several proposals are based on ex-tensions of overlapping between data of the same type[39, 38, 40]. The purpose of overlapping mechanismsis to share the maximum of common parts between anoriginal data structure and another one [2, 3]. Thismechanism has been extended to sequences of a givendata structure, like B-tree [5, 22], R-tree [26] or quad-tree [39, 38, 40]. The idea is to share the commonparts of the quad-trees corresponding to di�erent sim-ilar images using overlapping. As a consequence, mem-ory space is saved and the access time to an image isthe same with overlapping as without it. In [40], themanagement of any type of images (binary, coloredimages, etc.) is allowed. Linear overlapped quad-treesrepresentations are proposed in [39, 38], but they onlymanage black and white images.In [40], a technique of overlapping to represent se-quences of similar images using quad-trees is proposed.When a new image i is inserted at the end of a se-quence, its quad-tree overlaps the quad-tree of the pre-ceding image, called i�1. The quad-trees representingimage i and image i�1 share all parts which are equalin both quad-trees. On the contrary, when a leaf nodehas di�erent values in both quad-trees, all the nodesfrom the root to the modi�ed node are copied in the

quad-tree of image i. This is shown on �gure 15.B. Thedi�erent parts of quad-trees representing both imagesa (in the left of the �gure 15.A) and b (in the right)are represented in gray in the quad-tree of b. Bothquad-trees share nodes 00 to 02, because they appearwith the same value in both of them. Dotted lines rep-resent references to shared nodes. On the other hand,node 03 has a di�erent value in both quad-trees. Thena new sub-tree is created in the quad-tree representingimage b.The sharing of commonparts of quad-trees saves mem-ory space. In the overlapping methods the set of im-ages is organized in sequence. The sharing of parts ofa quad-tree is always implicit and is only possible withthe quad-tree of the previous image in the sequence.On the contrary, in the Generic Quad-Tree, when thesame value appears in the node n of any two di�erentimage quad-trees, it is automatically shared, implic-itly or explicitly. Therefore the Generic Quad-Treeapproach maximizes the sharing of quadrant values.Image modi�cation has not been considered by au-thors [40, 39, 38]. The only operations allowed onimages stored in overlapped quad-trees are reading animage and inserting an image at the end of the se-quence. Moreover, it is possible to modify or deletethe last image of the sequence. On the contrary, forthe images stored in a Generic Quad-Tree, there is nolimitation on operations allowed: a new image maybe inserted as the child of any image in the ImageTree and any image can be modi�ed or deleted. Asa consequence, the sharing of values is, in the worstcase, equal for the Generic Quad-Tree and the overlap-ping approaches, and generally better for the GenericQuad-Tree.The most important di�erence between the GenericQuad-Tree approach and the overlapping quad-treemethods is that Generic Quad-Tree allows many op-erations which do not exist for the others: updatingan image, comparing images or part of images, fol-lowing the evolution of an area across images, etc., asexplained in 4. A consequence of this peculiarity isthat it is e�cient for working on one image and foroperating simultaneously on any set of images. Thus,for the kind of application, presented in section 2, theGeneric Quad-Tree is the most adapted structure.12



7 DISCUSSION AND CONCLUSIONThe Generic Quad-Tree, presented in this paper,optimizes the storage of similar images organized inquad-tree, avoiding to store several times a part com-mon to several images. The Generic Quad-Tree allowsapplying operations to images: image reading, imageinsertion or suppression, modi�cation of an image orseveral images simultaneously, and image comparison.This type of operation is very important in the domainof image processing.In the GQT approach, operations are applied on im-ages organized in quad-tree. Quad-tree o�ers an ab-solute reference of image regions and allows parallelexecutions of some operations. It is also possible tovisualize di�erent consequences of an image process-ing in the same regions. In the same way, this type ofoperation is important in the spatio-temporal domain,to study the evolution of a geographical area.Among the representations of similar images usingquad-trees, the Generic Quad-Tree is speci�c becauseeach generic node may be used according to two di-mensions. One dimension allows navigating inside thequad-tree of an image i: thus it is hierarchical inthat sense. The other dimension, across images, al-lows jumping from one image to another using genericnodes. Thus it is easy, using the Generic Quad-Treeto access simultaneously to the same area in di�erentimages, for instance to compare their value or to studythe area evolution. Because of sharing the comparisonof node n value in di�erent image quad-trees is imme-diate.A prototype validating the GQT approach has beenimplemented at the University Central of Venezuela[13]. Work is currently in progress on the building ofaccurate indexes of similarity between images accord-ing to other de�nitions of similarity [19, 28, 31, 32]used in image retrieval domain. Mechanisms proposedin the GQT approach have been extended to otherdata structure (B+-tree, R-Tree) in [24], in order toenlarge the application domain of the Generic Quad-Tree.References[1] M. Aritsugi, M. Tabata, K. Fukatsu, Y. Kanamoriand Y. Funyu Manipulation of Image Objects andTheir Versions under CORBA Environment. InDEXA '97, pages 86-91, 1997.

[2] F.W. Burton, M.M. Huntbach and J.Y.G. Kol-lias Multiple Generation Text Files Using Over-lapping Tree Structures The Computer Journal28(4):414-416, Aug. 1985.[3] F.W. Burton, J.G. Kollias, D.G. Matsakis andV.G. Kollias Implementation of overlapping B-trees for time and space e�cient representation ofcollections of similar �les The Computer Journal33(3):279-280, June 1990.[4] J.M. Corridoni, A. Del Bimbo, and E. VicarioPainting Retrieval Based on Color Semantics Im-ages Databases and Multi-Media Search, WorldScienti�c, Series on Software Eng. and KnowledgeEng. (8): 13-24, 1997.[5] M.J. Carey, D.J. DeWitt, J.E. Richardson andE. Shekita chap. 14 - Storage Management forObjects in EXODUS Object-Oriented Concepts,Databases, and Applications, Addison Wesley -ACM Press, pages 341-369, 1989.[6] W. Cellary and G. Jomier Consistency of Ver-sions in Object-Oriented Databases In VLDB,Brisbane (Australia), 1990.[7] A. Del Bimbo and P. Pala Shape Indexing byMulti-scale Representation Images Databases andMulti-Media Search, World Scienti�c, Series onSoftware Eng. and Knowledge Eng. (8):59-74,1997.[8] C. Djeraba, I. Savory, M. Barere and S. Marc-hand Content Based Image Retrieval Model inan Object Oriented Database Images Databasesand Multi-Media Search, World Scienti�c, Serieson Software Eng. and Knowledge Eng. (8):263-275, 1997.[9] G.M. Davis A Wavelet-Based Analysis of Frac-tal Image Compression IEEE Trans. on ImageProcessing, 7(2):141-153, Feb. 1998.[10] M. Flickner, H. Sawhney, W. Niblack, J. Ash-ley and al. Query by Image and Video Content:The QBIC System Computer, 28(9):23-32, IEEEComp. Soc. Press, Sept. 1995.[11] C. Goble chap. 12 - Images Database PrototypeThe Handbook of Multimedia Information Man-agement, Prentice Hall, pages 365-404, 1997.[12] G. Jomier, M. Manouvrier and M. Rukoz Stock-age et gestion d'Images par un Arbre QuaternaireG�en�erique In 15�emes Journ�ees Bases de Donn�eesAvanc�ees (BDA'99), Bordeaux (France), 1999.13



[13] G. Jomier, M. Manouvrier, M. Rukoz, J. Ramirezand Y. Valero MIS: Un prototipo de un sis-tema de Manipulaci�on de Im�agenes SimilaresIn XXV Conf. Latinoamericana de Inform�atica(Panel'99), Asunci�on (Paraguay), 1999.[14] E. Kawagushi and T. Endo On a method of bi-nary picture representation and its applicationto data compression IEEE Transactions PatternAnal. Mach. Intell., 2(1):27-35, 1980.[15] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegeland Z. Protopapas Fast Nearest Neighbor Searchin Medical Image Databases In VLDB, Mumbai(Bombay) India, pages 215-226, Sept. 1996.[16] S. Kawashima, M. Tabata, Y. Kanamori and Y.Masunaga Versioning Model of Image Objectsfor Easy Development of Image Database Appli-cations In DEXA '96, pages 194-200, 1996.[17] A. Keller and J. Ullman A version numberingscheme with a useful lexicographic ordering InICDE, Taipei (Taiwan), Pages 240-248, 1995.[18] M.S. Lew, D.P. Huijsmans and D. Denteneer,Content-Based Image Retrieval: Optimal Keys,Texture, Projections, or Templates ImagesDatabases and Multi-Media Search, World Sci-enti�c, Series on Software Eng. and KnowledgeEng. (8):39-47, 1997.[19] H. Lu, B-C. Ooi and K-L.Tan E�cient ImageRetrieval by Color Contents In First Int. Conf.on Applications of Database (ADB-94), Vadstena(Sweden), june 1994.[20] C. Lon and M. Rukoz Sistema Distribuidopara Tratamiento de Im�agenes In Memoriasde la XXI Conferencia Latinoamericana de In-form�atica (PANEL'95), Brasil, Jul. 1995.[21] C. Lon, M. Rivas and M. Rukoz Una Her-ramienta en java par Aplicaciones Distribuidas deTratamiento de Im�agenes Biomdicas In Memo-rias de la XXIV Conferencia Latinoamericana deInform�atica (PANEL'98), Ecuador, Oct. 1998.[22] Y. Manolopoulos and G. Kapetanakis Over-lapping B+-Trees for Temporal Data In Proc.of Jerusalem Conf. on Inf. Technology (JCIT90), IEEE Computer Science Press #2078, Isra�el,pages 491-499, Oct. 1990.[23] M.K. Mandal, S. Panchanathan and T. Aboul-nasr Choice of Wavelets for Image Compression

Lecture Notes in Computer Science 1133, WorldScienti�c, pages 239-249, 1996.[24] M. Manouvrier Objets Similaires de GrandeTaille dans les Bases de Donn�ees PhD The-sis, Universit�e Paris IX Dauphine (France), Jan.2000.[25] N. Nes, C. van den Berg and M. Kersten DatabaseSupport for Image Retrieval Using Spatial-ColorFeatures Images Databases and Multi-MediaSearch, World Scienti�c, Series on Software Eng.and Knowledge Eng. (8): 293-300, 1997.[26] M.A. Nascimento and J.R.O. Silva. Toward His-torical R-trees In Proc. of ACM Symposiumon Applied Computing (SAC'98), Atlanta, USA,pages 235-240, Feb. 1998.[27] C. Nastar Indexation d'Images par le Con-tenu : un Etat de l'Art In COmpressionet REpre�esentation des Signaux Audiovisuels(CORESA'97), France, 1997.[28] B.C. Ooi,K-L. Tan, T.S. Chua and W. Hsu Fastimage retrieval using color-spatial informationThe VLDB Journal, 7:115-128, 1998.[29] E.G.M. Petrakis and C. Faloutsos SimilaritySearching in Medical Image Databases IEEETransactions on Knowledge and Data Eng.,9(3):435-447, may 1997.[30] J.R. Smith and S-F.Chang Quad-Tree Segmenta-tion for Texture-Based Image Query In Proc. ofACM Multimedia, San Fransisco, CA. USA, Oct.1994.[31] J.R. Smith and S-F.Chang VisualSEEk: a fullyautomated content-based image query system InACM Multimedia '96, Nov. 1996.[32] G. Sheikholeslami, A. Zhang and L. Bian AMulti-Resolution Content-Based Retrieval Ap-proach for Geographic Images GeoInformatica,3(2):109-139, June 1999.[33] H. Samet The Quadtree and Related Hierarchi-cal Structures Computing Surveys, 16(2):187-260,1984.[34] H. Samet The Design and Analysis of SpatialData Structures, Addison Wesley, 1989.[35] J. Serra Image Analysis and Mathematical Mor-phology, vol-2. Theoretical Advances, Academic,1988.14



[36] I.P. Stewart Quadtrees: Storage and Scan Con-version The Computer Journal, 29(1):60-75, Feb.1986.[37] T. Tzouramanis, Y. Manolopoulos and N. Lorent-zos Overlapping B+-trees : An Implementationof Transaction Time Access Method Data andKnowledge Eng. Journal, 29(3):381-404, 1999.[38] T. Tzouramanis, M. Vassilakopoulos and Y.Manolopoulos Overlapping Linear Quadtrees: aSpatio-temporal Access Method In ACM GIS'98,Washington D.C., Nov. 1998.[39] Tsong-Wuu Lin Compressed quadtree representa-tions for storing similar images Image and VisionComputing, 15:833-843, 1997.[40] M. Vassilakopoulos, Y. Manolopoulos, and K.Economou Overlapping Quadtrees for the Rep-resentation of Similar Images Image and VisionComputing, 11(5):257-262, June 1993.[41] D. Woelk, W. Kim and W. Luther An Objected-Oriented Approach to Multimedia Databases InACM SIGMOD, Washington D.C., May 1986.

15


