N

N

Storage and Management of Similar Images

Genevieve Jomier, Maude Manouvrier, Marta Rukoz

» To cite this version:

Genevieve Jomier, Maude Manouvrier, Marta Rukoz. Storage and Management of Similar Images.
Journal of the Brazilian Computer Society, 2000, 3(6), pp.13-26. hal-00004818

HAL Id: hal-00004818
https://hal.science/hal-00004818
Submitted on 29 Apr 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00004818
https://hal.archives-ouvertes.fr

Storage and Management of Similar Images*

Genevieve Jomier, Maude Manouvrier

LAMSADE - University Paris-Dauphine
Place du Mar. de Lattre de Tassigny
75775 Paris Cedex 16 - France

Fax. (33 1) 44 05 40 91

e-mail: {jomier,manouvrier} @amsade.dauphine.fr

Abstract

Numerical images are becoming more and more 1m-
portant and an increasing emphasis on multimedia
applications has resulted in large volumes of images.
However, images need a large memory space to be
stored, so thewr efficient storage and retrieval gener-
ate challenges to the database community. This pa-
per proposes a new algorithm for an efficient storage
of sets of images. It is based on a version approach
used in databases. It shows how to store and operate
on similar images; two images are defined as similar
of the quad-trees encoding them have only few differ-
ent nodes. A data structure called Generic Quad-Tree
(GQT) is proposed. It optimizes the memory space re-
quired to store sitmilar tmages and allows an efficient
navigation among them. An Image Tree stores the an-
cestors and descendants of an image, like a version hi-
erarchy. Using the Image Tree, the Generic Quad-Tree
allows an tmage to share common parts with its ances-
tors and descendants. The GQT approach and some
algorithms for reading, modifying or removing images
from the Generic Quad-Tree are described. Examples
using black and white images and gray scale images
are presented.

Keywords: Generic Quad-Tree, operations on quad-
trees, image representation, image comparison, opli-
mization of memory space, tmage processing applica-
tion.

*This work was supported by the CNRS in France and
by CONICIT (accord numbers 5485 and 7202) and CDCH in
Venezuela.

§On leave from Centro de Computacién Paralela y Dis-
tribuida - Fac. de Ciencias - Universidad Central de Venezuela.

Marta Rukoz®
University of Central Florida

School of Computer Science - P.O. Box 162362

Orlando FI1 32816-2362 - USA
Fax. (407) 823-5419

e-mail: mrukoz@flynn.ciens.ucv.ve

1 Introduction

It is commonly required in image processing and
management systems to store different similar images
representing the same ”reality”. Measures on image
similarity have been proposed on color [19, 4, 25, 28],
texture [30, 31, 32] or shape [29, 7, 8]. These similar-
ity measures are mainly used in image databases to
retrieve the images which are the most similar to an
image example.

In this paper, a new measure is defined on image sim-
ilarity. It is based on a distance computed from the
differences between the quad-trees encoding images.
This measure on image similarity, called @-similarity,
is defined in order to optimize the memory space re-
quired to store images. Such similar images appear in
image processing systems [1], where new images are
generated as the result of an operation or a sequence
of operations applied on an initial image where only
few areas are modified [16]. In Geographic Information
Systems [32], similar images occur when pictures of an
area are taken from time to time or at fixed dates to
follow 1ts global evolution, or the evolution of some of
its parts. In medical domain, images representing the
same kind of pathology may be considered as similar
[29]. For instance [27] shows the result of retrieval by
similarity of brain images obtained using MRI (Mag-
netic Resonance Tmage).

Image storage and retrieval are big challenges because
of the increasing number of images, particularly in
medical domain. For instance, a typical radiology
department currently generates between 100,000 and
10,000,000 images per year, requiring about 1.5 ter-
abytes [15]. As the size of an image is large or very
large [11], in kilo or megabytes, and as the number of
images to be managed may be large too, various pro-

cesses of compression and compacting have been pro-
posed. They use different kinds of coding [39, 38, 40] or
wavelets [9, 23]. As opposed to these approaches where
the compression or compacting process is applied to
each image separately, the data structure proposed
in this paper and called Generic Quad-Tree (GQT)
[12], uses Q-similarity between images to improve their
storage. The Generic Quad-Tree considers images or-
ganized in quad-trees. A quad-tree is an efficient data
structure used for representing 2D images [33, 34]. The
GQT approach allows an efficient memory space op-
timization by sharing common parts of images. It al-
lows operations on similar images, like comparison of
images, or comparison of the same region in different
images, for instance to follow consequences of process-
ing on different images or on the same area in different
images. Moreover, the set of images is not supposed
to be organized in a total order.

This paper 1s organized in the following way. Section
2 describes a medical application, where the present
work takes place and briefly recalls the principles of
quad-trees for image representation. Section 3 de-
scribes the principles of the Generic Quad-Tree ap-
proach. Section 4 describes the primitive operations
on images stored in a Generic Quad-Tree. Section 5
presents examples of Generic Quad-Tree implementa-
tions. Section 6 compares this approach with others
proposals. Section 7 concludes and gives some research
directions to go farther.

2 Work context

This paper proposes a structure to manage and to
store images commonly occurring in image process-
ing applications. To be more precise, let us describe a
medical application, which is used as a reference in the
SIMA project ! [21]. The purpose of the processing is
to "improve” images according to criteria predefined
by biologists. It comes down to make some elements
appear more distinctly, to show some characteristics
or salient features, or emphasize differences. Figures 1
to 4 present examples of image processing operations.
The quadrants cut up in images are recursively iden-
tified according to a Z function as shown in figure 5.

Figure 1 presents an image (on the left) containing
cells. In the right area of this image (at the beginning
of the arrow), biologists cannot correctly determine
the presence of cells. In order to improve the quality

ISIMA Project number S1-9500710 CONICIT Venezuela.

Application of darkening
algorithms to quadrants
| 0110 and 0111 ll

3l

el ol | r‘}__ S s |4
' ' g

& HE % R

7S i & : e gy TN J G

T i TR

A . B .

=

Initial image Image result of

processing

Figure 1: Modification of an image area.

Quadrants 012 and
013 dilatation

= 2 S
Initial image Image result of Difference
processing between both
images

Figure 2: Example of image area dilatation.

of this area, the quadrant is cut in four parts. Each
sub-quadrant is differently darkened.

Figures 2, 3 and 4 represent different steps of an image
processing. First, the image is recursively subdivided
in four quadrants (see figure 2). A dilatation [35] is
applied to areas identified by 012 and 013, in order to
close irregular cell shapes. Then, a sharpening algo-
rithm is applied to the image. A zoom on areas 012
and 013 allows biologists to see more distinctly some
elements (see arrows on figure 4) which are not visible
in the initial image.

In order to succeed, biologists work in a trial and error
process, using operations which generate a new image
as a result. These operations can be applied to the

TT

T

J \

-

QQuadrants 012
and 013
initial state

Quadrants 012 and 013
after processing: some
elements shown by
arrows appear more

P

distinctly

Figure 4: Objects detection after area dilatation in sharpened images of figure 3.

Initial sharpened image Sharpened image result of
dilatation of areas 012
and 013

Figure 3: Sharpened images and areas dilatation.

whole image or to a well chosen part of it (see figures
1-2) because an operation can improve some parts of
an image and damage some others. Thus it is bet-
ter to improve locally some parts of an image and to
recompose the entire image using its improved parts.
Moreover, 1t is common to modify some image element
manually. At the end of the process of ”improving” an
image, a fair number of images have been created, spe-
cially when different experts have been processing in
parallel from the same initial image. Throughout the
process, the created images must be saved in order to
allow starting again from an intermediate image if the
result of a sequence of operations is satisfying, or if
trying another sequence of operations could generate
a better result.

Biologists use a quad-tree to cut images in regions
(or quadrants). A quad-tree is a hierarchical struc-
ture built by recursive divisions of the space in four
disjoint quadrants. H. Samet [33] gives a detailed de-
scription of this structure. Quad-trees are used for dif-

ferent types of data, like curves, surfaces or volumes
[34]. The most widely known quad-tree allows to cut
an image in regions (or quadrants) according to a cri-
terion (see figure 5). An image is recursively cut in
four disjoint quadrants or squares of the same size so
that a node of the quad-tree represents each quadrant.
The root node represents the initial quadrant contain-
ing the whole image. If an image is not homogeneous
- according to the criterion -, the quad-tree root has
four son nodes representing the four first level image
quadrants: northwestern, northeastern, southwestern
and southeastern. A node is a leaf when its corre-
sponding image quadrant is homogeneous; otherwise
the node 1s internal. As a consequence, the leaf nodes
of a quad-tree are not all at the same level. Each in-
ternal node has exactly four sons.

Different functions are used for associating an iden-
tifier with a quadrant [33]. Here we use a Z func-
tion, as shown on figure 5. A quad-tree node uses the
identifier of the quadrant it represents. For example,
in figure 5, the number 0 identifies the initial quad-
rant representing the whole image. Numbers 0, 1, 2
or 3, following their parent node identifier 0, identify
the four first level image quadrants. Recursively, sub-
quadrants of an image quadrant n are identified by nk

where k € [0, 3].

Quad-trees can be implemented using pointers to
nodes. This kind of implementation, called hierar-
chical, is costly in memory space [?]. To avoid this
problem, different techniques of linear storage of quad-
tree have been proposed. A linear representation of a
quad-tree is a list of values, which saves the hierarchi-
cal tree structure. It is generally used for black and

white images. Node values, and particularly leaf node
values, are encoded following depth-first order [14] or

width-first order [39].

Quadrants Identification Image
- } .
op prusjoiy } L
00— T7_ ey R . f
02 | o3 2 Bl B
P LSO S

L rr T Oa o
02 |, 03 "y ‘)-Mﬁ;' s ;
5 s i 010

0110 0111 0112 0113

Figure 5: An example of image quad-tree.

3 The Generic Quad-Tree approach

A Generic Quad-Tree (GQT) is a new tool for rep-
resenting and managing similar images [12, 13]. Tt is
based on the Database Version Approach [6]. This
structure minimizes the memory space of a set of im-
ages and speeds up several operations applied to im-
ages like image comparison. In fact, GQT is more than
a storage structure. It is designed to be inserted in
an environment for image management and processing
[20, 21], because it allows user to extract one or several
images easily and to work on them using his/her im-
age processing tools in his/her working environment.
He/she can modify preexisting images, insert new im-
ages or delete some of them, compare images, extract
images, to build image sequences, etc.

In this section and in the following one, the Generic
Quad-Tree approach is presented in a simple particular
case where each point has only two values: black and
white. This choice of simplification is to make clear
the description of the approach. However, it may be
applied to any other case of storage of set of images
using quad-trees.

The GQT approach is based on a principle of shar-
ing parts of image quad-trees, which is presented in
subsection 3.1. The similarity between images, used
in this paper, is defined in subsection 3.2. The images
of the database are organized in a special structure de-
fined in subsection 3.3. Then, the Generic Quad-Tree
is presented in subsection 3.4 and the end user view of

images is described in subsection 3.5.

Below, when no confusion is possible, image and image
identifier are indifferently used.

3.1 Sharing parts of image quad-trees

The Generic Quad-Tree approach is based on a
principle of sharing of quadrant values between im-
ages. Let S be a set of images. If a quadrant ¢ has
the same value in a set of images S’ C .S, this value is
stored only once and is associated with the set of im-
age identifiers of S*. In that case the sharing is called
explicit, because the identifier of each image sharing
the value is explicitly present in the list.

If a tree order is introduced in the set of images 5,
each image, except the tree root, has a unique parent
and an indefinite number of children. Thus the follow-
ing rule of implicit sharing may be introduced: ezcept
of the wdentifier of an image i is explicitly associated
with another value v, tmage i shares the value with its
parent image.

If the image tree 1s stored, this implicit rule of sharing
allows a very compact representation of a set of images
when a large number of images share quadrant values
along the Image Tree branches

3.2 Similarity between images

The @Q-similarity between two images is defined as
the number of nodes having the same identifier but
different values, divided by the cardinal of the union
of their nodes.

More formally, let S(i,¢) be the set of nodes hav-
ing the same identifier but different values in quad-
trees of images ¢ and ¢'. Let U(¢,¢') be the union of
the set of node identifiers existing in the quad-tree
of image ¢ and the set of nodes identifiers existing in
the quad-tree of image i'. Let Card(S(¢,7")) (resp.
Card(U(i,4"))) be the cardinal of S(¢,¢) (resp. of
U(,4)), Card(U(i,i")) # 0. The Q-similarity be-
tween images ¢ and ¢, d(4,4), is computed according
to equation 1.

_ Card(S(4,1"))
= Card0G,7) W

e d(i,i") €0, 1], it is a distance [24].

d(i, ')

e d(i,i") = 0 <= image ¢ and image ¢’ share all
their nodes.

Quad-tree of image a

030

031

Quad-tree of image b

032 033

Legend:

@

nodes whose value is the same
in both quad-trees

Figure 6: The Q-similarity computation between images a and b.

e d(i,7) = 1 < image i and image ¢ don’t share
any node.

For example, the Q-similarity between image a and
image b (whose quad-trees are represented in figure 6)
is equal to: d(a,b) = Card(S(a,b))/Card(U(a,b)) =
5/9

e Card(S(a,b)) = 5 because nodes 03, 030 to 033
have the same identifier but a different value in
the quad-trees of image a and image b. Nodes
030 to 033 have a special value, doesn’t exist, in
the quad-tree of image a.

e Card(U(a,b)) =9 because nodes 0, 00 to 03 and
030 to 033 appear in the union of node identifiers
of both quad-trees.

3.3 Image Tree

Common values of quad-tree nodes are stored once
only in the Generic Quad-Tree and are associated with
a set of image identifiers. The explicit sharing of node
values optimizes the memory space used for image

storage. The implicit sharing diminishes the number
of image 1dentifiers associated with the stored values.

To use the rule of implicit sharing, explained above
in section 3.1, all the images represented using the
Generic Quad-Tree approach are organized in a tree
structure called Image Tree. An image j 1s inserted
in the Image Tree as a child of an image ¢ if the Q-
similarity between ¢ and j has the smallest value in
the database: Vi’ €,¢ # i, d(i,j) < d(¢,j). Tmage
insertion 1s detailed in section 4.3.

As the Image Tree is only devoted to save memory
space, 1t is ignored by end users. The way end users
view the image set is explained below in section 3.5.

Figure 7 represents an Image Tree with four images

a, b, c and d.

a

amd "3

Image a Image b Image ¢ Image d d
Image Tree

Image sequence

Figure 7: Images are organized in an Image Tree.

3.4 Generic Nodes

Similar images are stored in a Generic Quad-Tree.
Its nodes are called generic nodes or fat nodes. For
each node appearing in an image quad-tree and rep-
resenting a quadrant, there is a node with the same
identifier in the Generic Quad-Tree. A generic node
n represents all nodes n of the quad-trees of images
belonging to the database. It contains the whole in-
formation necessary to rebuild the value of the node
with the same identifier n in each image quad-tree.

Each generic node may be seen as a table with two
columns and one or several lines (see figure 8). Each
line [of a generic node n contains a list of image iden-
tifiers and a value v of quad-tree node. The meaning
i1s: v is the value of node n in each image quad-tree
whose identifier ¢ appears in line { (see generic node
02 in figure 8; it contains two lines, while generic node
01 has only one line).

Moreover, applying the sharing rule (see section 3.1),
all the nodes n of the quad-trees representing images
descendant of image i implicitly share the value v;
this implicit sharing is stopped by a descendant image

L

Image Tree

Generic Quad-Tree

Figure 8: The Image Tree and the Generic Quad-Tree of the images represented in figure 7.

identifier appearing in another line of generic node n,
i.e. associated with another value v’ (see generic node
01 in figure 8, all the images share the value black).

The value of a generic node is either L, meaning the
node does not exist in quad-trees of images appearing
in the corresponding line (see generic node 030 in fig-
ure 8), either 7, meaning the node is internal - it has
four sons - (see generic node 0 in figure 8), either a
black square if it is a black leaf, either a white square
if it is a white leaf.

Figure 8 represents the Image Tree and the Generic
Quad-Tree of the images represented in figure 7.
Generic node 0 contains only one line with value .
This means that all nodes 0 are internal in the quad-
trees of images a, b, ¢ and d. Value I is explicitly
associated with image a . This value is implicitly asso-
ciated with images b, ¢ and d, descendants of a in the
Image Tree, because they don’t appear in any other
line of generic node 0. On the other hand, generic
node 02 contains two lines. The first line means: node
02 is black in the quad-tree of image a. By implicit
sharing, as image b is not appearing in any line and is
child of image a in the Image Tree, node 02 is black in
the quad-tree of image b. However, the quad-trees of
images ¢ and d do not share this value, because identi-
fiers ¢ and d appear in the second line of generic node
02. The value of node 02 in the quad-trees of images
¢ and d is white. Nodes 03k, k € [0, 3], do not exist
in the quad-tree of image a and image ¢. The value
explicitly associated with image @ in generic nodes 03k
is L. The quad-tree of image ¢, child of image a in the
Image Tree, implicitly shares this value.

3.5 End user view of images

At this point it must be stressed that end users
identify images in a way relevant to their applications.
The external identification (a, b, ¢ and d on the pre-
ceding examples) which is the only one known by end
users, is translated to internal identifiers optimizing
search through the Generic Quad-Tree. To optimize
Generic Quad-Tree algorithms, the internal identifica-
tion is built in such a way that from the identifier of
an image in the Image Tree, all 1ts ancestors can im-

mediately be deduced [6, 17].

This point is very important because the physical im-
plementation of similar images is completely separated
from the way end users see their images. More pre-
cisely, end users can read images and their correspond-
ing quad-trees from the Generic Quad-Tree and order
them in the way they want. For instance they can
build sequences of images ordered according to spe-
cific criteria. As a consequence, it is useful to asso-
ciate meta-data, containing information on each im-
age: date of creation, author, process of creation, etc.,
with each image. Image meta-data are used for im-
age retrieval in several contexts, for instance, digital
libraries.

4 Operations on images

The primitive operations on images stored in a
Generic Quad-Tree are:

1. Image reading,

2. Image modification,

3. Image insertion,
4. Deletion of an image,

5. Comparison, union and intersection of images.
4.1 Image reading

To read an image ¢ from a Generic Quad-Tree, the
Generic Quad-Tree is read from its generic root node,
identified by 0. The value of this node for image quad-
tree ¢ 1s determined according to the sharing rule pre-
sented 1n section 3.1. If the value of a node n is [for
image quad-tree i, the node is internal in the quad-
tree of ¢ and the generic nodes, children of n, are read.
Otherwise, the node n is a leaf of image quad-tree ¢
and the value found out is its color.

For example, the following steps describe the reading
of image ¢ in the Generic Quad-Tree of figure 8:

o Generic root node 0 is read. Image ¢ identifier
does not appear in node 0. Thus image ¢ shares
the value of node 0 with image @, parent of ¢ in
the Image Tree. Value I, meaning internal node,
is associated with image a. As a consequence,
node 0 is internal in the quad-tree of ¢. The four
nodes, children of node 0, are read (see following
items).

e Implicit sharing appears in nodes 00 and 01. The
system deduces, using the sharing rule, that nodes
00 and 01 are respectively white and black in the
quad-tree of c.

e The value white explicitly associated with ¢ in
generic node 02 corresponds with the value of
node 02 in the quad-tree of ¢.

e Finally, image ¢ and its parent image a implicitly
share the value white of generic node 03.

4.2 Image modification

Modifying an image updates its quad-tree. Two
cases occur, illustrated by the modifications of image
b in figure 9 compared to figure 7.

1. The modification preserves the image quad-tree
structure and only values of leaf nodes are
changed. For example in figure 9, quadrant 00
of image b is changed from white (see figure 7) to
black (see figure 9). As a consequence leaf node
00 1s modified in the quad-tree of &.

Quadrant 00
was white and
becomes black

Quadrant 01 becomes
not homogenous,
its sub-quadrants appear

Quadrant 03 becomes
homogenous,
its sub-quadrants
disappear

Image b

Figure 9: Modification of image b.

2. The modification alters the image quad-tree
structure:

(a) nodes may disappear because quadrants
which were not homogeneous become homo-
geneous. For example nodes 03k, k € [0, 3],
disappear in the quad-tree of b, because
quadrant 03 in image b becomes homoge-
neous.

(b) or nodes may appear because quadrants,
which were previously homogeneous, are no
more homogeneous. For example nodes 01k,
k € [0, 3], appear in the quad-tree of image b,
because an homogeneous quadrant (01) be-
comes non homogeneous.

All cases may occur simultaneously, for different nodes
of the original image.

4.2.1 Value modification of a quad-tree node

Performing a value modification of quad-tree node n
generates changes in the Generic Quad-Tree. The new
value v.new of node n for the modified image quad-
tree ¢ must be implicitly or explicitly associated with .
However, to avoid the propagation of the modification
to the possible descendant images of i, the implicit
sharing between ¢ and its image children, in the Image
Tree, must be cut. Thus each image child of ¢, not
explicitly associated with a value in generic node n
before the modification, must be explicitly associated
with the old value v.old that it was implicitly sharing
with ¢ before the modification.

For instance, before the modification of image b, im-
age b and 1mage a were implicitly sharing the value
white of generic node 00 (see figure 8). After the mod-
ification of image b (see figure 9), the value black of
generic node 00 is explicitly associated with image b

ad

Image Tree D

ad | L ad | L ad | L ad

i NENINIERINNES |

Figure 10: The Generic Quad-Tree after image b modification.

in figure 10. Image d, child of b in the Image Tree, is
explicitly associated with value white, because it was
the value of node 00 in the quad-tree of b before the
modification and because the quad-trees of images b
and d were implicitly sharing this value.

4.2.2 Deletion of quad-tree nodes

When a modification implies the deletion of nodes (at
least four: n0, nl, n2 and n3) in an image quad-tree
t, the corresponding generic nodes must be updated
for image quad-tree ¢, and only for ¢, by value L,
meaning does not exist. In order not to modify the
images descendant of ¢, image ¢ and its children must
not implicitly share the value L. This operation is per-
formed exactly as explained in section 4.2.1, above. If
a generic node n.k (k = 0..3) contains only the value
L, this node does not exist anymore in any image
quad-tree. As a consequence it may be deleted from
the Generic Quad-Tree. The deletion of four nodes,
which are brothers identified by n0, nl, n2 and n3, in
a quad-tree entails a modification of their parent node
n: 1t was internal and becomes a leaf. As a conse-
quence the generic parent node must be updated.

For example, node 03, which was internal (see figure
8) in the quad-tree of image b becomes white (see fig-
ure 10). In the Generic Quad-Tree, image b is removed
from the image identifiers list associated with value 7
of generic node 03. Thus, image d, child of b in the Im-
age Tree, is explicitly associated with value I of generic
node 03. Then, image b identifier is associated with
value white of generic node 03. As this value exists in
generic node 03 and is associated with image a, parent
of b in the Image Tree, image b implicitly shares value
white with image a. After the modification of node

03, nodes 03k, k € [0, 3], are removed from the quad-
tree of image b. As a consequence, image b implicitly
shares the value L of generic nodes 03k with image
a, because image a is explicitly associated with value
L of generic nodes 03k and b is the child of a in the
Image Tree. Finally, image d is explicitly associated
with the black and white values of nodes 03k before
the updating of b.

4.2.3 Creation of quad-tree nodes

Finally, new nodes of image quad-tree (at least four:
n0, nl, n2 and n3) may appear after updating image
. This operation updates the value of the parent node
n, which becomes internal. The value I of the generic
parent node n is associated with image i, and only
with ¢ (i.e. no side effect on other images descendant
of 7). If image ¢ and its children in the Tmage Tree were
implicitly sharing a value in the generic parent node
n, this implicit sharing must disappear. For each new
node n.k (k € [0, 3]) created in the quad-tree of image
7, a new generic node n.k is created in the Generic
Quad-Tree, if it doesn’t exist. First, this node is cre-
ated empty: value L is associated with the root of the
Image Tree. Then, the generic node n.k is updated
and the corresponding value of node n.k in the quad-
tree of ¢ is associated with ¢ in generic node n.k (see
section 4.2.1).

This situation is illustrated in figure 10. Nodes 01k,
k € [0,3], are created in the quad-tree of b, because
region 01 is not homogeneous any longer (see figures
7 and 9). The corresponding generic nodes 01k do
not exist in the Generic Quad-Tree. They are created
with value L associated with image a, root of the Im-
age Tree. Nodes 01k are updated in order to associate

the value white or black with image b. Image d, child
of b in the Image Tree, is explicitly associated with
value L in generic nodes 01k, because these nodes do
not exist in the quad-tree of image d. A new line is
added in generic node 01. This line associates value I
with image b. Image d, child of b in the Image Tree,
is explicitly associated with the value black of generic
node 01, because it was the value of node 01 in the
quad-tree of b before the updating.

4.2.4 Other modifications

After all these examples, it appears easy to perform
other operations by modifications of generic nodes :

1. Modification of a part of an image by copying
the corresponding part of another image. In fact
copying corresponds to two simultaneous updates.

2. Performing the same modification simultaneously
in several images. For instance, it is easy to prop-
agate a modification of node n performed on im-
age 1 to all images descendant of ¢. This operation
consists in modifying the value of generic node n
associated with image ¢, and in deleting the iden-
tifiers of the descendants of image ¢ in generic
node n. Thus all the images descendant of ¢ im-
plicitly share the value of node n with image i.

Modifying an image ¢ changes the implicit sharing be-
tween ¢ and its descendants. After many image modi-
fications, it may happen that the implicit sharing be-
tween images deceases. A reorganization of the Image
Tree may improve it. Algorithms for Image Tree reor-

ganization are detailed in [24].

Image a Image b Image ¢ image d Image e

4.3 Image insertion

Figure 11: Creation of image e as a logical copy of
image a.

Two modes of insertion of a new image in a Generic
Quad-Tree are provided, according to users needs. The
first mode corresponds to the creation of a new im-
age by modification of a preexisting image without de-
stroying that one. The other mode is the insertion of
a new image created outside the Generic Quad-Tree,

Figure 12: Image Tree modification after the insertion
of image e.

e.g. by an image-processing tool.

For the first case, users are provided with an oper-
ation which creates a new image x.i by logical copy
of a preexisting image x. The new image x.7 is in-
serted as the ¢th child of z in the Image Tree. As it
1s a copy of z, it has exactly the same content and it
shares the value of all its quad-tree nodes with . As a
consequence, no updates of Generic Quad-Tree nodes
are required; this 1s the reason why this operation is
called logical copy. This case of logical copy of image
is illustrated on figure 11: a new image e is created
as a child of image a in the Image Tree. Figure 12
represents the Image Tree modification. The Generic
Quad-Tree does not change and is still the one repre-
sented in figure 10.

In the second case, a new image i’ built outside the
Generic Quad-Tree must be inserted. It may be pro-
duced by an external source or as the result of an image
processing operation performed on an image extracted
from the Generic Quad-Tree. The quad-tree of i is
built. It is easy to compare the value of each quad-
tree node n of image ¢’ with the corresponding generic
node n and to detect the node values that image ¢
and other images will share. If the place of 7' in the
Image Tree is not well chosen, the sharing will mainly
be explicit. To improve the implicit sharing, i/ must
be inserted in the Image Tree as a child of an image
sharing the maximum number of node values with 7.
For that, for each node n of i, the list of all images
sharing the value of n with ¢’ is built using the infor-
mation contained in generic node n. The set of images,
sharing the maximum number of node values with 7/,
is determined. The image ¢ parent of ¢ is chosen in
this set and 7’ is inserted as a leaf in the image Tree.
Then the Image Tree and the Generic Quad-Tree are
updated to introduce if necessary values of nodes of
image quad-tree ¢’ ; They can be unshared, explicitly

shared, or implicitly shared with ¢. Algorithms for
insertion of external image are detailed in [24].
4.4 Image deletion

The deletion of an image can be logical and physi-
cal.

When an image is logically deleted it does not ap-
pear any longer to end users. So it does not appear
any longer in the set of images and in the Image Tree
where the corresponding node of the image quad-tree
is no longer visible to users. A deletion indicator, as-
sociated with each image in the Image Tree, is used
to perform this deletion. When the indicator of i is
positioned, ¢ is logically deleted. Nothing else is done.
Due to the sharing mechanism, the Generic Quad-Tree
remains unchanged: the references to a deleted image
in generic nodes still exist, hidden to users. The Image
Tree 1s preserved.

Another step in deletion of image consists in deleting
the value corresponding to ¢ in all the generic nodes, if
this value is not shared with any other image. This is
useful when the deleted values are large on the point
of view of memory space.

Another step consists in deleting all explicit or im-
plicit references to ¢ in the Generic Quad-Tree. This
is performed by changing to explicit sharing all the
cases of implicit sharing between ¢ and its image chil-
dren and then in deleting the identifier ¢ from all the
generic nodes.

The last step deletes image ¢ from the Image Tree.
Thus the Image Tree structure is modified with conse-
quences on internal image identifiers. Therefore, this
physical deletion is only used in case of archiving or
destroying a subset of images stored in the Generic
Quad-Tree (for instance a sub-tree).

4.5 Other operations on images

Using Generic Quad-Tree, other operations involv-
ing several images and very useful for applications, like
comparison, can be easily performed.

The comparison of values of an area in any two images
#; and ¢ can be performed by a top-down comparison
of the values extracted from generic nodes. It begins
at the generic node of the smallest quadrant including
the considered area. Similarly the comparison of any
two images can be performed.

10

It is also interesting to extract the regions which are
common to several images or which are different. If,
from the user point of view, the compared images are
ordered according to their validity time, this kind of
comparison is useful to study spatio-temporal evolu-
tion. This 1s a hot topic in Geographic Information
Systems.

Using the technique of generic node modification il-
lustrated in 4.2 above, and provided that these oper-
ations are defined for the values stored in the Generic
Quad-Tree, 1t is easy to compute inside the Generic
Quad-Tree an image whose content is the result of:

1. the complementary of an image or a part of an
image,

2. the union, intersection or difference of any two
images, or of the same region in any two images.

5 Examples of GQT implementations

0113

00 010 011
l 1 l 0110 0111
@, e WS
}_\ > | ,_-_,‘t"— -‘:.. ~
02 RE TR T o PR
5 012 013
Image A Image B Image C

Figure 13: An example of three processed images.

Until now in this paper we have considered that
the only constraint on quad-trees is homogeneity of
the leaf quadrants according to a predefined criterion.
As a consequence, instead of black or white quadrant,
gray scale, colors, textures etc. can be used without
any change in the algorithms of the Generic Quad-
Tree. Moreover, to limit the number of levels in quad-
tree divisions a threshold on the quadrant value can
be chosen.

In image processing, particularly in medical domain,
quad-trees are interesting to delimit image quadrants

e ol :
010 A | 012 [1}E]
' 1y
B l |
I o w1 ’
bz | = - [
0110 11 [i] 01
A 4 A NN A A 4
[[[| [|
¥ !) ¥
E o B

Generic Quad-Tree

Figure 14: Tmages of figure 13 stored in a Generic Quad-Tree.

whose size can be as small as required. For instance, a
quadrant may represent an interesting area for a biolo-
gist, because it contains specific cells. These quadrants
are subject to image operations in order to improve the
quality. This situation happens in the medical applica-
tion of SIMA and is illustrated by figures 13. In order
to improve the quality of quadrant 011 in image A two
different processes have been carried out starting from
image A. Thus, two images, B and C, have been cre-
ated. The image B has been obtained by application
of an 1image improvement operation on the contrast of
quadrant 011 of image A. On the other hand, image C
has been obtained by applying darkening algorithms
on quadrants 0110 and 0111 of image A. Figure 14
represents the Generic Quad-Tree storing images A,
B and C'. The quadrants of the images are subject to
image operations. Their values, which are smaller im-
ages, are too large to be stored inside a generic node.
As a consequence the quadrant values are stored out-
side the Generic Quad-Tree, for instance in files, and
the generic nodes contain references to these files, for
instance file identifiers.

11

6 Comparison with other approaches

First, this section rapidly compares the Generic
Quad-Tree approach with other approaches using im-
age versions. Then, the Generic Quad-Tree ap-
proach is compared in detail to approaches using quad-
trees for managing images and for optimizing memory
space.
6.1 Approaches using image versions

The authors of [1, 16] propose an approach to man-
age 1mage versions in an image processing system. An
image version is defined as the result of processing al-
gorithms on an initial image. Each version of an image
¢ 18 associated with a specific object containing the his-
tory of the image processing of z. All images, all image
versions and all operations applied on image versions
are stored in a database. Users can reuse an existing
image version to apply processing algorithms stored
in the database or created outside. They can use an
image history to create new image versions or operate
on them. In this approach, each image is considered
as a whole and each version corresponds to an entire
image. There is no image memory space optimization.

6.2 Overlapping approaches

00 o1 02 03

Quad-tree of image a

030 031

Quad-tree of image b

032 033

Legend:

ANodes whose values are different in both quad-trees

00 01 02 03

Quad-tree of image a

030 031 032 033
Quad-tree of image b

Legend:

777777 Pointer to a shared node

Figure 15: Overlapping between two image quad-trees.

Storage of similar images has been considered in
different articles. Several proposals are based on ex-
tensions of overlapping between data of the same type
[39, 38, 40]. The purpose of overlapping mechanisms
is to share the maximum of common parts between an
original data structure and another one [2, 3]. This
mechanism has been extended to sequences of a given
data structure, like B-tree [5, 22], R-tree [26] or quad-
tree [39, 38, 40]. The idea is to share the common
parts of the quad-trees corresponding to different sim-
ilar images using overlapping. As a consequence, mem-
ory space is saved and the access time to an image is
the same with overlapping as without it. In [40], the
management of any type of images (binary, colored
images, etc.) is allowed. Linear overlapped quad-trees
representations are proposed in [39, 38], but they only
manage black and white images.

In [40], a technique of overlapping to represent se-
quences of similar images using quad-trees is proposed.
When a new image ¢ is inserted at the end of a se-
quence, its quad-tree overlaps the quad-tree of the pre-
ceding image, called ¢ L 1. The quad-trees representing
image ¢ and image ¢ L 1 share all parts which are equal
in both quad-trees. On the contrary, when a leaf node
has different values in both quad-trees, all the nodes
from the root to the modified node are copied in the

12

quad-tree of image . This is shown on figure 15.B. The
different parts of quad-trees representing both images
a (in the left of the figure 15.A) and & (in the right)
are represented in gray in the quad-tree of b. Both
quad-trees share nodes 00 to 02, because they appear
with the same value in both of them. Dotted lines rep-
resent references to shared nodes. On the other hand,
node 03 has a different value in both quad-trees. Then
a new sub-tree is created in the quad-tree representing
image b.

The sharing of common parts of quad-trees saves mem-
ory space. In the overlapping methods the set of im-
ages is organized in sequence. The sharing of parts of
a quad-tree 1s always implicit and is only possible with
the quad-tree of the previous image in the sequence.
On the contrary, in the Generic Quad-Tree, when the
same value appears in the node n of any two different
image quad-trees, it is automatically shared, implic-
itly or explicitly. Therefore the Generic Quad-Tree
approach maximizes the sharing of quadrant values.

Image modification has not been considered by au-
thors [40, 39, 38]. The only operations allowed on
images stored in overlapped quad-trees are reading an
image and inserting an image at the end of the se-
quence. Moreover, it is possible to modify or delete
the last image of the sequence. On the contrary, for
the images stored in a Generic Quad-Tree, there is no
limitation on operations allowed: a new image may
be inserted as the child of any image in the Image
Tree and any image can be modified or deleted. As
a consequence, the sharing of values is, in the worst
case, equal for the Generic Quad-Tree and the overlap-
ping approaches, and generally better for the Generic
Quad-Tree.

The most important difference between the Generic
Quad-Tree approach and the overlapping quad-tree
methods 1s that Generic Quad-Tree allows many op-
erations which do not exist for the others: updating
an image, comparing images or part of images, fol-
lowing the evolution of an area across images, etc., as
explained in 4. A consequence of this peculiarity is
that it is efficient for working on one image and for
operating simultaneously on any set of images. Thus,
for the kind of application, presented in section 2, the
Generic Quad-Tree is the most adapted structure.

7 DISCUSSION AND CONCLUSION

The Generic Quad-Tree, presented in this paper,
optimizes the storage of similar images organized in
quad-tree, avoiding to store several times a part com-
mon to several images. The Generic Quad-Tree allows
applying operations to images: image reading, image
insertion or suppression, modification of an image or
several images simultaneously, and image comparison.
This type of operation 1s very important in the domain
of image processing.

In the GQT approach, operations are applied on im-
ages organized in quad-tree. Quad-tree offers an ab-
solute reference of image regions and allows parallel
executions of some operations. It is also possible to
visualize different consequences of an image process-
ing in the same regions. In the same way, this type of
operation is important in the spatio-temporal domain,
to study the evolution of a geographical area.

Among the representations of similar images using
quad-trees, the Generic Quad-Tree 1s specific because
each generic node may be used according to two di-
mensions. One dimension allows navigating inside the
quad-tree of an image i: thus it is hierarchical in
that sense. The other dimension, across images, al-
lows jumping from one image to another using generic
nodes. Thus it is easy, using the Generic Quad-Tree
to access simultaneously to the same area in different
images, for instance to compare their value or to study
the area evolution. Because of sharing the comparison
of node n value in different image quad-trees 1s imme-
diate.

A prototype validating the GQT approach has been
implemented at the University Central of Venezuela
[13]. Work is currently in progress on the building of
accurate indexes of similarity between images accord-
ing to other definitions of similarity [19, 28 31, 32]
used in image retrieval domain. Mechanisms proposed
in the GQT approach have been extended to other
data structure (B+-tree, R-Tree) in [24], in order to
enlarge the application domain of the Generic Quad-
Tree.

References

[1] M. Aritsugi, M. Tabata, K. Fukatsu, Y. Kanamori
and Y. Funyu Manipulation of Image Objects and
Their Versions under CORBA Environment. In
DEXA ’97, pages 86-91, 1997.

13

[2] F.W. Burton, M.M. Huntbach and J.Y.G. Kol-
lias Multiple Generation Text Files Using Over-
lapping Tree Structures The Computer Journal
28(4):414-416, Aug. 1985.

[3] F.W. Burton, J.G. Kollias, D.G. Matsakis and
V.G. Kollias Implementation of overlapping B-
trees for time and space efficient representation of
collections of similar files The Computer Journal

33(3):279-280, June 1990.

[4] J.M. Corridoni, A. Del Bimbo, and E. Vicario
Painting Retrieval Based on Color Semantics Im-
ages Databases and Multi-Media Search, World
Scientific, Series on Software Eng. and Knowledge

Eng. (8): 13-24, 1997.

[6] M.J. Carey, D.J. DeWitt, J.E. Richardson and
E. Shekita chap. 14 - Storage Management for
Objects in EXODUS Object-Oriented Concepts,

Databases, and Applications, Addison Wesley -
ACM Press, pages 341-369, 1989.

[6] W. Cellary and G. Jomier Consistency of Ver-
sions in Object-Oriented Databases In VLDB,
Brisbane (Australia), 1990.

[7] A. Del Bimbo and P. Pala Shape Indexing by
Multi-scale Representation Images Databases and
Multi-Media Search, World Scientific, Series on
Software Eng. and Knowledge Eng. (8):59-74,
1997.

[8] C. Djeraba, I. Savory, M. Barere and S. Marc-
hand Content Based Image Retrieval Model in
an Object Oriented Database Images Databases
and Multi-Media Search, World Scientific, Series
on Software Eng. and Knowledge Eng. (8):263-
275, 1997.

[9] G.M. Davis A Wavelet-Based Analysis of Frac-
tal Image Compression [IEFEE Trans. on Image

Processing, 7(2):141-153, Feb. 1998.

M. Flickner, H. Sawhney, W. Niblack, J. Ash-
ley and al. Query by Image and Video Content:
The QBIC System Computer, 28(9):23-32, IEEE
Comp. Soc. Press, Sept. 1995.

C. Goble chap. 12 - Images Database Prototype
The Handbook of Multimedia Information Man-
agement, Prentice Hall, pages 365-404, 1997.

G. Jomier, M. Manouvrier and M. Rukoz Stock-
age et gestion d’Images par un Arbre Quaternaire
Générique In 15émes Journées Bases de Données

Avancées (BDA’99), Bordeaux (France), 1999.

[13]

[14]

[16]

[19]

[20]

[21]

[22]

[23]

G. Jomier, M. Manouvrier, M. Rukoz, J. Ramirez
and Y. Valero MIS: Un prototipo de un sis-
tema de Manipulacion de Imégenes Similares
In XXV Conf. Latinoamericana de Informdtica

(Panel’99), Asuncién (Paraguay), 1999.

E. Kawagushi and T. Endo On a method of bi-
nary picture representation and its application
to data compression [EFEE Transactions Pattern

Anal. Mach. Intell., 2(1):27-35, 1980.

F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel
and Z. Protopapas Fast Nearest Neighbor Search
in Medical Image Databases In VLDB, Mumbai
(Bombay) India, pages 215-226, Sept. 1996.

S. Kawashima, M. Tabata, Y. Kanamori and Y.
Masunaga Versioning Model of Image Objects
for Easy Development of Image Database Appli-
cations In DEXA 96, pages 194-200, 1996.

A. Keller and J. Ullman A version numbering
scheme with a useful lexicographic ordering In
ICDE, Taipei (Taiwan), Pages 240-248, 1995.

M.S. Lew, D.P. Huijsmans and D. Denteneer,
Content-Based Image Retrieval: Optimal Keys,
Texture, Projections, or Templates Images
Databases and Multi-Media Search, World Sci-
entific, Series on Software Eng. and Knowledge

Eng. (8):39-47, 1997.

H. Lu, B-C. Ooi and K-L.Tan Efficient Image
Retrieval by Color Contents In First Int. Conf.
on Applications of Database (ADB-94), Vadstena
(Sweden), june 1994.

C. Lon and M. Rukoz Sistema Distribuido
para Tratamiento de Imagenes In Memorias
de la XXI Conferencia Latinoamericana de In-

formatica (PANEL’95), Brasil, Jul. 1995.

C. Lon, M. Rivas and M. Rukoz Una Her-
ramienta en java par Aplicaciones Distribuidas de
Tratamiento de Imagenes Biomdicas In Memo-
rias de la XX1V Conferencia Latinoamericana de

Informatica (PANEL’98), Ecuador, Oct. 1998.

Y. Manolopoulos and G. Kapetanakis Over-
lapping B+4-Trees for Temporal Data In Proc.
of Jerusalem Conf. on Inf. Technology (JCIT
90), IEEE Computer Science Press #2078, Israél,
pages 491-499, Oct. 1990.

M.K. Mandal, S. Panchanathan and T. Aboul-
nasr Choice of Wavelets for Image Compression

14

[24]

[27]

[28]

[29]

[31]

[32]

Lecture Notes in Computer Science 1133, World
Scientific, pages 239-249, 1996.

M. Manouvrier Objets Similaires de Grande
Taille dans les Bases de Données PhD The-
sis, Université Paris IX Dauphine (France), Jan.

2000.

N. Nes, C. van den Berg and M. Kersten Database
Support for Image Retrieval Using Spatial-Color
Features Images Databases and Multi-Media
Search, World Scientific, Series on Software Eng.
and Knowledge Eng. (8): 293-300, 1997.

M.A. Nascimento and J.R.O. Silva. Toward His-
torical R-trees In Proc. of ACM Symposium
on Applied Computing (SAC’98), Atlanta, USA,
pages 235-240, Feb. 1998.

C. Nastar Indexation d’Images par le Con-
tenu : un Etat de DU'Art In COmpression
et REpreésentation des Signaur Audiovisuels

(CORESA’97), France, 1997.
B.C. Oo1,K-L. Tan, T.S. Chua and W. Hsu Fast

image retrieval using color-spatial information

The VLDB Journal, 7:115-128 1998.

E.G.M. Petrakis and C. Faloutsos Similarity
Searching in Medical Image Databases I[EEFE
Transactions on Knowledge and Data FEng.,

9(3):435-447, may 1997.
J.R. Smith and S-F.Chang Quad-Tree Segmenta-

tion for Texture-Based Image Query In Proc. of
ACM Multimedia, San Fransisco, CA. USA, Oct.
1994.

J.R. Smith and S-F.Chang VisualSEEk: a fully
automated content-based image query system In

ACM Multimedia "96, Nov. 1996.

G. Sheikholeslami, A. Zhang and L. Bian A
Multi-Resolution Content-Based Retrieval Ap-
proach for Geographic Images Geolnformatica,

3(2):109-139, June 1999.

H. Samet The Quadtree and Related Hierarchi-
cal Structures Computing Surveys, 16(2):187-260,
1984.

H. Samet The Design and Analysis of Spatial
Data Structures, Addison Wesley, 1989.

J. Serra Image Analysis and Mathematical Mor-
phology, vol-2. Theoretical Advances, Academic,
1988.

[36]

[.P. Stewart Quadtrees: Storage and Scan Con-
version The Computer Journal, 29(1):60-75, Feb.
1986.

T. Tzouramanis, Y. Manolopoulos and N. Lorent-
zos Overlapping B+-trees : An Implementation
of Transaction Time Access Method Data and
Knowledge Eng. Journal, 29(3):381-404, 1999.

T. Tzouramanis, M. Vassilakopoulos and Y.
Manolopoulos Overlapping Linear Quadtrees: a
Spatio-temporal Access Method In ACM GI5798,
Washington D.C.) Nov. 1998.

Tsong-Wuu Lin Compressed quadtree representa-
tions for storing similar images Image and Vision

Computing, 15:833-843, 1997.

M. Vassilakopoulos, Y. Manolopoulos, and K.
Economou Overlapping Quadtrees for the Rep-
resentation of Similar Images Image and Vision

Computing, 11(5):257-262, June 1993.

D. Woelk, W. Kim and W. Luther An Objected-
Oriented Approach to Multimedia Databases In
ACM SIGMOD, Washington D.C., May 1986.

15

