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1 Introduction

In this paper we study the radial symmetry of classical solutions of elliptic
systems of the following type







∆ui + fi(r, u1, . . . , un) = 0 in IRN , i = 1, . . . , n,
ui > 0 in IRN ,

ui(x) → 0 as r = |x| → ∞,
(1)

where n ≥ 1, N ≥ 2 are arbitrary integers.
In the case of a bounded domain, related results for autonomous systems

were established by Troy [17] (see also de Figueiredo [4], Shaker [16]). Under
additional hypotheses on the asymptotic behaviour of the solutions at infinity,
in the spirit of Gidas, Ni and Nirenberg [11], a symmetry result in IRN

was obtained by Shaker. We remark that the case of a single equation has
been extensively studied since the work of Gidas, Ni and Nirenberg (see for
instance C. Li [12], Y. Li and W.-M. Ni [13]).

In a recent paper, D.G. de Figueiredo and J. Yang [8] studied the sym-
metry of the positive solutions of systems of two equations, under some re-
strictive hypotheses on the nonlinearities (see Section 2.1).

Using variational methods, de Figueiredo and Yang also proved existence
and decay at infinity of positive solutions of such systems. More general re-
sults about existence and decay can be found in [15], as well as an application
of our symmetry result to the existence of a ground state of the system.

We note u = (u1, . . . , un) ∈ IRn
+ = (0,∞)n and

A(r, u1, . . . , un) =

(

∂fi

∂uj

(r, ui)

)

1≤i,j≤n

,
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for r ≥ 0 and ui ∈ IRn
+ , 1 ≤ i ≤ n. We suppose that fi ∈ C1([0,∞)×IRn

+, IR)
for i = 1, . . . , n (this condition can be weakened, for example, fi can be
supposed to be only Liptschiz).

We use the following hypotheses.

(H1)
∂fi

∂r
(r, u) ≤ 0 for all (r, u) ∈ IRn+1

+ and i = 1, . . . , n ;

(H2) The system is cooperative (or quasimonotone), that is,

∂fi

∂uj

(r, u) ≥ 0

for all (r, u) ∈ IRn+1
+ and all i, j ∈ {1, . . . , n}, i 6= j ;

(H3) There exist constants ε > 0 and R1 > 0 such that the system is fully
coupled in the set

O = {(r, u) | r > R1, u ∈ IRn
+, |u| < ε},

that is, for any I, J ⊂ {1, . . . , n}, with I ∩ J = ∅, I ∪ J = {1, . . . , n},
there exist i0 ∈ I and j0 ∈ J such that

∂fj0

∂ui0

(r, u) > 0,

for all (r, u) ∈ O ;

(H4) All n-principal minors of −A(r, u1, . . . , un) have nonnegative determi-
nants for (r, ui) ∈ O, 1 ≤ i ≤ n. We recall that the n-principal
minors of a matrix (mij)1≤i,j≤n are the submatrices (mij)1≤i,j≤k, for
k = 1, . . . , n.

Assumption (H2) is widely used for elliptic systems. In particular, Troy
and Shaker proved their results under (H2). Condition (H3) means that
the system cannot be reduced to two independent systems. It is this fact
that will force all functions ui to be radially symmetric with respect to the
same origin. Finally, (H4) is the natural generalisation of the hypotheses at
infinity, used for single equations. Actually, in the scalar case

∆u + f(r, u) = 0,

(H2) - (H4) reduce to
∂f

∂u
(r, u) ≤ 0 for small u and large r, which is exactly

the assumption considered by Y. Li and W.-M. Ni in [13] (see also C. Li [12]).
Note that the functions fi are not assumed to be defined on points which

have a zero coordinate.
Our main result is given by the following theorem.
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Theorem 1 Suppose f1, . . . , fn satisfy (H1)-(H4), and let u = (u1, . . . , un)
be a classical solution of (1). Then there exists a point x0 ∈ IRN such that
the functions ui are radially symmetric with respect to the origin x0, that is,
ui(x) = ui(|x − x0|), i = 1, . . . , n. Moreover,

dui

dr
< 0 for all r = |x − x0| > 0.

Section 2 is devoted to the proof of Theorem 1. In Section 2.1 we give the
proof in a simpler setting of two autonomous equations, where the main ideas
are made more explicit. In this case we are able to give a full generalisation
of hypothesis (H3). We even state a theorem which does not include this
hypothesis. Finally, in Section 3 we discuss our assumptions and give simple
examples of nonexistence of positive solutions when some of them are not
satisfied.

2 Proof of the Main Theorem

2.1 The Case of Two Equations

In this section we prove the symmetry result for classical solutions of the
system















∆u + g(u, v) = 0 in IRN

∆v + f(u, v) = 0 in IRN

u, v > 0 in IRN

u(x), v(x) → 0 as |x| → ∞,

(2)

with f, g ∈ C1 ([0,∞) × [0,∞), IR). We suppose that

(i)
∂g

∂v
(u, v) and

∂f

∂u
(u, v) are non-negative for all (u, v) ∈ [0,∞)× [0,∞) ;

(ii)
∂g

∂u
(0, 0) < 0 and

∂f

∂v
(0, 0) < 0 ;

(iii) detA > 0, where

A =











∂g

∂u

∂g

∂v

∂f

∂u

∂f

∂v











(0, 0).

In order to avoid some technicalities, here we have strengthened our hy-
potheses (H1)-(H4). Of course, by using the method of Section 2.2, all results
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in Section 2.1 can be shown to hold under (H1)–(H4). We note that (ii) and
(iii) are exactly the conditions under which the linearized system at zero
satisfies the maximum principle (see [6] and [10]).

In [8] de Figueiredo and Yang considered the case

g(u, v) = −u + g1(v) , f(u, v) = −v + f1(u)

where f1(0) = g1(0) = f ′
1(0) = g′

1(0) = 0, f1 and g1 are positive and convex
in IR+, and have power-like growth at zero and infinity. Note that in this case
−A is the identity matrix. The result of de Figueiredo and Yang concerned
only exponentially decreasing solutions of (2). None of these features is
present in our work.

We have the following result.

Theorem 2 Assume (i), (ii) and (iii) hold. Then there exist two points
x0, x1 ∈ IRN such that u(x) = u(|x − x0|) and v(x) = v(|x − x1|). Moreover,

du

dr1

< 0 and
dv

dr2

< 0,

for all r1 = |x − x0| > 0 and r2 = |x − x1| > 0.

If x0 6= x1, it follows from Theorem 2 that u changes its values on sets
where v is constant and vice versa. Therefore, if x0 6= x1 and both functions u
and v are effectively present in one of the equations in (2), then this equation
cannot be satisfied. We deduce that, in case v (resp. u) appears in a non-zero
term in the first (resp. the second) equation in (2), then the solutions are
symmetric with respect to the same origin.

Sufficient conditions for x0 = x1 in Theorem 2 which do not depend on
the particular choice of the solutions are for example :

(iv)′ either
∂g

∂v
or

∂f

∂u
is strictly positive in a neighbourhood of (0, 0), except

possibly on {u = 0} ∪ {v = 0} ;

(iv)′′ either
∂g

∂v
or

∂f

∂u
does not depend on one of its variables and is not

identically zero in every neighbourhood of (0, 0).

Proof of Theorem 2. As in many other works, in order to prove symmetry
of solutions we apply the “moving planes” method. For all λ ∈ IR we define
the hyperplane Tλ = {x ∈ IRN | x1 = λ} and set Σλ = {x ∈ IRN | x1 > λ}.
Our goal is to show that the solutions of (2) are symmetric with respect
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to Tλ, for some λ ∈ IR. Then we can finish the proof, as explained in the
beginning of Section 2.2.

Let u and v be solutions of (2). For any point x ∈ Σλ we denote with xλ

its reflexion with respect to Tλ. We introduce the functions uλ(x) = u(xλ),
vλ(x) = v(xλ), Uλ(x) = uλ(x) − u(x) and Vλ(x) = vλ(x) − v(x), all of them
defined in Σλ. The change of variables x → xλ leaves the equations in (2)
unchanged so we can substract these equations from the corresponding ones
for uλ and vλ. We obtain

∆Uλ + g(uλ(x), vλ(x)) − g(u(x), v(x)) = 0
∆Vλ + f(uλ(x), vλ(x)) − f(u(x), v(x)) = 0

in Σλ. Consequently, by Taylor’s expansion,

∆Uλ +
∂g

∂u
(ξ1(x, λ), v(x))Uλ +

∂g

∂v
(uλ(x), η1(x, λ))Vλ = 0 (3)

∆Vλ +
∂f

∂u
(ξ2(x, λ), vλ(x))Uλ +

∂f

∂v
(u(x), η2(x, λ))Vλ = 0, (4)

where

ξi(x, λ) ∈ (min{u(x), uλ(x)}, max{u(x), uλ(x)}) ,

ηi(x, λ) ∈ (min{v(x), vλ(x)}, max{v(x), vλ(x)}) , i = 1, 2.

We apply the “moving planes” method in three steps.

Step 1 There exists λ∗ > 0 such that Uλ ≥ 0 and Vλ ≥ 0 in Σλ, for all
λ ≥ λ∗.

Let us prove the claim in Step 1 for Uλ. Assume for contradiction that for
all λ > 0 there exists a point x ∈ Σλ such that Uλ(x) < 0.

First, by using (ii) we choose ε0 > 0 such that
∂g

∂u
(u, v) < 0 and

∂f

∂v
(u, v) < 0 if |u|+ |v| < ε0. Then we fix λ̄ > 0 such that u(x) + v(x) < ε0,

when |x| > λ̄. Next, we observe that for all λ > 0 the function Uλ attains its
infimum in Σλ, since it takes negative values in Σλ, vanishes on Tλ = ∂Σλ,
and tends to zero at infinity (note that |x| → ∞ is equivalent to |xλ| → ∞,
for λ fixed). We fix λ ≥ λ̄ and take x0 = x0(λ) ∈ Σλ such that

Uλ(x0) = min
x∈Σλ

Uλ(x) < 0.

Then ∆Uλ(x0) ≥ 0, so it follows from (3) that

∂g

∂u
(ξ1(x0, λ), v(x0))Uλ(x0) ≤ −

∂g

∂v
(uλ(x0), η1(x0, λ))Vλ(x0). (5)
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Since Uλ(x0) < 0 implies ξ1(x0, λ) ≤ u(x0), we see that the left-hand side
of (5) is strictly positive. This implies Vλ(x0) < 0. Therefore, there exists
x1 = x1(λ) ∈ Σλ such that

Vλ(x1) = min
x∈Σλ

Vλ(x) < 0.

Because of (4) we can repeat the above argument, showing that Uλ(x1) < 0
and

∂f

∂v
(u(x1), η2(x1, λ))Vλ(x1) ≤ −

∂f

∂u
(ξ2(x1, λ), vλ(x1))Uλ(x1). (6)

We set

α(λ) =
∂g

∂u
(ξ1(x0, λ), v(x0)) < 0 , β(λ) =

∂g

∂v
(uλ(x0), η1(x0, λ)) ≥ 0, (7)

γ(λ) =
∂f

∂u
(ξ2(x1, λ), vλ(x1)) ≥ 0 , δ(λ) =

∂f

∂v
(u(x1), η2(x1, λ)) < 0. (8)

By using (5) and (6) we obtain

Uλ(x0) ≥ −
β(λ)

α(λ)
Vλ(x0)

≥ −
β(λ)

α(λ)
Vλ(x1)

≥
β(λ)γ(λ)

α(λ)δ(λ)
Uλ(x1)

≥
β(λ)γ(λ)

α(λ)δ(λ)
Uλ(x0).

The last quantity is strictly greater than Uλ(x0), provided that

a(λ) := α(λ)δ(λ) − β(λ)γ(λ) > 0.

Since Uλ and Vλ are both negative at x0 and x1, we have

uλ(x0) < u(x0) , ξ1(x0, λ) ≤ u(x0) , η1(x0, λ) ≤ v(x0) ,

vλ(x1) < v(x1) , ξ2(x1, λ) ≤ u(x1) , η2(x1, λ) ≤ v(x1).

The solutions of (2) decay at infinity, so these inequalities imply

lim
λ→∞

a(λ) = detA > 0,

which leads to a contradiction, for λ sufficiently large and greater than λ̄.
Step 1 is completed.
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We set

λ0 = inf {λ ∈ IR | Uµ ≥ 0 and Vµ ≥ 0 in Σµ for all µ ≥ λ} .

Step 1 implies that λ0 < +∞. On the other hand λ0 = −∞ is impossible,
since Uλ(0) < 0 for any λ < −R, with R chosen so that max

|x1|≥R
u(x) < u(0).

Hence λ0 is finite.

Step 2 Either Uλ0
≡ 0 or Vλ0

≡ 0 in Σλ0
.

Since all objects we consider are continuous with respect to λ, we already
know that Uλ0

≥ 0 and Vλ0
≥ 0 in Σλ0

. Then it follows from (3), (4) and (i)
that in Σλ0

∆Uλ0
+

∂g

∂u
(ξ1(x, λ0), v(x))Uλ0

= −
∂g

∂v
(uλ0

(x), η1(x, λ0))Vλ0
≤ 0 (9)

and

∆Vλ0
+

∂f

∂v
(u(x), η2(x, λ0))Vλ0

= −
∂f

∂u
(ξ2(x, λ0), vλ0

(x))Uλ0
≤ 0 (10)

The strong maximum principle, applied to (9), implies that either Uλ0
≡ 0

in Σλ0
or Uλ0

> 0 in Σλ0
, with

∂Uλ0

∂x1

> 0 on Tλ0
. By (10) the same holds for

Vλ0
.
Therefore, we only have to exclude the situation when both Uλ0

and Vλ0

are strictly positive in Σλ0
, and have strictly positive normal derivatives on

Tλ0
. Let us suppose this is the case.
By the definition of λ0, there exist sequences {λk}

∞
k=1 and {xk}

∞
k=1 ⊂ IRN

such that λk < λ0 , limk→∞ λk = λ0 , xk ∈ Σλk
and either Uλk

or Vλk
takes a

negative value at xk. For example, let Uλk
(xk) < 0. We rename xk so that

Uλk
(xk) = min

x∈Σλk

Uλk
(x) < 0.

We distinguish two cases.

Case 1 The sequence {xk} contains a bounded subsequence.

This case is treated in a standard way. We extract a subsequence of {xk}
which converges to a point x0 ∈ Σλ0

. Since Uλ0
(x0) ≤ 0, necessarily x0 ∈

Tλ0
. But xk is point of interior minimum of Uλk

, so ∇Uλk
(xk) = 0. Hence

∇Uλ0
(x0) = 0. This contradicts

∂Uλ0

∂x1

(x0) > 0.

Case 2 |xk| → ∞ as k → ∞.
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This case has been a basic issue in applying the “moving planes” method in
unbounded domains since the first work on symmetry in IRN by Gidas, Ni,
and Nirenberg. Fortunately, the machinery that we set up in Step 1 adapts
to this case. Indeed, exactly as in Step 1 we can show that there exists an
integer k0 such that Vλk

(xk) < 0 when k ≥ k0. Likewise, there exists k1 ≥ k0

such that Uλk
(yk) is negative when k ≥ k1, with yk chosen so that

Vλk
(yk) = min

y∈Σλk

Vλk
(y) < 0.

Inequalities (5) and (6) hold, so we finally obtain

ã(k)

α(k)δ(k)
Uλk

(xk) ≥ 0,

where
ã(k) = α(k)δ(k) − β(k)γ(k),

with α(k) , β(k) , γ(k) , δ(k) defined analogously to (7) and (8) :

α(k) =
∂g

∂u
(ξ1(xk, λk), v(xk)), etc.

It is easy to see that
lim
k→∞

ã(k) = detA > 0,

and we obtain a contradiction for k sufficiently large. This argument com-
pletes Step 2.

Step 3 Conclusion.

Let for example Uλ0
≡ 0. Then Uλ > 0 in Σλ for all λ > λ0, so it is

straightforward to see that

sign(x1 − λ0)
∂u

∂x1

(x1, x
′) ≤ 0 (11)

for all x = (x1, x
′) ∈ IR×IRN−1. Next, we observe that the function v satisfies

the single equation
∆v + f̄(x, v) = 0,

with f̄(x, v) = f(u(x), v). It follows from our hypotheses that
∂f̄

∂v
(x, v) is

negative for small v and large |x1|. We have, in view of (i) and (11),

sign(x1 − λ0)
∂f̄

∂x1

(x1, x
′, v) = sign(x1 − λ0)

∂f

∂u
(u(x), v)

∂u

∂x1

(x1, x
′) ≤ 0
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for all x ∈ IRN , v ∈ IR. This is exactly what we need in order to apply the
results for single equations (see [12], [13]), which permit us to conclude that
there exists some λ′

0, with λ′
0 ≤ λ0, such that v is symmetric with respect to

Tλ′
0
. Alternatively, to prove this we could use the reasonings in Steps 1 and

2 combined with moving planes coming from −∞.
Finally, since Uλ > 0 and Vλ > 0 in Σλ for λ > λ0, by using (i) we see

that Hopf’s lemma, applied to (3), yields

∂Uλ

∂x1

(λ, x′) > 0 for all λ > λ0, x′ ∈ IRN−1.

Analogously, since Uλ < 0 and Vλ < 0 in Σλ for λ < λ′
0, we infer from (4)

∂Vλ

∂x1

(λ, x′) < 0 for all λ < λ′
0, x′ ∈ IRN−1.

Since

∂Uλ

∂x1

(λ, x′) = −2
∂u

∂x1

(λ, x′) and
∂Vλ

∂x1

(λ, x′) = −2
∂v

∂x1

(λ, x′),

the proof of Theorem 2 is complete.

2.2 The General Case

This section contains the proof of Theorem 1. In order to show that all ui are
radially symmetric with respect to the same origin, it is enough to establish
that, given an arbitrary direction γ ∈ IRN \ {0}, there exists λ = λ(γ) such
that all ui are symmetric with respect to the hyperplane

Tλ = {x ∈ IRN | x · γ = λ}.

Indeed, it is easy to see that in this case ui are radial with respect to the

origin
n
∩

i=1
Tλ(ei).

We fix a direction γ. We denote with x → xλ the reflection with respect
to Tλ, and with Uλ

i , i = 1, . . . , n, the difference functions

Uλ
i (x) = ui(x

λ) − ui(x),

defined in Σλ = {x ∈ IRN | x · γ > λ}.
As in section 2.1, the proof is carried out in three steps. In the first step

we show that

Λ = inf{λ > 0 | Uµ
i ≥ 0 in Σµ for i = 1, . . . , n and all µ ≥ λ}

is well-defined, that is, Λ < +∞. In the second step we prove that either
Λ = 0 or Λ > 0 and UΛ

i ≡ 0 for all i = 1, . . . , n.
The conclusion of Theorem 1 then follows easily (see Step 3).
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Step 1 Λ < +∞.

Since the functions ui, i = 1, . . . , n, tend to zero at infinity, we can fix some
large R0 ≥ R1 such that |u| < ε in IRN \BR0

(ε and R1 are defined in (H3)).
We take λ∗ > R0 for which

max
1≤i≤n

x∈B
λ
R0

ui(x) < min
1≤i≤n

x∈BR0

ui(x),

for all λ > λ∗, where B
λ

R0
= {x | xλ ∈ BR0

}. It follows that Uλ
i > 0 in

B
λ

R0
⊂ Σλ, for all λ > λ∗. Let us show that Uλ

i > 0 in the remaining

part Σλ \ B
λ

R0
. By writing equations (1) at x and xλ and by using Taylor’s

expansion, we obtain that the functions Uλ
i satisfy the following system of

linear partial differential equations

∆Uλ
i +

∂f

∂r
(η)(rλ − r) +

∑

1≤j≤n

∂fi

∂uj

(r, ξi1, . . . , ξin)Uλ
j = 0, i = 1, . . . , n, (12)

where η = η(x, λ) ∈ IRn+1
+ and

ξij = ξij(x, λ) ∈ (min(uj(x), uj(x
λ)), max(uj(x), uj(x

λ)).

We have |xλ| = rλ < r = |x| for x ∈ Σλ, so from (H1) we obtain the following
system of inequalities for Uλ

i

∆Uλ
i +

∑

1≤j≤n

∂fi

∂uj

(r, ξi1, . . . , ξin)Uλ
j ≤ 0, i = 1, . . . , n. (13)

Next, we show that in (H4) the n-principal minors can be supposed to be
strictly positive. To do so, we shift the diagonal coefficients of the matrix A,
by making the following change of functions

U
λ

i =
Uλ

i

g
,

where

g(x) =

{

|x|−(N−2)/2 + 1 if N ≥ 3
ln(ln(|x| + 27)) if N = 2.

Simple computations yield g ≥ 1 and ∆g < 0 in IRN \ {0}. This change of
functions is classical in the scalar case, see [13]. See also [2] for some special
types of systems in two dimensions.
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It is easy to see that the new functions U
λ

i satisfy the following system

∆U
λ

i + 2
∇g

g
∇U

λ

i +
∑

1≤j≤n

(

∂fi

∂uj

(r, ξi1, . . . , ξin) + δij
∆g

g

)

U
λ

j ≤ 0, (14)

for i = 1, . . . , n.

Our objective is to show that U
λ

i ≥ 0 (so Uλ
i ≥ 0) in Σλ, for all λ > λ∗.

Suppose for contradiction that there exist λ > λ∗ and i0 ∈ {1, . . . , n}, for

which inf
Σλ

U
λ

i0
< 0. We set J = {j | U

λ

j ≥ 0 in Σλ} $ {1, . . . , n} (J may

be empty), and I = {1, . . . , n} \ J (note that i0 ∈ I). We consider only the

inequalities in (14) which correspond to indices i ∈ I. Since U
λ

j ≥ 0 in Σλ for
j ∈ J , by (H2) these inequalitites continue to hold if one cancels all terms

containing U
λ

j , with j ∈ J . We get, up to a permutation of the indices, a
set of inequalities of type (14), for i = 1, . . . , p, where p = |I|. We note that
the permutation does not affect assumptions (H2), (H4), that is, they remain

valid for the submatrix
(

∂fi

∂uj

)

1≤i,j≤p
. Indeed, this is trivial for (H2), while for

(H4) this fact follows from Lemma 2.2 in [6]. For the reader’s convenience,
we give here the statement of this lemma.

Lemma 1 Let M = (mij)1≤i,j≤n be a matrix such that mij ≤ 0 for i 6= j.
Assume that all n-principal minors of M have positive determinants. Then

(i) all minors of M obtained by dropping lines and columns of the same
order have positive determinants ;

(ii) if Mij is the minor obtained by dropping the ith line and the jth column
of M , we have

(−1)i+j det Mij ≥ 0.

Since inf
Σλ

U
λ

i < 0 for all i = 1, . . . , p, U
λ

i > 0 in B
λ

R0
, U

λ

i → 0 at infinity

(here we use g ≥ 1), we may take x1, . . . , xp ∈ Σλ \ B
λ

R0
such that

U
λ

i (xi) = min
Σλ

U
λ

i < 0

(this implies ∆U
λ

i (xi) ≥ 0 and ∇U
λ

i (xi) = 0). By writing the equations in
(14) at x1, . . . , xp respectively, we obtain

∑

1≤j≤p

(

∂fi

∂uj

(r, ξi1, . . . , ξip) + δij
∆g

g

)

U
λ

j (xj) ≤ 0, i = 1, . . . , p, (15)

11



where we used the fact that U
λ

j (xj) ≤ U
λ

j (xi). The last system can be written
in terms of matrices as

MU = Y, (16)

where Y = (y1, . . . , yp), M = (mij)1≤i,j≤p, with

yi ≥ 0, mij = −

(

∂fi

∂uj

(r, ξi1, . . . , ξip) + δij
∆g

g

)

, i, j = 1, . . . , p,

and U = (U
λ

1(x1), . . . , U
λ

p(xp)). Since x1, . . . , xp ∈ Σλ \B
λ

R0
, we have ri > R0,

so, using the choice of λ∗, as in Section 2.1 we can see that ξij(xk) ∈ (0, ε).

Besides, we know that
∆g

g
< 0. Therefore, assumptions (H2) and (H4) yield

mij ≤ 0 for i 6= j, so all n-principal minors of M have positive determinants.
Since M is invertible (detM > 0), relation (16) yields U = M−1Y . Since

yi ≥ 0, i = 1, . . . , p, it follows from Cramer’s formula and statement (ii) of

Lemma 1 that U
λ

i (xi) ≥ 0, i = 1, . . . , p. But we have taken xi to be such

that U
λ

i (xi) < 0 – a contradiction.
Hence Λ ≤ λ∗ < +∞.

Step 2 Either Λ = 0, or Λ > 0 and U
Λ

i ≡ 0, i = 1, . . . , n.

We argue by contradiction. Suppose Λ > 0 and U
Λ

i0
6≡ 0, for some index

i0 ∈ {1, . . . , n}. By the definition of Λ, we see that UΛ
i ≥ 0 for all i = 1, . . . , n.

The strong maximum principle, applied to each equation in (14), implies that
either UΛ

i > 0 or UΛ
i ≡ 0 in ΣΛ.

We claim that UΛ
i > 0 in ΣΛ for all i = 1, . . . , n. We know that UΛ

i0
> 0.

By (H3) there exists j0 ∈ {1, . . . , n} \ {i0} such that

∂fj0

∂ui0

> 0 in O. (17)

In case UΛ
j0
≡ 0, by using the jth

0 inequality in (14) we get

∑

j 6=j0

∂fj0

∂uj

(r, ξj01, . . . , ξj0n)UΛ
j ≤ 0,

which contradicts UΛ
i0

> 0 for |x| > R0, x /∈ B
Λ

R0
, in view of (H2) and (17).

Hence UΛ
j0

> 0. By (H3) we can choose k0 ∈ {1, . . . , n} \ {i0, j0} such that

either
∂fi0

∂uk0

or
∂fj0

∂uk0

is positive in O. As above, this means that UΛ
k0

> 0. By

12



repeating the same argument n times we conclude that we have UΛ
i > 0 and

U
Λ

i > 0 in ΣΛ, for all i = 1, . . . , n.
By the definition of Λ, there exists a sequence λk ր Λ such that

min
1≤i≤n

inf
Σλk

U
λk

i < 0.

By the argument in Step 1, and up to an extraction of a subsequence, we
can construct {xk} ⊂ Σλk

such that

U
λk

i0
(xk) = min

Σλk

U
λk

i0
< 0,

for some i0 ∈ {1, . . . , n}.
There are two cases to consider.

Case 1 xk → x.

Since U
Λ

i0
> 0 in ΣΛ and U

Λ

i0
(x) ≤ 0, necessarily x ∈ TΛ, and U

Λ

i0
(x) = 0.

Furthermore, ∇U
Λ

i0
(x) = 0.

Since U
Λ

i > 0 in ΣΛ, i = 1, . . . , n, the ith0 equation in (14) yields

∆U
Λ

i0
+ 2

∇g

g
∇U

Λ

i0
+

(

∂fi0

∂ui0

+
∆g

g

)

U
Λ

i0
≤ 0 in ΣΛ.

Hopf’s Lemma provides a contradiction.

Case 2 |xk| → +∞.

In this case we have xk ∈ Σλk
\ B

λk

R0
, for sufficiently large k, so the same

argument as in Step 1 provides a contradiction.

Step 3 Conclusion.

We have obtained the following : either Λ = 0, or Λ > 0 and UΛ
i ≡ 0 in

ΣΛ, i = 1, . . . , n. If Λ > 0, we are done. If Λ = 0, we have U0
i ≥ 0 in Σ0

and, repeating steps 1 and 2 in the opposite direction (−γ), we prove that
either there exists Λ′ > 0 such that UΛ′

i ≡ 0 or U0
i ≤ 0, i = 1, . . . , n. In both

cases there is some λ0 for which the functions ui are symmetric with respect
to the hyperplane Tλ0

. It is then standard to show that all ui are radially
symmetric with respect to some point x0 ∈ IRN . It is also easy to prove, as

in section 2.1, that
dui

dr
< 0 for r = |x − x0| > 0.

The proof of Theorem 1 is complete.
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3 Discussion

For simplicity in this section we consider the model case of two equations
which we already described in section 2.1.

First we point out that Theorem 2 fails if we consider non-autonomous
systems or systems of three or more equations. A counterexample is provided
by the system







∆u − u + up = 0
∆v − v + vp = 0
∆w − w + u + v2 = 0.

where 1 < p < N+2
N−2

. By taking u = u(|x|) to be the unique positive (expo-
nentially decreasing) solution of the first equation and setting v = u(|x−x0|),
with x0 6= 0, we see that w cannot be symmetric.

Next, we are going to show that if all hypotheses (i)-(iii) are satisfied,
except one of (ii) and (iii), in which the inverse inequality is strict, then no
positive solution of (2) can exist.

Let u and v be solutions of (2) and let us put

α =
∂g

∂u
(0, 0) , β =

∂g

∂v
(0, 0)

γ =
∂f

∂u
(0, 0) , δ =

∂f

∂v
(0, 0).

First we suppose that α > 0. We distinguish two cases.

Case 1 β > 0.

In this case Taylor’s expansion yields

∆u + αu + βv + o(u + v) = 0,

where o(t) is a quantity such that
o(t)

t
→ 0 as t → 0. Without loss of

generality we suppose f(0, 0) = g(0, 0) = 0 (otherwise (2) has no solutions).
We fix ε0 > 0 such that

|o(t)| ≤
1

2
min{α, β}|t|

if |t| ≤ ε0. Then we take R1 > 0 such that u(x) + v(x) < ε0, if |x| ≥ R1. We
obtain that

∆u +
1

2
αu +

1

2
βv ≤ 0

in IRN \ BR1
. Hence

∆u +
1

2
αu ≤ 0 in IRN \ BR1

.

14



A well-known sufficient condition for the maximum principle (see for instance
[14]) implies that the maximum principle holds for the operator ∆ + 1

2
α in

the annulus C(R2) = {x ∈ IRN : R1 < |x| < R2}, for any R2 > R1. This
leads to a contradiction when R2 is sufficiently large, for example, when R2

is taken so that
λ1(−∆, C(R2)) <

α

4
.

Case 2 β = 0.

In this case (iii) implies δ > 0. By Taylor’s expansion and (i) we obtain

{

∆u + αu + o(u + v) = 0
∆v + δv + o(u + v) ≤ 0.

Hence
∆(u + v) + min{α, δ}(u + v) + o(u + v) ≤ 0,

and we conclude as in case 1.

Finally, suppose that detA < 0. In this case (i) and (ii) imply that β > 0
and γ > 0. Again by Taylor’s expansion we obtain

{

∆u + αu + βv + o(u + v) = 0
∆v + γu + δv + o(u + v) = 0.

Consequently,
{

∆u + (α − ε)u + (β − ε)v ≤ 0
∆v + (γ − ε)u + (δ − ε)v ≤ 0

(18)

in IRN \ BR1
, for some large ball BR1

, where ε > 0 is chosen so that the
“perturbed” matrix Aε has a negative determinant.

A sufficient condition for the maximum principle to hold for a linear
system like (18) was derived in [7]. This condition implies that the maximum

principle holds for the operator ~∆ + Aε in C(R2), for all R2 > R1. On the
other hand, it was proved in [6] that a necessary condition for the maximum
principle to hold in C(R2) is

det [λ1(−∆, C(R2))Id − Aε] > 0,

which leads to a contradiction if R2 is chosen so that

[λ1(−∆, C(R2))]
2 + λ1(−∆, C(R2))trAε < −detAε.

Let us also remark that the case when one of the quantities in (ii) and
(iii) is equal to zero and (H4) does not hold appears to be quite difficult. Of
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course in that case there can be positive solutions. By now only very partial
symmetry results are available (see [1], [3], [18] for scalar equations and [2],
[9] for systems).

Finally, we note that in recent years there have been some results on max-
imum principles for non-cooperative systems. We do not know if a symmetry
result can be proved in this case. We intend to investigate this question in
the future.
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