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ABSTRACT

In the domain of multi-bands image processing, two differ-
ent approaches can be considered: the scalar one and the vec-
torial one. This paper presents a method that belongs to the
first approach. The method is achieved in three steps. The
first step tempts to eliminate redundant observations by mak-
ing a selection of relevant bands. In the second step, each
of the selected bands is segmented using a technique of his-
togram multi-thresholding. In the last step, a fusion by a com-
bination of the results of the selected bands allows to ob-
tain the final segmentation. This scheme is illustrated in the
frame of an application in high-resolution multispectral im-
agery acquired by the Compact Airborne Spectrographic Im-
ager (CASI).

1. INTRODUCTION

In order to collect a maximum of information from a scene,
the images currently used are generally of multi-bands na-
ture. The segmentation of these images is an important re-
search theme that finds many applications in color, multi-
spectral, or multi-temporal imagery [1] [3] [4] [5] [7] [8] [10]
[11] [12]. Two different schemes can be envisaged to solve
this problem:

�����
The scalar processing scheme, that consists

in processing each band separately and then in proceeding
to a fusion step of the results.

�������
The vectorial processing

scheme, that considers each pixel as a vector and consists in
applying a single processing taking explicitly account of the
multidimensional nature of data.
In this paper we present, in a framework of airborne mul-
tispectral imagery, an example of practice utilization of the
scalar segmentation approach. This alternative to the vecto-
rial approach appears well adapted to the examined problem.

2. DEVELOPED METHOD

The principle of the proposed method consists in process-
ing separately the relevant bands of the multispectral image,
and then in proceeding to a fusion of the results obtained on

these bands. Informations contained in these images are of-
ten complementary but present sometimes important redun-
dancies. The first step of processing consists in making a
selection of relevant bands. Each of the spectral bands is
first characterized by a global histogram built from signifi-
cant peaks of local histograms. An aggregation by using the
global histograms allows then to form a set of classes of sim-
ilar bands by maximizing an entropy criterion. The repre-
sentative band of each class is that minimizing a dissimilar-
ity measure with the center of the class. Each of the selected
bands is then segmented by using a technique of histogram
multi-thresholding. This one is achieved by an iterative gray
levels aggregation operating on the global histogram of the
band. At last, a fusion that combines the multi-thresholding
results of the selected bands allows to obtain the final seg-
mentation. � � �	�
� � �  � � � �
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Fig. 1. The segmentation approach synopsis.

We present in what follows these three steps as well as exper-
imental results obtained in the framework of an application
concerning the detection and the classification of seaweed
deposit zones by aerial multispectral image analysis.

2.1. Relevant bands selection

In multi or hyperspectral data, neighboring bands frequently
appear similar and convey often same information. The in-
terband correlation is due to the spectral proximity. An anal-
ysis of the multi-bands images is then necessary to reduce
these redundancies. One method to realize this is through
principal component analysis. This technique is interesting
but poses certain problems when the correlation matrix of



the spectral bands is ill-conditioned. The accumulation of
errors in the calculation of this one can be considerable, what
renders the precise estimation of its eigenvalues and eigen-
vectors delicate. Moreover, if the size and the number of
spectral bands increase, the dimension of the matrix increases
equally and the computational cost becomes important. In
this paper, we propose a different approach in which the rel-
evant band choice is made among that existent. This selec-
tion is realized in two phases. Each of the bands is first char-
acterized by a global histogram. Similar bands aggregations
followed by a selection of the representative band of each of
the formed classes are then undertaken.

2.1.1. Construction of the global histogram

This first phase leans on a transformation of the local his-
tograms and on simple decision criteria to determine local
significant peaks that will serve for the construction of the
global histogram.

Transformation of the local histograms:
The procedure of transformation is necessary because most
multi-modal local histograms have modes with badly defined
limits. The calculation of the maxima is then delicate. To
put in obviousness the principal modes of each histogram,
we use four criteria based on the measure of gray level cooc-
curences and on a function of Sensitivity of the Eye to the
Contrast (SEC) [9]. The introduction of this function allows
to take into account the visibility of a point as compared to
its neighbors. It favors the aggregation of points with visu-
ally close illuminations. In function of the number of veri-
fied criteria, the gray level occurrence frequencies are more
or less pondered.

Significant peaks detection:
Significant peaks of the histograms resulting from the previ-
ous transformations have to verify three criteria:

�����
A gray

level is a peak of the histogram if it presents a maximal lo-
cal occurrence frequency.

�������
The distance separating two

significant peaks has to be superior to a threshold NPO ; oth-
erwise we retain as significant peak that whose occurrence
frequency is the greatest.

���������
The height of a peak has to

be superior to a fraction NRQ of the maximum of the histogram.
This allows to eliminate peaks of relatively weak occurrence
frequencies. The values of the thresholds N O and NRQ are cal-
culated in an automatic manner and represent the average of
distances of successive peaks couples, and the average of ap-
pearance frequencies of peaks.
The occurrence frequencies of the valid peaks are drawn in
a global histogram. This one, noted SUT Q=VXW , presents a well-
pronounced multi-modal form. This phase is realized by us-
ing several sizes of windows (16x16, 32x32, 64x64) so as
to take into account the spatial resolution of the image. The

occurrence frequencies of the peaks determined by applying
the different sizes are drawn in the same global histogram.

2.1.2. Aggregation and selection of representative bands

The aim of this phase is to select relevant bands that will be
segmented in the following step. First, an aggregation of the
bands by an analysis of the global histograms allows to form
classes of similar bands. Then, the representative band of
each class is selected by seeking that minimizing a dissimi-
larity measure with the center of the class.

Aggregation of bands:
At the begining, each band is associated with a different class.
At each step, the two closest classes, in the sense of a mea-
sure of dissimilarity, are regrouped. A band Y[Z character-
ized by its global histogram SUZ]\ ��^`_bac^edfaPghgighaj^lkm�

is then
regrouped with an other band Y[n modeled by the global his-
togram SUno\ ��pq_rajpfdfaPghgighajpPks�

if they minimize the normal-
ized dissimilarity measure defined by:
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The dissimilarity measure between two formed classes of sev-
eral bands (inter classes dissimilarity) is equal to the average
of the dissimilarities between the bands of the two classes.
In practice, the determination of the number of classes to form
and the thresholds on the dissimilarity measure is sometimes
very delicate. In order to make the aggregation process un-
supervised, we propose the utilization of a measure of en-
tropy type that allows to evaluate the homogeneity of the set
of the obtained classes after each aggregation. The retained
bands grouping is that of the set which maximizes this en-
tropy.
In information theory, the entropy associated with a set of
possible events is ��\�y { |P� |q�i� � |

, where
� |

is the proba-
bility of occurrence of the event

�
. Maximizing the entropy

returns to distribute a rare quantity between several sets, in a
manner the most uniform possible. In our case, that is trans-
lated by the fact to form classes having a common criterion
the most equitable possible. This criterion can be based on
the probability that an unknown band is classified in one of
the formed groups by the aggregation algorithm [6]. We there-
fore seek to make some groups whose the aggregation prob-
ability is the same. Several hypotheses to evaluate this prob-
ability are possible.
In the case where the bands are to be distributed in an uni-
form manner in the “space of bands”, the probability

� |
to

a new band to belong to one of the classes can therefore be
proportional to the size of this class. This size can be esti-
mated by the average dissimilarity between the bands of this
class (intra class dissimilarity).
The hypothesis of uniformity is not general, a modification



of probabilities is necessary to take into account the fact that
some very close bands can provide a class as interesting as a
weaker number of bands distributed in a distant area of the
space. That is translated by making

� |
not only proportional

to the size of the class, but also to the number of bands that
compose it. To obtain probabilities, a factor of normaliza-
tion is added. That, at last, gives:� | \ � | t |h|{ | � | t |h|

~ _� { |����� t | � (2)

where � | is the number of bands of the class
�
,
t |i|

is the intra
class dissimilarity,

t | � is the inter classes dissimilarity and �is the number of the obtained classes.

Representative bands selection:
Each of the previously formed classes is characterized by its
mean histogram SUT . The representative band of the class
is that one having the closest global histogram to S T in the
sense of the employed dissimilarity measure.

2.2. Scalar segmentation

The selected bands are segmented using an histogram multi-
thresholding technique [9]. The multi-thresholding operates
on the global histogram SUT Q=V�W of the band. It is realized by
an iterative procedure allowing to aggregate the masses ofS T Q=V�W into significant punctual masses characterizing the re-
gions that compose the band. The aim is to detect the most
significant thresholds N T by displacing iterativly the masses
to their gravity centers until the convergence of histograms.
This procedure is described hereafter.
Let S��h�c� ����� \�SUT Q=V�W ������aj�����	��� | � ac�
�m�j�f��a be the initial his-
togram to process, and S��=�f� , be that one obtained at the it-
eration � . The Frequencies of occurrence of the gray levels
at the iteration � ~ w are determined according to following
relation:

S �=�f� _ � ����� \ �¡j¢¤£q¥ S ���r� � N ��¦l��� y¨§ � � N ��� (3)

where
¦l��g	�

represents the symbol of Kronecker and § � � N � des-
ignates the average at the iteration � defined by:
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The relation (3) translates the displacement of a part of the
masses of S��=�f� ����� to their local centers of gravity. To make
the procedure automatic, we vary gradually ¬ until succes-
sive sizes provide the same results. The obtained final his-
togram is constituted by punctual masses. To each mass cor-
responds a class and the position of each mass indicates the

gray level that will be assigned as label to each class. The
values of thresholds N T are given by the barycenters of the
gray levels determined by the position of these masses. They
allow to define the intervals of illumination of the classes
and to associate a label to each point of the band.

2.3. Fusion of multi-thresholding results

This step consists in combining results issued from the pre-
viously segmented bands so as to produce a representation
better than those of the results taken separately. It does not
exist a standard method allowing to realize this operation.
Various techniques can be employed, going from usual sta-
tistical algorithms, as bayesian methods, until ad hoc means,
as the vote, passing by more recent techniques based on neu-
ral networks systems or on the fuzzy set theory [2]. In our
case, we have used a vectorial classification. The result of
the fusion is then obtained by the aggregation of the com-
binations of labels of the multi-thresholded bands following
an unsupervised k-means approach.

3. EXPERIMENTAL RESULTS

In the framework of studies undertaken by the Remote sens-
ing Group in Brittany (GSTB) in France, we have been inter-
ested in the problem of location and classification of zones of
seaweed deposits by the analysis of multispectral images in
order to evaluate the seaweed covering by surface unit. The
tested image was collected by the CASI sensor on July 1998,
and has a 2 metre resolution. It is composed of ten spec-
tral bands (1024x512) corresponding to ten different wave
lengths going from the visible to the near-infrared. For this
image, we have at our disposal a ground truth map gevin es-
timations of true rate of seaweed covering in some represen-
tative sites. This has allowed to measure the validity of the
proposed approach.
Three classes of similar bands were obtained by the aggrega-
tion process. The images in figure 2(a) represent the selected
bands. We can notice the clear difference and thus the com-
plementary of the selected bands. The multi-thresholding
results of these three bands are represented in the figure 2(b).
In examining these results, we can state that, in the sense of
the gray level, the different regions, which compose the orig-
inal bands, are well detected. Their boundaries align closely
with the visible transitions and the details are not lost. The
final classification results obtained following the developed
method (figure 3(b)) are coherent as compared to those of the
ground truth. These results have proven closer to the ground
truth that those obtained following a vectorial approach of k-
means applied on the original bands (figure 3(c)). This one
emphasizes some remarkable fluctuations due to the incon-
cideration of spatial relationships between pixels.



(a)

(b)

Fig. 2. (a) The selected bands. (b) The multi-thresholding
results (in false colors) of the selected bands.

4. CONCLUSION

The suggested method allows a segmentation of multispec-
tral images through a scalar approach. It proceeds in three
steps. The first tempts to eliminate redundant observations
by maximizing an entropy criterion. Scalar segmentations
via an automatic multi-thresholding technique are applied on
relevant bands, in the second step. Finally, a fusion of the
multi-thresholding results is achieved in the last step to pro-
vide the final segmentation.
The developed approach is quasi automatic and operates with-
out intervention of high-level knowledge. The efficiency of
this approach expresses itself in the majority of examined
cases, through a coherent detection of the representative el-
ements of the images.
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