DECOMPOSITION METHOD FOR CAMASSA-HOLM EQUATION

Jules Sadefo Kamdem, Zhijun Qiao

To cite this version:


HAL Id: hal-00004557
https://hal.archives-ouvertes.fr/hal-00004557v4
Submitted on 6 Apr 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Decomposition method for the Camassa–Holm equation

J. Sadefo Kamdem, Zhijun Qiao

Abstract

The Adomian decomposition method is applied to the Camassa–Holm equation. Approximate solutions are obtained for three smooth initial values. These solutions are weak solutions with some peaks. We plot those approximate solutions and find that they are very similar to the peaked soliton solutions. Also, one single and two anti-peakon approximate solutions are presented. Compared with the existing method, our procedure just works with the polynomial and algebraic computations for the CHequation.

1. Introduction

The generalized shallow water equation—the Camassa–Holm (CH) equation, which was derived physically as a shallow water wave equation by Camassa and Holm in [10], takes the form

\[ m_t + m_x u + 2m u_x = 0, \quad m = u - \frac{1}{4} u_{xx} \]  

where \( u = u(x,t) \) represents the horizontal component of the fluid velocity, and \( m = u - \frac{1}{2} u_{xx} \) is the momentum variable. The subscripts \( x, t \) of \( u \) denote the partial derivatives of the function \( u \) w.r.t. \( x, t \), for example, \( u_t = \partial u / \partial t, u_{xxt} = \partial^3 u / \partial x^3 \partial t \), similar notations will be used frequently later in this paper. This equation was first included in the work of Fuchssteiner and Fokas [15] on their theory of hereditary symmetries of soliton equations. As it was shown by Camassa and Holm, Eq. (1.1) describes the unidirectional propagation of two dimensional waves in shallow water over a flat bottom.

The solitary waves of Eq. (1.1) regain their shape and speed after interacting nonlinearly with other solitary waves. The most feature of this equation is peaked soliton (called peakon) solution, which is a weak solution with non-smooth property at some points.

The CH equation possesses the bi-Hamiltonian structure, Lax pair and multi-dimensional peakon solutions, and retains higher order terms of derivatives in a small amplitude expansion of incompressible Euler’s equations for unidirectional motion of waves at the free surface under the influence of gravity. In 1995, Calogero [9] extended the class of
mechanical system of this type. Later, Ragnisco and Bruschi [23] and Suris [24], showed that the CH equation yields the
dynamics of the peakons in terms of an N-dimensional completely integrable Hamiltonian system. Such kind of dynamical
system has Lax pair and an N × N r-matrix structure [23].

Recently, the algebro-geometric solution of the CH equation and the CH hierarchy arose much more attraction.
This kind of solution for most classical integrable PDEs can be obtained by using the inverse spectral transform theory,
see Dubrovin [14], Ablowitz and Segur [4], Novikov et al. [19], Newell [18]. This is done usually by adopting the spectral
 technique associated with the corresponding PDE. Alber and Fedorov [8] studied the stationary and the time-dependent
quasi-periodic solution for the CH equation and Dym type equation through using the method of trace formula [7] and
Abel mapping and functional analysis on the Riemann surfaces. Constantin and McKean [11] presented the solution of
the CH equation on the circle. Later, Alber, Camassa, Fedorov, Holm and Marsden [6] considered the trace formula
under the nonstandard Abel-Jacobi equations and by introducing new parameters presented the so-called weak finite-gap
piecewise-smooth solutions of the integrable CH equation and Dym type equations. Very recently, Gesztesy and
Holden [16], and Qiao [20] discussed the algebro-geometric solutions for the CH hierarchy using polynomial recursion
formalism and the trace formula, and constrained method, respectively. Thereafter, Qiao [21] studied an extension
version of the CH equation—the DP equation [13], and presented exact solutions by using the constrained method [22].

The present paper provides a different approach to the solutions of the CH equation. The Adomian decomposition
method is implemented to solve the Camassa–Holm equation with smooth initial conditions. Numeric algorithm and
graphs are analyzed and plotted, respectively. We also compare our solutions with other existing procedures, and find
that our approximate solutions are similar to peaked solitons of the CH equation.

2. Adomian decomposition method for Camassa–Holm equation

The Camassa–Holm equation (1.1) for real \( u(x, t) \)

\[
\frac{1}{4} u_{xx} + \frac{3}{2} (u^2)_x - \frac{1}{8} (u_t^2)_x - \frac{1}{4} (uu_{xx})_x = 0
\]

(2.2)
is written as

\[
L_t \left( u - \frac{1}{4} u_{xx} \right) = L_x \left( -\frac{3}{2} (u^2)_x + \frac{1}{8} u_t^2 + \frac{1}{4} uu_{xx} \right)
\]

(2.3)
where \( L_t = \frac{\partial}{\partial t} \) and \( L_x = \frac{\partial}{\partial x} \). Then \( L_t^{-1}(\cdot) = \int_0^t (\cdot) \, dt \) and \( L_x^{-1}(\cdot) = \int_0^x (\cdot) \, dx \). After operating the two sides of Eq. (2.3) with

\[
L_t^{-1} \text{ and } L_x^{-1},
\]

we have

\[
u(x, t) = u(x, 0) - \frac{1}{4} u_{xx}(x, 0) + \frac{1}{4} u_{xx} + L_t^{-1} L_x^{-1} \left( -\frac{3}{2} (u^2)_x + \frac{1}{8} u_t^2 + \frac{1}{4} uu_{xx} \right) = u(x, 0) - \frac{1}{4} u_{xx}(x, 0) + \frac{1}{4} u_{xx} + \int_0^t h(u(x, s)) \, ds
\]

(2.4)
where \( h(u) \) denote the differential operator

\[
h(u) := L_x \left( -\frac{3}{2} (u^2)_x + \frac{1}{8} u_t^2 + \frac{1}{4} uu_{xx} \right).
\]

(2.5)
The Adomian decomposition method consists of calculating the solution of Eq. (2.4) in a series form

\[
u = \sum_{n=0}^{\infty} \alpha_n
\]

(2.6)
and the nonlinear term becomes

\[
h(u) = \sum_{n=0}^{\infty} A_n
\]

(2.7)
where \( A_n \) are polynomials of \( u_0, u_1, \ldots, u_n \) called Adomian’s polynomials and are given by

\[
\begin{cases}
A_0(u_0) = h(u_0) & n = 0, \\
A_n(u_0, u_1, \ldots, u_n) = \sum_{\beta_1 + \cdots + \beta_n = n} A_0(u_0) \cdot \frac{\partial h}{\partial u_{\beta_1}}(u_{\beta_2}) \cdot \frac{\partial h}{\partial u_{\beta_3}}(u_{\beta_4}) \cdots \frac{\partial h}{\partial u_{\beta_{n-1}}}(u_{\beta_n}) \cdot \frac{\partial h}{\partial u_{\beta_n}}(u_{\beta_{n+1}}) & n \neq 0.
\end{cases}
\]

(2.8)
where \( h \) is a real function. (See for instance [5,1,2] for more details about the preceded procedure.) By the use of the relationships shown in the paper of Abbaoui and Cherruault [1], the \( A_n \) are determined as follows:

\[
\begin{align*}
A_0 &= h(u_0) \\
A_1 &= h^{(1)}(u_0)u_1 \\
A_2 &= h^{(1)}(u_0)u_2 + \frac{1}{2} h^{(2)}(u_0)u_1^2 \\
A_3 &= h^{(1)}(u_0)u_3 + h^{(2)}(u_0)u_1u_2 + \frac{1}{2} h^{(3)}(u_0)u_1^3 \\
A_4 &= h^{(1)}(u_0)u_4 + h^{(2)}(u_0)(u_1u_3 + \frac{1}{2} u_1^2) + \frac{1}{2} h^{(3)}(u_0)u_1^3u_2 + \frac{1}{6} h^{(4)}(u_0)u_1^4 \\
& \vdots
\end{align*}
\]

(2.9)

which recursively generates the formula of \( u_n \):

\[
\begin{align*}
u_0 &= u(x, 0) - \frac{1}{2}u_{xx}(x, 0) & n &= 0 \\
u_{n+1} &= \frac{1}{2}u_{nxx} + \int_0^1 A_n ds & \text{if } n \neq 0
\end{align*}
\]

(2.10)

Following Adomian decomposition methods, we consider the following functional equation:

\[
u - w = NL(u) + L(u)\]

(2.11)

where \( u \) is to be determined approximately in some appropriate functional space \( S \), \( w \) is a given element of \( S \), \( NL \) and \( L \) are a nonlinear operator and a linear operator from a subset \( X \) of the functional space \( S \) onto itself, respectively. Here, we seek a solution of Eq. (2.11) in the form \( u = \sum_{n=0}^{\infty} u_n \). To do so, we approximate the nonlinear operator \( NL \) with

\[
NL(u) = h(u) = \sum_{n=0}^{\infty} A_n \{ u \},
\]

(2.12)

where the functions \( A_n \)'s \( (n = 0, 1, 2, \ldots) \) are the so-called Adomian’s polynomials and determined by

\[
A_n \{ u \} = \frac{1}{n!} \left[ \frac{d}{dx}^n h(u, \alpha) \right] _{\alpha=0} = \frac{1}{n!} \left[ \frac{d}{dx}^n \left[ \left( a \sum_{j=0}^{\infty} j!u_j \right)^2 + b \left( \sum_{j=0}^{\infty} j!u_j \right)^2 + c \left( \sum_{j=0}^{\infty} j!u_j \right) \left( \sum_{j=0}^{\infty} j!u_{jxx} \right) \right] \right]_{\alpha=0} = \frac{1}{n!} \sum_{j=0}^{n} \left[ \begin{array}{c} n \\ j \end{array} \right] j!(n-j)! \left\{ a(u_{jx}u_{n-j})x + u_{(n-j)x}u_j \left[ u_{(n-j)x} + u_{jx} \right] \right\} + c \sum_{j=0}^{n} u_{jxx}u_{n-j} + u_j u_{(n-j)x} \left[ u_{(n-j)x} + u_j \right],
\]

(2.13)

where \( a = -3/2 \), \( b = 1/8 \), \( c = 1/4 \) and \( u_0 = \sum_{j=0}^{\infty} j!u_j \).

The expected solution \( u = \sum_{n=0}^{\infty} u_n \) is approximated by the following \( m \) term’s sum:

\[
\phi_m[u] = \sum_{n=0}^{m-1} u_n
\]

which rapidly converges \( u \). In this sense, \( m \) is able to be chosen as a small number so that this series is convergent to \( u \). This method has been investigated in several authors’ work (see [12,1,2] for more details).

As we see, it is not hard to write a program for generating the Adomian polynomials. We summarize the entire procedure in the following algorithm:

**Algorithm**

- Input: \( J(x) \)—initial conditions, i.e. \( u(x, 0) - \frac{1}{2}u_{xx}(x, 0) = J(x) \), \( k \)—number of terms in the approximation
- Output: \( u_{\text{approx}}(x, t) \) : the approximate solution
  - Step 1: Set \( u_0 = J(x) \) and \( u_{\text{approx}}(x, t) = u_0 \).
  - Step 2: For \( k = 0 \) to \( n - 1 \), do Step 3, Step 4, and Step 5.
  - Step 3: Compute
Step 4: Compute

\[ A_k = a \sum_{j=0}^{k} [u_{j+1} u_{k-j} + 2u_j u_{(k-j)x} + u_{(k-j)x} u_j] + b \sum_{j=0}^{k} [u_{j+1} u_{(k-j)x} + u_j u_{(k-j)x}] + c \sum_{j=0}^{k} [u_{j+1} u_{(k-j)x} + u_j u_{(k-j)x}] \].

Remark 2.1. It is not hard to see that the above procedure also works for the following general equation:

\[ u_t + au_{xx} + b(u^2)_x + c(u_x^2)_x + d(u u_{xx})_x = \gamma(x, t) \]  

(2.14)

where \( a, b, c, d \) are real constants and the function \( \gamma \) is sufficiently smooth.

3. Convergence analysis

In this section, we discuss the convergence property of the approximated solution for the CH equation. Let us consider the CH equation in the Hilbert space \( H = L^2((\alpha, \beta) \times [0, T]) \):

\[ H = \left\{ v : (\alpha, \beta) \times [0, T] \mid \int_{(\alpha, \beta) \times [0, T]} v^2(x, s) \, ds \, dt < +\infty \right\} \]  

(3.15)

Then the operator is of the form

\[ T(u) = L_t (u + au_{xx}) = -b(u^2)_x - c(u_x^2)_x - d(u u_{xx})_x + \gamma(x, t) \]  

(3.16)

The Adomian decomposition method is convergent if the following two hypotheses are satisfied:\(^1\)

- (Hyp1): There exists a constant \( k > 0 \) such that the following inner product holds in \( H \):

\[ \langle T(u) - T(v), u - v \rangle \geq k\|u - v\|, \quad \forall u, v \in H; \]  

(3.17)

- (Hyp2): As long as both \( u \in H \) and \( v \in H \) are bounded (i.e. there is a positive number \( M \) such that \( \|u\| \leq M \), \( \|v\| \leq M \)), there exists a constant \( \theta(M) > 0 \) such that

\[ \langle T(u) - T(v), u - v \rangle \leq \theta(M)\|u - v\|\|w\|, \quad \forall w \in H. \]  

(3.18)

Theorem 3.1 (Sufficient conditions of convergence for the CH equation). Let

\[ T(u) = L_t (u + au_{xx}) = -b(u^2)_x - c(u_x^2)_x - d(u u_{xx})_x + \gamma(x, t), \quad \text{with } d - c > 0, \quad L_t = \frac{\partial}{\partial t} \]

and consider the free initial and boundary conditions for the CH equation. Then the Adomian decomposition method leads to a special solution of the CH equation.

---

\(^1\) See Abbaoui and Cherruault [1,2] and some references therein for more details.
Proof. To prove the theorem, we just verify the conditions (Hyp1) and (Hyp2). For \( \forall u, v \in H \), let us calculate:

\[
T(u) - T(v) = -b(u^2 - v^2)_x - c(u^2 - v^2)_x - d(u_{xx} - v_{xx})
\]

\[
= -b(u^2 - v^2)_x - (2c + d)(u_{xx} - v_{xx})
\]

\[
= -b \frac{\partial}{\partial x} (u^2 - v^2) - (2c + d)(u_{xx} - v_{xx}) - d \frac{\partial^3}{\partial x^3} (u^2 - v^2)
\]

\[
= -b \frac{\partial}{\partial x} (u^2 - v^2) - (c - d) \frac{\partial^3}{\partial x^3} (u^2 - v^2)
\]

Therefore, we have the inner product

\[
(T(u) - T(v), u - v) = b \left( -\frac{\partial}{\partial x} (u^2 - v^2), u - v \right) + (c - d) \left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right)
\]

\[
+ \frac{d}{2} \left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right)
\]

(3.19)

Let us assume that \( u, v \) are bounded and there is a constant \( M > 0 \) such that \( (u, u)_x, (v, v)_x < M^2 \). By using Schwartz inequality

\[
\left( \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \leq \|(u^2 - v^2)_x\| \|u - v\|
\]

(3.20)

and since there exist \( \theta_1 \) and \( \theta_2 \) such that \( \|(u - v)_x\| \leq \theta_1 \|u - v\| \), \( \|(u + v)_x\| \leq \theta_2 \|u - v\| \) and \( \|u + v\| \leq 2M \), we have

\[
\left( -\frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \leq 2M \theta_1 \theta_2 \|u - v\|^2.
\]

\[
\iff
\left( -\frac{\partial}{\partial x} (u^2 - v^2), u - v \right) \geq 2M \theta_1 \theta_2 \|u - v\|^2.
\]

(3.21)

Following the preceding procedure, we can calculate:

\[
\left( \frac{\partial}{\partial x} (u^2 - v^2)_x, u - v \right) \leq \|(u^2 - v^2)_x\| \|u - v\|
\]

\[
\leq \theta_3 \|u_x + v_x\| \|u - v\|
\]

\[
\leq 2M \theta_1 \theta_2 \theta_3 \|u - v\|^2.
\]

\[
\iff
\left( \frac{\partial}{\partial x} (u^2 - v^2)_x, u - v \right) \geq 2M \theta_1 \theta_2 \theta_3 \|u - v\|^2.
\]

(3.22)

where \( \theta_i (i = 3, 4, 5) \) are positive constants.

Moreover, the Cauchy–Schwarz–Buniakowski inequality yields

\[
\left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right) \leq \|(\partial^3 (u^2 - v^2))_{xxx}\| \|u - v\|
\]

(3.23)

then by using the mean value theorem, we have

\[
\left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right) \leq \theta_6 \theta_7 \theta_8 \|u^2 - v^2\| \|u - v\|
\]

\[
\leq 2M \theta_6 \theta_7 \theta_8 \|u - v\|^2
\]

\[
\iff
\left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right) \geq 2M \theta_6 \theta_7 \theta_8 \|u - v\|^2
\]

(3.24)

where \( \theta_j (i = 6, 7, 8) \) are three positive constants, and \( \|(u^2 - v^2)_{xxx}\| \leq \theta_6 \|(u^2 - v^2)_x\| \), \( \|(u + v)_{xxx}\| \leq \theta_7 \|(u + v)_x\| \) and \( \|(u + v)_x\| \leq \theta_8 \|u + v\| \).
Substituting (3.21), (3.22), (3.24) into (3.19) generates the following inner product:
\[
(T(u) - T(v), u - v) = \left( -b \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) - (c - d) \left( \frac{\partial}{\partial x} (u^2 - v^2), u - v \right) - \frac{d}{2} \left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), u - v \right)
\]
where \( k = (2b \theta_1 \theta_2 + 2(c - d) \theta_1 \theta_3 + d d_1 \theta_2 \theta_3) M \). So, (Hyp1) is true for the CH equation.

Let us now verify the hypotheses (Hyp2) for the operator \( T(u) \). We directly compute:
\[
(T(u) - T(v), w) = \left( -b \frac{\partial}{\partial x} [u^2 - v^2], w \right) - (c - d) \left( \frac{\partial}{\partial x} [u^2 - v^2], w \right) - \frac{d}{2} \left( \frac{\partial^3}{\partial x^3} (u^2 - v^2), w \right)
\]
where \( \theta(M) = (-2b + 2c) M \). Therefore, (Hyp2) is correct as well.

Remark 3.2. Choice of \( b = -3/2 \), \( c = 1/8 \), \( d = 1/4 \), \( \gamma(x, t) \equiv 0 \) corresponds to the CH equation. So, the Adomian decomposition method works for the CH equation.

4. Implementation of the method and approximate solutions

In this section, we take some examples to show the procedure and present some approximate solutions for the CH equation.

Example 4.1
\[
\begin{align*}
&u_t - \frac{1}{4} u_{xxx} + \frac{1}{2} (u^2)_x - \frac{1}{2} (u^2)_x - \frac{1}{4} (uu_{xx})_x = 0 \\
&u_0 = u(x, 0) - \frac{1}{4} u_{xxx}(x, 0) = c \sinh(x) \\
&u_{0x} = u_0, u_{0x} = c \cosh(x), u_{0x}^2 - u_{0x}^2 = c^2 \text{ and } \theta(u_0) = (\theta(u_0))/u_0
\end{align*}
\]
where \( u_{0x} \neq 0 \), \( \theta^{(n)}(u_0) = h \) and \( \theta^{(n)} \) denotes the \( n \)th derivative of \( h \). Since the formula (2.13) implies the formula (2.9), we need the explicit expression of the \( n \)th derivative of \( h \). Through direct calculations, we obtain the following formulas:

\[
A_0 = h(u_0) = -3 \left( u_{0x}^2 - u_0^2 + \frac{1}{4} u_0 u_{0x} \right) = -\frac{3}{4} c^4 (\cosh^2(x) + \sinh^2(x))
\]

\[
u_1(x, t) = \frac{4}{4} u_{0x} + \int_0^t h(u_0) \, ds = \frac{c}{4} \sinh(x) - \frac{3}{4} c^4 (\cosh^2(x) + \sinh^2(x)) t
\]

\[
A_1 = u_1 h^{(1)}(u_0) = \left( \frac{1}{4} u_0 + A_0 t \right) \left( \frac{3}{4} (u_{0x}^2 - u_0^2 + \frac{1}{4} u_0 u_{0x})_x \right)
\]

\[
= \frac{1}{4} u_0 + A_0 t - \frac{3}{2} (u_{0x}^2 u_{0x}^2 - u_{0x}^2 u_{0x} + \frac{1}{4} u_0 u_{0x}^2 + u_{0x} u_{0x}^2)_x
\]

\[
= \frac{3}{4} c^4 \sinh(x) - \frac{3}{4} c^4 (\cosh^2(x) + \sinh^2(x)) t \sinh(x).
\]

\[
u_2(x, t) = \frac{1}{4} u_{0x} + \int_0^t A_1 \, ds = \frac{c}{16} \sinh(x) - 3c^2 (1 + 2 \sinh^2(x)) t + 3 \left( \frac{c^2}{4} \sinh(x) t + \frac{3c^3}{8} (1 + 2 \sinh^2(x)) t^2 \right) \sinh(x)
\]

\[
= \frac{c}{16} \sinh(x) - 3c^2 \left( 1 + \frac{7}{4} \sinh^2(x) \right) t + \frac{9c^3}{8} \left( \sinh(x)^2 + 2 \sinh^3(x) \right) t^2
\]

\[
u_3(x, t) = u_2 h^{(1)}(u_0) + u_1^2 h^{(2)}(u_0) = -3 u_2 u_0 - 3 \left( \frac{c}{4} \sinh(x) + \frac{3}{4} c^2 \cosh^2(x) + \sinh^2(x) \right) t
\]
\[ u_3(x,t) = \frac{1}{4} u_{2x} + \int_0^t A_2 \, ds \]
\[ = \frac{c}{64} \sinh(x) - \frac{42c^2}{16} \left[ (\cosh^2(x) + \sinh^2(x)) + \frac{9c^3}{8} \left( (\sinh(x)^2 + \cosh^2(x)) + 2\sinh^3(x) + 12\sinh(x)\cosh^2(x) \right) \right] \]
\[ - 3 \sinh(x) \left( \frac{c}{16} \sinh(x) t - \frac{3c^2}{2} \left( 1 + \frac{7}{4} \sinh^2(x) \right) \right) + \frac{9c^3}{24} \left( \sinh(x)^2 + 2\sinh^3(x) \right) \]
\[ - \frac{4}{c^2(1 + 2\sinh^2(x))} \left( \frac{c}{4} \sinh(x) + \frac{3c^2}{4} \left( 1 + 2\sinh^2(x) \right) t \right)^3 \]

So, the approximate solution, truncated in the second term, is
\[ u(x,t) \approx u_0 + u_1(x,t) + u_2(x,t) \]
\[ = \frac{c^3}{2} \left( \frac{585}{8} \cosh(x) \sinh(x)^2 - \frac{9}{2} \sinh(x)^3 - 27\cosh(x)^2 \sinh(x) \right) t^2 + \frac{c^3}{2} \left( \frac{585}{8} \cosh(x)^3 - \frac{9}{2} \cosh(x)^4 \right) t^2 \]
\[ + \frac{c^2}{2} \left( - \frac{93}{8} \sinh(x)^2 - \frac{93}{8}(\cosh(x)^2 - 3\cosh(x) \sinh(x)) \right) t^3 + \frac{21c}{16} \sinh(x) \]

The graph of \( u(x,t) \) is plotted in Fig. 1. From the figure, we see that the approximate solution is similar to a single peakon solution of the CH equation.

Example 4.2
\[
\begin{align*}
\frac{u_t}{2} - \frac{1}{4} u_{xxt} + \frac{1}{8} (u^2)_x - \frac{1}{8} (u^2)_y - \frac{1}{4} (uu_x)_x &= 0 \\
u_0 &= u(x,0) - \frac{1}{4} u_{xx}(x,0) = c_1 \cosh(x), \quad c_1 = \text{constant}.
\end{align*}
\]

Let us follow the procedure in Example 4.1 and notice \( u_0^2 - u_{0x}^2 = c_1^2 \), we obtain the following formulas.
\[ u_1(x,t) = \frac{1}{4} u_{0xx} + \int_0^t h(u_0) \, ds \]
\[ = \frac{c}{4} \cosh(x) - \frac{3c^2}{4} \left( 4\cosh(x)^2 + \sinh(x)^2 \right) - \cosh(x) \sinh(x) t \].
\begin{align*}
  u_2(x,t) &= \frac{1}{4} u_{xx} + \int_0^t A_1 \, ds \\
  &= \frac{c^3}{2} \left( \frac{585}{8} \cosh(x) \sinh(x)^2 \right) t^2 \\
  &\quad + \frac{c^3}{2} \left( -\frac{9}{2} \sinh(x)^3 - 27 \cosh(x)^2 \sinh(x) + \frac{585}{8} \cosh(x)^3 - \frac{9}{4} \sinh(x) \cosh(x)^4 \right) t^2 \\
  &\quad + 3c^2 \left( \sinh(x)^2 - 2 \cosh(x)^2 + \frac{5}{16} \cosh(x) \sinh(x) + \frac{1}{16} \sinh(x) \cosh(x)^3 \right) t + \frac{c}{16} \cosh(x)
\end{align*}

\text{So, the approximate solution corresponding to Eq. (4.26) is}

\begin{align*}
  u(x,t) &\approx u_0 + u_1(x,t) + u_2(x,t) \\
  &= \frac{c^3}{2} \left( \frac{585}{8} \cosh(x) \sinh(x)^2 - \frac{9}{4} \sinh(x)^3 - 27 \cosh(x)^2 \sinh(x) \right) t^2 \\
  &\quad + \frac{c^3}{2} \left( \frac{585}{8} \cosh(x)^3 - \frac{9}{2} \sinh(x) \cosh(x)^4 \right) t^2 \\
  &\quad + c^2 \left( -6 \sinh(x)^2 - 9 \cosh(x)^2 + \frac{27}{16} \cosh(x) \sinh(x) + \frac{3}{16} \sinh(x) \cosh(x)^3 \right) t + \frac{21c}{16} \cosh(x)
\end{align*}

\text{The graph of } u(x,t) \text{ is plotted in Fig. 2, which shows that the approximate solution is similar to a single anti-peakon solution of the CH equation.}

\text{Example 4.3}

\begin{align*}
  \begin{cases}
    u_t - \frac{1}{2} u_{xxt} + \frac{1}{2} (u^2)_x - \frac{1}{2} (u_x u_{xx})_x = 0 \\
    u_0 = u_x(x,0) - \frac{1}{2} u_{xx}(x,0) = ae^x + be^{-x}
  \end{cases} \quad (4.27)
\end{align*}

\text{In this case, by } u_{0xx} = u_0, \quad e^x = \frac{u_x + u_{0x}}{2a}, \quad e^{-x} = \frac{u_x - u_{0x}}{2b} \text{ and } u_0^2 = u_0^2 = 4ab, \text{ we obtain those } u_j \text{'s below}

\begin{align*}
  A_0 &= -\frac{1}{4} (21a^2 e^{2x} - 27b^2 e^{-2x}) \\
  u_1 &= \frac{1}{4} u_{0xx} + \int_0^t A_0 \, ds = \frac{ae^x + be^{-x}}{4} - \frac{1}{4} (21a^2 e^{2x} + 27b^2 e^{-2x}) t
\end{align*}

Fig. 2. Approximate solution for } c = 1.
Fig. 3. Approximate solution for $a = -5, b = 2$.

Fig. 4. Approximate solution for $a = -5, b = 10$.

Fig. 5. Approximate solution for $a = 5, b = 2$. 
u_2(x, t) = \frac{a e^x + b e^{-x}}{16} - \left(\frac{21a^2}{4} e^{2x} + \frac{27b^2}{4} e^{-2x} - \frac{1}{ae^x - b} \left(\frac{27ab^2}{8} - \frac{21a^2b}{8} e^{2x} + \frac{27b^3}{8} e^{-2x}\right)\right) t
+ \frac{1}{ae^x - b} \left(\frac{441a^4 e^{3x}}{16} - \frac{729}{16} b^4 e^{-3x}\right) t^2.

So, the approximate solution corresponding to Eq. (4.27) is

u(x, t) \approx u_0 + u_1(x, t) + u_2(x, t)
= \frac{21}{16} (ae^x + be^{-x}) - \left(\frac{21a^2}{2} e^{2x} + \frac{27b^2}{2} e^{-2x} - \frac{1}{ae^x - b} \left(\frac{27ab^2}{8} - \frac{21a^2b}{8} e^{2x} + \frac{27b^3}{8} e^{-2x}\right)\right) t
+ \frac{1}{ae^x - b} \left(\frac{441a^4 e^{3x}}{16} - \frac{729}{16} b^4 e^{-3x}\right) t^2.

The graphs of u(x, t) for different a’s and b’s are plotted in Figs. 3–6. Those figures reveal that the approximate solutions are describing the interactions of two anti-peakons for the CH equation.

5. Conclusions

In this paper, we successfully apply the Adomian polynomial decomposition method to solve the CH equation in an explicitly approximate form. The initial values we adopted are smooth, but the most interesting is: the approximate solutions are weak solutions with some peaks (see graphs in Figs. 1–6). The approximate solutions in Figs. 1, 2 show the single peakons of the CH equation, while the approximate solutions in Figs. 3–6 provide the interactions of the two anti-peakons. In comparison with the existing method to obtain two exact anti-peakons, our procedure just works on the polynomial and algebraic computations. In the future, we plan to generalize our method to multi-soliton solutions for the CH equation and other higher order equations. In the recent literatures, there are also other methods to deal with nonlinear partial differential equations [3,17], where smooth solutions were obtained. Our paper presents some peaked (i.e. continuous but non-smooth) explicit solutions for the CH equation (1.1).

Acknowledgements

The authors thank the referees for mentioning the Refs. [3,17]. Qiao did his partial work during he visited the ICTP, Trieste, Italy, University of Kassel, Germany, and Delaware State University, Dover, Delaware this summer. Qiao specially expresses his sincere thanks to Prof. Strampp (University of Kassel), Prof. Fengshan Liu (DSU), Prof. Xiquan Shi...
(DSU), and Dr. Guoping Zhang (DSU) for their friendly hospitality. Qiao’s work was partially supported by the UTPA-FDP grant.

References