On the detachment of gelatinous layer in tension wood fiber
Bruno Clair, Bernard Thibaut, Junji Sugiyama

To cite this version:

HAL Id: hal-00004516
https://hal.archives-ouvertes.fr/hal-00004516
Submitted on 18 Mar 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
On the detachment of gelatinous layer in tension wood fibre

Abstract The detachment of gelatinous layer (G-layer), often observed on microtome cross sections, leads some authors believe that G-layer cannot act as the driving force of longitudinal shrinkage in tension wood. The aim of this study was to observe the detachment of G-layer along fibres. Green wood block was cut transversely into two samples. One sample was kept in water and the other oven-dried. One face being common to both samples, detachment of G-layer has been studied on the same fibres. Observations have been performed after blocking deformation by embedding. It reveals that the detachment of G-layer is a cutting effect produced during the first making of the transverse face of the wood block to be embedded. After 100 µm far from this primary surface of the sample no detachment can be observed. Drying shrinkage does not affect or little this detachment. The result seems to explain well why the detachment of G-layer occurs during sectioning using a conventional sliding microtomy. These observations prove the adhesion of G-layer in massive wood and confirm the active role of G-layer in tension wood properties.

Key-words Wood cell wall, cutting effect, gelatinous layer (G-layer), growth stress, tension wood, Populus euramericana

Introduction
To maintain verticality, most angiosperms are able to produce highly tensile stressed wood on the upper side of the leaning trunk. The stress asymmetry between both upper and lower sides of the trunk permits then to bend it to recover verticality1, 2. This xylem with high tension stress is called tension wood. It is characterised in many species by an unusual cell wall structure with a characteristic layer called gelatinous layer (G-layer)3. G-layer is known to have a high cellulose content with a high degree of crystallinity4, 5 and cellulose microfibrils are oriented along the axis of the cell6. These differences in chemical composition and structure give to macroscopic tension wood some particular properties in comparison to normal wood, notably a high shrinkage7-11. These high macroscopic shrinkages can find explanations in the properties of G-layer itself. In spite of its structure with microfibrils axially oriented, G-layer is subject to high shrinkage both in transverse7 and longitudinal directions12. However, in order to contribute to the macroscopic behaviour, G-layer has to have a relatively higher elastic modulus in its axial direction and to be in tight adherence with the other layers of the cell. G-layer being often observed loosely attached to normal secondary wall layer13-15, its contribution to macroscopic behaviour, especially to axial shrinkage, has been put in question16-18. The aims of this study were to observe, after blocking deformation by embedding, the detachment of the G-layer from S2-layer along the fibre. Observations were made on never-dried wood and on dried wood in order to evaluate the influence of drying on the G-layer detachment.

Materiel and methods
Plant material
Experiments have been performed on poplar tension wood (Populus euramericana Guinier). This species is known to have a characteristic tension wood fibre with G-layer organised as P+S1+S2+G17. Samples were taken from the upper side of a tilted and bent young poplar tree (8 cm
diameter at the breast height). This tree shape shows the necessity and ability of tree to restore verticality what is an indicator of the production of tension wood. Anatomical observations confirmed presence of a large amount of fibres with thick G-layer and thin S2-layer in samples.

Samples preparation
Samples were maintained in water as soon as they were taken out from the tree. Wood sticks (4 mm in longitudinal direction, 1 x 1 mm² in cross section) were longitudinally cut by splitting to guarantee a good axial direction. To avoid shrinkage, the samples were always kept in a drop of water during the preparation. They were then cut in the middle of axial direction, perpendicular to the fibre, with a brand-new razor blade (Feather S35 type) in order to obtain two samples. Both samples are perfectly symmetric and the effect of the tool on both faces can be considered as identical. One sample was oven-dried (105°C during 6 hours) and the other kept in water (Fig. 1). One face being common to both sample, one can recognize fibres on both sample and then compare the effect of drying on the same fibre. This common face will be called reference face (RF). Wet sample were dehydrated with ethanol series and embedded in LR White resin (two exchanges of resin/ethanol mixture for 1 hour, followed by two exchanges in pure resin for 1 hour and kept overnight at room temperature). Dried sample were directly embedded in LR White resin after being removed from the oven (two exchanges under vacuum in pure resin for 1 hour and kept overnight at room temperature). Serial cross-sectioning (2 µm thickness) was performed with a glass knife. Sectioning of oven-dried sample was more difficult and flatness of the sections often more irregular. It is likely because the penetration of the resin into dry samples without ethanol series is less efficient. Sections were stained with Toluidine blue mixed with Azure II, mounted on glass slides and observed under an optical microscope. Images were obtained with a digital camera and measurements were done with image analysis software.

After polymerisation of the resin, all deformations of the tissue are supposed to be blocked, and then sectioning does not alter the shape and the size of the cell wall layers (compression deformations inevitably produced by the cutting effort, perpendicularly to the cutting direction, were not considered because they do not get involved in the interpretation of results in this article). This method allows to do some observations of the cells from the end (RF) to inside the sample conserving the morphology as it was before embedding. Thus, all the deformations observed in the cell shapes are the results from the RF cutting and drying shrinkage before the embedding. As a proof that G-layer detachment has been produced before embedding, the presence of resin between G-layer and S2-layer can be observed (continuity of knife trace in resin between G-layer and S2-layer) in Fig. 2 a-b. Shape of the cell wall layers (notably G-layers) was followed from the cutting end, along the fibres. Detachment of G-layer was taken into account as far as visible under a microscope (magnification 630X).

In this report, “never-dried wood” means the wood that has resin-embedded without oven-drying. However, the consequences of dehydration by ethanol series needed for embedding are not well known. Notably, a partial shrinkage could occur as suggested by Ishimaru and Sakai18.

Results
G-layer detachment in never-dried wood
As frequently observed on thin transverse sections, poplar sample studied presents some fibres where G-layer was partially detached from S2-layer. This phenomenon was clearly visible at the end of the sample (near RF) but disappeared far from it in a series of sequential section. Figure 2 shows the same group of cells observed at 6 distances from the RF (10, 18, 28, 50, 70 and 150 µm respectively). 25 fibres which G-layers were detached on the surface of the sample were followed until 300 µm far from the RF. It appears that at 40 µm far from RF, only half of the fibres were still with a detached G-layer. At 100 µm from the RF, the 25 fibres observed did present no more delamination between G-layer and S2-layer. Continuing observation until 300 µm, no detached G-layer was not able to be observed.

Effect of drying on G-layer detachment
In the oven-dried part of the sample, fibres presenting G-layer detachment were the same with the one presenting detachment in the non-dried part of the sample (Fig. 3). The same number of fibres presented detachment of G-layer. Similar depth (barely more) was needed to recover adherence between G-layer and S2-layer. Like in the never-dried sample, after about 100 µm from the end, no detachment of G-layer was observed.
Fig. 2: Transverse section of never-dried poplar tension wood. Observation of detachment of G-layer from S2-layer versus the distance (D) to the cutting surface (RF). a: D=10 µm; b: D=18 µm; c: D=28 µm; d: D=50 µm; e: D=70 µm; f: D=150 µm. Scale bar = 20 µm.

Fig. 3: Transverse section of dried poplar tension wood. Distance (D) to the cutting surface (RF): a: D=10 µm; b: D=16 µm; c: D=34 µm; d: D=50 µm; e: D=96 µm; f: D=150 µm. Observed cells are the same in Fig. 2. Scale bar = 20 µm.
Discussion

These observations show that detachment of G-layer often observed is a border effect. In our observations, this effect affected only the first 100 µm near the end (RF). So, using a conventional sliding microtoming, detachment of G-layer can be foreseeable since the thickness of sections is usually around 10 to 20 µm. Observations made on the dried wood shown that G-layer detachment did not or little depends on drying shrinkage. Ours observations agree well with the observations made by Okumura et al. They follow the thickness variation of the G-layer all along tension wood fibres on embedded samples, however no detachment can be observed on the electron micrographs they presented. This may likely because in order to observe total length of the targeted fibres, the sections were cut far enough from the border of the sample. In these conditions, detachment would not be observed.

As reported by some authors, observation near the end of the sample (Fig. 2ab and 3ab) shows that the largest deformations of all detached G-layer are always oriented in a same direction. Then, action of the tool (razor blade) on the G-layer seems to be the trigger of the detachment. However, others layers than G-layer has never been reported to be subject to detachment during sectioning. Then the specificity of G-layer will have to be considered to explain its detachment from S2-layer. Some works are in progress to show if the high tensile stress which can be expected in G-layer could be the trigger of this detachment.

Thus, in tension wood fibre, G-layer is always in adherence to the S2-layer in massive wood. Adherence is strong enough not to be too much altered by the high transverse and longitudinal shrinkage of G-layer. These observations prove the contribution of G-layer to the mechanical and physical properties of tension wood. As the G-layer shrinks during drying, the present study reinforce the idea that G-layer is the driving force of macroscopic longitudinal shrinkage of tension wood.

Acknowledgements

The study was supported by a Grant in Aid for Scientific Research from the Japanese Society of Promotion of Science (no. 14656069, 14360099, 14002805). CB is a recipient of a JSPS Fellowship.

References

3. Onaka F (1949) Studies on compression and tension wood. Wood Research, Bulletin of the Wood Research Institute, Kyoto University, Japan 24(3): 1-88