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(Received 5 September 2016)

In this paper we study the steady uniform flows that develop when granular material is
released from a hopper on top of a static pile in a channel. We more specifically focus on
the role of side walls by carrying out experiments in setup of different widths, from narrow
channels 20 particle diameters wide to channels 600 particle diameters wide. Results show
that steady flows on pile are entirely controlled by side wall effects. A theoretical model,
taking into account the wall friction and based on a simple local constitutive law recently
proposed for other granular flow configurations (GDR MiDi 2004), gives predictions in
quantitative agreement with the measurements. This result gives new insights in our
understanding of free surface granular flows and strongly supports the relevance of the
constitutive law proposed.

1. Introduction

Grains avalanching on a sand heap are often presented as the archetype of granular
flows. In this situation both the liquid and solid behaviours of granular material coexist.
The flow is confined in a thin layer of grains, typically few grain diameters, flowing at
the free surface of a pile formed by static grains. Despite the apparent simplicity of the
configuration, its description still represents a serious challenge as it gathers in a single
flow all the difficulties specific to granular material. How can we describe the transition
between the liquid and the solid behaviour? How is the thickness of the flowing layer
selected? What kind of constitutive laws can describe the flow characteristics? These
questions have motivated many experimental works in the ten last years. Two different
configurations have been used to create surface granular flows: the flow on a heap and
the rotating drum (figure 1). In the first one, the granular material is released from
a hopper on top of a pile. The control parameter is the flow rate. The second one is
a cylinder half filled with the granular material. In this case, the control parameter is
the rotation speed that indirectly controls the flow rate of the flowing layer. In both
configurations, the flow characteristics are similar and can be summarized as follow:

(i) A minimum flow rate (or rotation rate in the rotating drum) exists below which
the flow is intermittent and proceeds as successive avalanches. Above this threshold, a
steady regime is observed (Rajchenbach 1990; Lemieux & Durian 2000).
(ii) In the steady regime, the free surface inclination, sometimes called the dynamical

angle of friction, increases when increasing the flow rate (Khakhar et al. 2001; Ancey 2001;
Taberlet et al. 2003; GDR MiDi 2004).

(iii) In the steady regime, the velocity profile (often measured at the side wall) is
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Figure 1. The two configurations leading to granular surface flows. (a) Flow on a heap; (b)
Rotating drum.

localized at the free surface, with a linear profile at the top followed by an exponen-
tial tail (Komatsu et al. 2001; GDR MiDi 2004). The shear rate in the flowing re-
gion is of order

√

g/d where g is the gravity and d the particle diameter, this shear
rate being weakly dependent on the flow rate (Rajchenbach 1990; Khakhar et al. 2001;
Bonamy, Daviaud & Laurent 2002).

Based on these observations, several theoretical approaches have been proposed. Some
are based on the analysis of individual grains motion, showing that a linear profile lo-
calized at the free surface could be explained by the dissipative nature of collisions
(Andreotti & Douady 2001; Rajchenbach 2003; Hill, Gioia & Tota 2003). Others are hy-
drodynamic descriptions based on different rheological constitutive laws (Elperin & Vikhanski 1998;
Khakhar et al. 2001; Bonamy, Daviaud & Laurent 2002; Josserand, Lagrée & Lhuillier 2004).
In all these attempts to describe free surface flows, the influence of side walls is neglected.
The experimental measurements are interpreted as if the side walls, often made of smooth
surfaces, do not play a major role in the flow dynamics.

However, this assumption is far from being straightforward and to our opinion war-
rants a deeper investigation. Some signs exist in the literature showing that side walls
could have a crucial role in the dynamics of surface granular flows. The most strik-
ing evidence concerns the inclination angle of the free surface with respect to hori-
zontal. In the intermittent avalanching regime, experimental works have shown that
angles at which avalanches start or stop strongly depend on the width between lat-
eral walls (Grasselli & Herrmann 1997; Zhou et al. 2002). In the continuous flowing
regime, experiments carried out in long rotating drums have shown that the surface
inclination is few degrees higher close to the wall than in the middle of the drum
(Dury et al. 1998; Yamane et al. 1998). More recently, some studies of flow on a heap
have revealed the existence of surprisingly steep piles at high flow rates in narrow chan-
nels (Taberlet et al. 2003). This angle made by the free surface with horizontal controls
the stress distribution in the material. As a consequence, if side walls have a strong
influence on the inclination, it is legitimate to wonder to what extent they do not dra-
matically also modify the flow characteristics, such as the flow thickness and the velocity
profiles. However, most of the experiments are carried out in narrow devices, with a gap
between side walls less than 30 particle diameters. Very few studies are made in wide
rotating drums configuration and none in wide heap configuration. What does happen
in the case of large system? Are flow characteristics going to change? Does the influence
of side walls disappear for large enough system?

Answering these questions on the role of side walls for granular surface flows represents
the first goal of this study. Once we know if side walls can be neglected or not and what
is their influence, it will be possible to properly use the surface flow configuration to test



Crucial role of side walls for granular surface flows: consequences for the rheology 3

constitutive equations for dense granular flows. This is the second goal of this study,
where we shall test an empirical rheology recently proposed for other configurations.

In a recent collective work (GDR MiDi 2004), data from different configurations and
from different research groups have been collected. A local rheology has been proposed,
which was able to unify results numerically obtained on plane shear (Chevoir et al. 2004;
Iordanoff & Khonsari 2004; Da Cruz et al. 2004) and results obtained both in experi-
ments and in simulations for flows down inclined planes (Pouliquen 1999; Chevoir et al. 2001;
Pouliquen & Forterre 2002; Silbert, Landry & Grest 2003; Forterre & Pouliquen 2003).
The rheology is written has a friction law, i.e. the shear stress is proportional to the
normal stress, with a coefficient of friction depending on a dimensionless shear rate. Al-
though this local approach suffers from several limits which are discussed in GDR MiDi
(2004), the fact that a single law correctly describes two different configurations, the
plane shear and the inclined plane, is to our opinion very encouraging and deserves a
deeper confrontation with other flow configurations. In that sense, granular surface flows
represent a severe test for this local rheology as they exhibit peculiar flow characteristics,
e.g. localized velocity profiles, that strongly contrast with those observed in plane shear
or inclined plane configurations.

The aims of this study are then, first to clarify the role of side walls for granular surface
flows and second, to test the local constitutive law proposed recently in GDR MiDi
(2004). The configuration we choose is the flow on a heap (figure 1a). This choice rather
than the rotating drum configuration is motivated by the fact that steady uniform flows,
i.e. with a flowing thickness independent of the distance to the hopper, can be obtained
for heap flows whereas in rotating drums the thickness varies along the flow. For this
configuration we systematically investigate the role of side walls by making experiments
in channels of different widths from a quasi 2-D configuration (20 particle diameters) to
a very wide situation (600 particle diameters). We then compare our measurements of
the free surface inclination, the free surface velocity and the flow thickness in the steady
uniform regime to the prediction of the local rheology.

The paper is organized as follow. The experimental set-up and measurement methods
are presented in section 2. The influence of the channel width on the steady uniform
flow properties are presented in section 3. The theoretical approach based on the local
rheology proposed recently in GDR MiDi (2004) is described in section 4, and the pre-
dictions are compared with measurements in section 5. Discussion and conclusion are
given in section 6 and 7.

2. Experimental method

2.1. Experimental set-up

The experimental set-up is sketched in figure 2. We use glass beads of diameter d = 0.53
±0.05 mm as granular material. The box is 1.5 m long made of a rough bottom plate
and two smooth lateral glass walls. The gap W between the side walls can be changed
from 1 cm (19d) up to 30 cm (570d). The box is closed at the bottom end by a 10 cm
height plate. In order to use less granular material, the whole set up is inclined at an
angle less than the angle of repose of the material, so that, when the box is filled, the
static layer is everywhere thicker than 10 cm (190d). On top of this static layer we release
particles from a hopper placed at the top of the channel. The flow rate is controlled by
the opening of the gate. The experimental procedure is the following. At the beginning
of each experiment the box is empty. When opening the gate of the hopper, the beads
first fill the box before flowing over the end plate when the box is full. For high enough
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Figure 2. Experimental setup.

flow rates, a steady regime then develops with a layer of grains flowing on top of a static
pile. All the measurements presented in the following are done in the steady regime.
In this regime, far from the entrance and the exit, the flow is uniform along the x-

direction. The free surface make a constant angle θ with the horizontal and is almost flat
in the transverse direction (its variations between the wall and the middle are less than 2
grain diameters). The free surface velocity is aligned along the x-direction, the transverse
velocity being less than 1% of the longitudinal one, and. The free surface velocity is also
uniform along the x-direction however it varies in the transverse y-direction: the flow
is faster in the middle of the channel. The thickness of the flowing layer also varies in
the y-direction and is larger in the middle than at the walls. In order to characterize
the flow, four quantities are measured: the mean flow rate per unit of width Q (m2/s)
(in the following we simply call Q the “flow rate”), the inclination of the free surface
with horizontal θ, the thickness of the flowing layer h measured in the centre line of the
channel, and the free surface velocity field Vsurf (y). It must be emphasized that, in this
configuration, the only control parameter is the mean flow rate Q fixed by the aperture
of the hopper. The thickness h, the velocity Vsurf and the inclination θ are chosen by
the system. It should be noticed that the control parameter Q is a flow rate averaged
over the channel. The local flow rate is not uniform and is smaller close to the wall than
in the middle of the flow.

2.2. Measurement methods

In order to measure Q, we weigh the mass m flowing out of the channel during a finite
time T (between 30 s and 3 s) once the steady regime is reached. Q is then computed
knowing the density of the beads ρs = 2450 kg/m3 and assuming the volume fraction
of beads during the flow to be φ = 0.6: Q = m/(TWρsφ). The inclination of the
free surface θ is measured from a picture taken from the side and analyzed using image
processing (software ImageJ available from the internet at http://rsb.info.nih.gov/ij/).
The measurement precision is about ±0.04o. Velocity profiles are computed from movies
recorded by a fast camera taken at rate between 250 and 1000 frames per second. The
velocity profile is then obtained using a modified Particle Imaging Velocimetry (PIV)
method. The precision is about ±3 mm/s. Finally we have to measure the flow thickness.
Since the granular material is opaque, we cannot measure h in the bulk using a camera.
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Figure 3. (a) Thickness measurement method. (b) Calibration of the erosion method. left:
Velocity profile at side wall. centre: Black soot on the blade eroded by the flow. right: Grey
value along the blade. The flow thickness h is estimated as follow: the top part of the curve is
fitted by two straight lines and the bottom part is fitted by a modified Gaussian. h is defined
as the distance between the intersection of the lines and the point of maximum curvature of the
fitted curve.

In order to get an estimate of the flow thickness far from the walls, we have developed a
weakly intrusive method based on erosion measurements. A thin metal blade, 0.45 mm
thick and 2 cm wide, is blackened with the flame of a candle. The blade is then suddenly
immersed in the flow, perpendicular to the free surface and hold at a fixed position during
20 s before we remove it (figure 3a). We have checked that the upstream flow is hardly
perturbed by the intrusion of the thin blade. Once the blade is removed, one observes
that the black soot has been eroded in the region where the grains were flowing but not
in regions where grains were static. In order to test the method we have put the blade
close to the wall, where we can compare the erosion pattern with the depth velocity
profile along z measured using PIV. A typical result is shown in figure 3(b) where the
centre picture shows the eroded blade lighted at a low incidence angle. The bright part
corresponds to region eroded by the flow. The graph on the right is the intensity profile
of the blade averaged over the width. For comparison we have plotted on the same figure
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Figure 4. The critical flow rate per unit of width, Q∗

c , separating the intermittent regime and
the stationary flow as a function of W/d.

the corresponding velocity profile (figure 3b left). The correlation of the erosion pattern
and the velocity profile is good showing that the erosion method gives a good estimate
of the flow thickness h (see legend of figure 3).

3. Influence of the side walls on steady uniform flows

In order to precisely understand the influence of the side walls on granular surface
flows, measurements are made for channel widths varying from 19 particle diameters to
570 particle diameters. For each width, the inclination θ, the thickness h and the free
surface velocity Vsurf have been measured as a function of the flow rate Q. The results
presented in the following are expressed in terms of dimensionless variables using the
particle diameter d and the gravity g. The dimensionless flow rate is Q∗ = Q/d

√
gd,

the dimensionless thickness is h∗ = h/d, the dimensionless width is W ∗ = W/d and the
dimensionless velocities are V ∗ = V/

√
gd.

3.1. Existence of steady uniform flows

The first observation is that a minimum flow rate Qc is necessary to obtained a steady
flow (Rajchenbach 1990; Lemieux & Durian 2000). Below this critical value, the flow is
intermittent and occurs by successive avalanches. Above this value, a steady regime is
reached, where the outlet flow rate is constant and equal to the inlet flow rate. The
interesting point we show here is that Qc depends on the width of the channel W as
shown in figure 4. For wide channels, one needs to supply more grains per second and
per unit of width to reach a stationary flow.

In the stationary regime, the spatial variation of the flow along the slope is as follows.
The grains falling from the hopper first accelerate at the top of the pile, before reaching
a steady velocity. About 10 cm from the outlet, they accelerate again and fall over the
end plate. In between the entrance and the outlet regions, the flow is then uniform
independent of the x position. All the measurements presented below are done in this
steady and uniform regime.

3.2. Free surface inclination

As observed in previous studies (Rajchenbach 1990; Dury et al. 1998; Yamane et al. 1998;
Grasselli & Herrmann 1999; Lemieux & Durian 2000; Khakhar et al. 2001), the angle
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Figure 5. Surface slope θ as a function of the dimensionless flow rate Q∗ for different widths.

between the free surface and the horizontal increases when increasing the flow rate as
shown in figure 5. However, although this effect is important for narrow channels, it
almost disappears for the widest channel we have investigated. For W/d = 570, the
surface slope remains almost constant close to the angle of repose of our material. This
clearly shows that the increase of the slope with flow rate is due to the additional friction
induced by the side walls as mentioned in several previous studies (Taberlet et al. 2003;
Courrech du Pont et al. 2003; GDR MiDi 2004).

3.3. Free surface velocity

In order to investigate the influence of the channel width on the free surface velocity, we
first perform experiments keeping the same flow rate per unit of width Q but changing
the gap W between the side walls. Figure 6(a) shows the transverse surface velocity
profiles V ∗

surf (y) for Q∗ = 89. In these figures the transverse direction y is rescaled by
the channel width. The striking result is that the wider the channel, the slower the flow.
By increasing the width from 19d to 570d, the velocity is divided by a factor three. This
effect is observed for all the flow rates as shown in figure 6(b). In this figure, the velocity
V ∗

max in the centre line (y/W = 0.5) is plotted as a function of the flow rate Q∗ for
the different widths. The velocity increases with respect to the flow rate but decreases
when increasing the width. The last important remark about the surface velocity profile
is that profiles are less and less uniform in the transverse direction when enlarging the
channel. Whereas for W ∗ = 19 a plug region with a constant velocity exists far from
the walls, this is no longer the case for W ∗ = 570 (figure 6c). In this widest channel,
the profile is curved all across the channel whatever the flow rate is as shown in figure
6(d). Therefore enlarging the channel does not allow to get rid of wall effects, contrary
to what one would expect.

3.4. Thickness of the flow

We have seen above that, for a given flow rate per unit of width, the flow velocity
decreases when enlarging the channel. Because of mass conservation this implies that
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Figure 6. (a) Dimensionless surface velocity profile V ∗

surf (y) as a function of y/W ; for different

widths W ∗ at a given flow rate Q∗ = 89. (b) Maximum surface velocity V ∗

max = V ∗

surf (
W
2
) as

a function of Q∗. Same symbols as in figure 5. (c) Normalized velocity profiles V ∗

surf/V
∗

max for
W ∗ = 19 and 570. (d) V ∗

surf (y) versus y/W for different Q∗ for the widest channel W ∗ = 570.

Figure 7. (a) Flow thickness h∗ measured in the centre line of the channel as a function of
Q∗ for different widths. Same symbols as in figure 5. (b) Estimated shear rate V ∗

max/h
∗ as a

function of Q∗ for different widths. Same symbols as in figure 5.

the flow should be thicker. This is verified by our measurements of the thickness in the
middle of the channel (y/W = 0.5) using the erosion method. In figure 7(a), we have
plotted how the thickness h varies as a function of the flow rate for different channel
widths W . The flow thickness increases with the flow rate but as expected from the
velocity measurements, it also increases with W . Surprisingly, for the widest channel the
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flow thickness reaches unusual high values about 75 grain diameters, much higher than the
classical 10 or 20 particle diameters usually reported in the literature (GDR MiDi 2004).
Concerning the variations of h along y, no systematic measurement of the profile has been
made. However, we have noticed a similar tendency than for the free surface velocity.
For narrow channels, the flowing thickness is uniform across the width, whereas for wide
channels, variations are observed: h is smaller close to the wall than in the center part.
For example for W = 142d and Q∗ = 16.5, h = 26.5d in the centreline of the channel but
is only 17.5d at the wall.

3.5. Discussion

Whereas for narrow channels we recover results presented in the literature, e.g. increase
of inclination with flow rate, flowing layer about ten particle diameters thick, our mea-
surements in wide channels dramatically contrast with the previous studies. The major
difference is that the flow occurs on much thicker layer and at a much lower veloc-
ity in wide channels than in narrow channels. This is in contradiction with the re-
sult commonly admitted for free surface flows that the shear rate in the flowing re-
gion of order of 0.6

√

g/d and weakly depends on the flow rate (Khakhar et al. 2001;
Bonamy, Daviaud & Laurent 2002; Rajchenbach 2003; GDR MiDi 2004). This is clearly
shown in figure 7(b) where we have plotted an estimate of the shear rate V ∗

max/h
∗ as a

function of the flow rate Q∗. Although for narrow channels the shear rate is of order
0.3
√

g/d, it is almost 10 times lower in the widest channel. Moreover, figure 7(b) shows
that the shear rate is not constant and obviously depends both on the flow rate Q and
on the channel width W .

This systematic study in channels of different widths therefore shows that side walls
play a crucial role in the dynamics of granular flows on a pile. It seems impossible to
get rid of them by enlarging the system. This observation suggests that it is essential
to take into account side walls if one wants to model granular surface flows, at least in
the steady regime. In the following we derive a theoretical model based on an empirical
rheology recently proposed to describe dense granular flows, which takes into account
additional wall friction, and compare the predictions with our experimental results.

4. Theoretical model

4.1. Choice of the rheology

In order to describe our surface flows, we need first to know the material rheology.
Although the question of constitutive equations for dense granular flows is still a matter
of debate, recent works in different configurations seem to converge and allow to propose
a simple empirical rheology (GDR MiDi 2004).

The first information comes from the inclined plane configuration, when a granular
layer flows down an inclined bumpy surface. The study of the steady uniform flows for
which scaling laws have been observed (Pouliquen 1999; Silbert, Landry & Grest 2003),
allows to propose an empirical friction law to describe the shear stress that develops at
the interface between the flowing layer and the rough surface. This law stipulates that
the shear stress is proportional to the weight of the layer times a friction coefficient which
depends on both the layer thickness h and the mean depth-averaged velocity 〈V 〉. Based
on the experimental measurements, the following form has been proposed for the basal
friction coefficient µb(〈V 〉, h) (Pouliquen & Forterre 2002):
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µb(〈V 〉, h) = µs +
µ2 − µs

h
√
ghβ

〈V 〉dL0

+ 1

, (4.1)

where d is the particle diameter, g the gravity and µs, µ2, β and L0 are constants
that depend on the material. This law has been successfully applied in the framework
of depth-averaged equations to quantitatively predict the spreading of a granular mass
(Pouliquen & Forterre 2002) and the development of instabilities (Forterre & Pouliquen 2003).
However, it cannot be considered as a constitutive law since it only applies at the base
of the layer.

The link with the rheology has been made only recently (GDR MiDi 2004), when
comparing these results with numerical studies in the configuration of the plane shear
cell (Da Cruz et al. 2004; Iordanoff & Khonsari 2004). In this configuration, a granular
layer is confined between two rough plates under a confining pressure P and sheared at a
shear rate γ̇. The numerical simulations reveal that the shear stress τ verifies a friction
law and that the friction coefficient depends on a single dimensionless parameter I. I can
be interpreted as the ratio between the time scale given by the shear rate and the time
scale related to the confining pressure (GDR MiDi 2004). The relation between shear
stress and shear rate is then written in the following form:

∣

∣

∣

τ

P

∣

∣

∣
= µ(I) with I =

|γ̇|d
√

P/ρs
, (4.2)

where d is the particle diameter and ρs is the particle density.
The interesting result arises when comparing this relation with the one obtained on

the inclined plane for the basal friction law (4.1). If one assumes that the material is
everywhere defined by the local constitutive law given by relation (4.2), predictions can
be made for flows on inclined planes (see appendix A). One can then show that the
predictions are compatible with the basal friction law (4.1) issued from experimental
measurements only if one chooses for the function µ(I) the following form:

µ(I) = µs +
µ2 − µs

I0/I + 1
with I =

|γ̇|d
√

P/ρs
. (4.3)

The coefficients µs and µ2 are the same as in relation (4.1) and the constant I0 is
related to the coefficient L0 and β in (4.1) (see appendix A). According to this law the
friction coefficient goes from a minimum value µs for very low I up to an asymptotical
value µ2 when I increases as sketched in figure 8.

By interpreting the basal friction law found in inclined plane experiments in the frame-
work of the constitutive law found in plane shear, we are then able to propose a simple
local rheology. The next step is to ask whether this rheology, which correctly describes
plane shear and flows on inclined planes, can also predict surface flows on heaps. In the
following, we apply relations (4.2) and (4.3) to heap flows taking into account the friction
with side walls, and we compare the predictions with the experimental results presented
in the previous section. In order to do so, we have to quantitatively determine the coeffi-
cients of the constitutive law (4.3). The glass beads used in our study being the same as
the ones used by Forterre and Pouliquen (2003) in an inclined plane experiment, we can
easily compute the coefficients of the relation µ(I) from the coefficients that have been
measured for the basal friction law. We found that µs = tan(20.9◦), µ2 = tan(32.76◦)
and I0 = 0.279 (see appendix A). This choice implies that there is no fit parameter in our
constitutive law. In other words, the idea adopted here is to calibrate the constitutive



Crucial role of side walls for granular surface flows: consequences for the rheology 11

Figure 8. Friction coefficient µ as a function of the dimensionless parameter I
(µs = tan(20.9◦), µ2 = tan(32.76◦), I0 = 0.279).

Figure 9. Force balance on an elementary slice of material.

law on previous experiments on inclined plane, and check if quantitative predictions can
be made for surface flows on heaps.

4.2. Model including wall effects

Knowing the rheology, it is then possible to write the momentum balance for a granular
layer flowing on a heap. Let us consider a semi-infinite granular medium sandwiched
between two smooth plates. We assume that the flow is uniform in the x direction, the
free surface making an angle θ with horizontal. In addition we neglect the variations of
the velocity and the thickness in the y direction. This simplification will be discussed
in section 6.1. We can then write the force balance for a slice of material of length dx,
thickness z and width W (figure 9). Four forces apply on the elementary slice:
• the gravity: dxWρgz sin(θ), where ρ = ρsφ.
• the two lateral friction forces due to the side walls Fw = −2dx

∫ z

0
µwρgz

′ cos(θ)dz′.
Here two assumptions are made: first we assume that the beads slip against the side
walls and we write the induce stress as a pure solid friction with a constant coefficient of
friction µw. Measurement of glass beads sliding on glass walls gives µw = tan(10.4±0.3◦).
Second, the pressure P is assumed to be isotropic. This last assumption seems to be
verified in simulations (Prochnow, Chevoir & Albertelli 2000; Silbert et al. 2001).



12 Pierre Jop, Yoël Forterre and Olivier Pouliquen

Figure 10. Predicted velocity profiles along z for a given flow rate and for different widths:
Q∗ = 31.5 for W = 19d (dashed line), W = 57d (dotted line) and W = 283d (solid line).

• the force Fb that develops on the bottom face of the element due to the shear
inside the material. According to our choice of the rheology (4.2), this force is Fb =
−dxWµ(I(z))ρgz cos(θ), where I(z) = |γ̇(z)|/

√
φgz cos θ.

The balance of the 3 forces leads to the following equation:

0 = tan(θ)− µw
z

W
− µ(I(z)). (4.4)

For a given inclination θ, the parameter I(z) and thus the shear rate γ̇(z) are then
obtained from equations (4.3) and (4.4) and then integrated to give the velocity profile.
Before computing the velocity profile, a first remark can be made about the selection of
the flow thickness. When going deeper in the pile – increasing z –, the friction term due to
the walls – the second term in (4.4) – increases. Consequently the force balance implies
that µ(I(z)) decreases. However, the internal friction cannot be less than the critical
value µs reached when I goes to zero, i.e. when the material is not sheared (figure 8).
As a consequence, there exists a critical depth h below which the gravity, being screened
by the lateral friction, is too weak to induce a shear in the material. The flow thickness
is then given by the following relation:

h

W
=

tan(θ)− µs

µw
. (4.5)

This linear relation between the flow thickness and the channel width has been pre-
viously obtained by other authors (Roberts 1969; Savage 1979; Taberlet et al. 2003).
However, in our description where a local rheology is introduced, we can go further and
analytically derive from (4.3) and (4.4) all the flow properties: the velocity profile and
the variations with the flow rate of the inclination, of the surface velocity and of the
thickness. The exact analytical expressions are given in appendix B. Examples of pre-
dicted velocity profiles are shown in figure 10. The flow is localized close to the free
surface with a profile that looks like the ones experimentally observed.

Beyond the analytical results given in appendix B, interesting scaling laws arise from
the expression of the dimensionless parameter I. It is easy to show from equation (4.4)
that the shear rate can be written as follows:
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γ̇∗(z∗, θ)

W ∗
1

2

=

√

z∗

W ∗
F

(

z∗

W ∗
, θ

)

, (4.6)

where the function F is given in the appendix B. By successive integrations we then get
the following scaling laws for the velocity V ∗ and flow rate Q∗ :

V ∗(z∗, θ)

W ∗
3

2

= G

(

z∗

W ∗
, θ

)

and
Q∗(θ)

W ∗
5

2

= K (θ) , (4.7)

where

G(x, θ) =

x
∫

h∗

W∗

√
ZF (Z, θ)dZ and K(θ) =

h
∗

W∗
∫

0

G(Z, θ)dZ. (4.8)

In all these expressions, the inclination θ plays the role of the control parameter. Since
in our experiments we control the flow rate and not the inclination, it is convenient to
rewrite the equations (4.5) and (4.7) choosing Q as a control parameter instead of θ. The
scaling laws then write as follow:

tan(θ) = f1

(

Q∗

W ∗
5

2

)

,
V ∗(z∗, Q∗)

W ∗
3

2

= f2

(

z∗

W ∗
,

Q∗

W ∗
5

2

)

and
h∗

W ∗
= f3

(

Q∗

W ∗
5

2

)

,

(4.9)
where the functions f1, f2 and f3 can be linked to the functions F , G andK (see appendix
B). In terms of dimensional variables, the scaling laws are given by:

tan(θ) = f1

(

dQ
√
gW

5

2

)

,
dV (z,Q)
√
gW

3

2

= f2

(

z

W
,

dQ
√
gW

5

2

)

and
h

W
= f3

(

dQ
√
gW

5

2

)

,

(4.10)
Let us underline that these scaling laws do not depend on the real shape of µ(I) (4.3)

but derive from the expression of the dimensionless number I. Only the functions fi are
related to the exact expression of µ(I).

Finally, one can show from the forces balance (4.4) and the shape of the friction
coefficient µ(I) (4.3) that steady uniform solutions are only possible for a finite range
of surface inclinations given by µs < tan θ < µ2. The lower limit corresponds to h = 0,
i.e. the flow rate vanishes when θ → θs = arctan(µs). The upper limit corresponds to
the maximal angle θ2 = arctan(µ2) that can be balanced by the internal friction. Above
this flow rate the flow accelerates along the pile. From appendix B (B 5), one can show
that this maximal angle corresponds to a maximum flow rate Q∗(θ2) for which steady
flows are predicted:

Q∗(θ2)

W ∗
5

2

=
4

15
I0
√

φ cos(θ2)

(

µ2 − µs

µw

)
5

2

. (4.11)

5. Comparison with experimental measurements

5.1. Scaling laws

In order to check the validity of the theoretical model, we first compare all our experi-
mental measurements carrying out for different widths and different flow rates with the
predicted scaling laws (4.9). To this end, we have plotted in figures 11, 12 and 13 our

measurements in terms of the three quantities tan(θ), V ∗

surf/W
∗

3

2 and h∗/W ∗ as a func-

tion of Q∗/W ∗
5

2 , the scaling predicted by relations (4.9). The striking result is that, in
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Figure 11. tan θ as a function of Q∗/W ∗5/2 for different widths (W ∗ from 19 to 570), same
data as in figure 5. Inset: same plot in lin-lin axis. The solid line is the prediction of the model
(4.9).

the three cases, all the data obtained from different channel widths collapse on a single
curve, showing that the predicted scalings correctly capture the influence of both the
flow rate and the channel width. The collapse is perhaps less accurate in figure 11 for
the inclination, where each set of data obtained for different W seems to converge to a
different angle for Q∗ = 0.

The second main result is that, not only collapse the experimental data, but they also
quantitatively follow the theoretical predictions, as shown in figures 11, 12 and 13, where
the solid lines correspond to predictions. The agreement between the model and the
experimental data is quantitatively good, although one can notice that the predictions
for the surface velocity are 15-20% below the measurements and those for the thickness
h are 10-15% above the measurements. Another quantitative test consists in studying
the asymptotic behaviour at low flow rates. Power laws can be predicted by developing
relations (4.9) for small flow rates as shown in the appendix C. One finds the following
relations:

V ∗

surf

W ∗
3

2

≈
(

Q∗

W ∗
5

2

)
5

7

and
h∗

W ∗
≈
(

Q∗

W ∗
5

2

)
2

7

when

(

Q∗

W ∗
5

2

≪ 1

)

. (5.1)

When comparing with the experimental measurements the agreement is good. The fit
of our data gives for the surface velocity an exponent equal to 0.722 to be compared
with 5/7 ≈ 0.714 and for the thickness an exponent equal to 0.295 to be compared to
2/7 ≈ 0.286.

The last prediction that can be checked is the relation between the thickness h/W and
the angle θ (4.5) coming from the force balance. The model predicts a linear variation of
the thickness with the tangent of the inclination. Figure 14 shows that our measurements
are in good agreement with the theoretical results. The experimental data obtained for
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Figure 12. The rescaled maximum surface velocity V ∗

max/W
∗3/2 as a function of Q∗/W ∗5/2 for

different widths. Inset: same plot in lin-lin axis. The solid line is the prediction of the model
(4.9).

Figure 13. Rescaled flowing thickness h∗/W ∗ as a function of Q∗/W ∗5/2. Inset: same plot in
lin-lin axis. The solid line is the prediction of the model (4.9).

different widths collapse on a single straight line, with a slight departure from linearity
observed at low flow rates. A good quantitative agreement is again obtained.

This analysis then shows that the characteristics of steady uniform flows on a heap
are well predicted by our model based on the rate dependent friction law coupled with
wall effects. It is important to keep in mind that in this analysis no parameter is fitted.
The parameters of the rheological law µ(I) have been chosen from the previous study by
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Figure 14. Rescaled thickness h∗/W ∗ as a function of tan(θ) for different widths W ∗ = 19
(◦), 57 (✷), 142 (✸), 283 (▽), 570 (△). The solid line is the prediction of the model (4.5).

Forterre & Pouliquen (2003) who used the same granular material. The same rheology
is therefore able to quantitatively describe flows on a rough inclined plane and surface
flows on a heap.

In the next section we try to go further and discuss the domain of existence of steady
uniform flows, by comparing the range of flow rates where they are observed with the
prediction of the theory.

5.2. Minimum flow rate

In section 4.2 we have seen that the model predicts that steady uniform flows are possible
for a range of flow rates going from zero, when the thickness vanishes and θ → θs, to
a maximum value when θ → θ2. We have not been able in our experiment to reach
high enough flow rates to conclude about the existence or not of a maximum flow rate.
However, our measurements clearly demonstrate the existence of a minimum flow rate
for steady uniform flows, below which the flow is intermittent. This minimum flow rate
depends on the channel width as shown in figure 4.

This transition between steady flows and intermittent flows is not predicted by the
model. However, it is interesting to compare this situation with results about flow thresh-
old obtained in the inclined plane configuration. It has been shown that, when a granular
layer flows down a rough plane inclined at an angle θ without any side wall, no flow is
possible if the layer thickness is less than a critical thickness hstop(θ) (Pouliquen 1999;
Daerr 2001; Silbert, Landry & Grest 2003). The existence of a critical thickness seems
to be linked to the existence of correlations in the grain motions (Ertas & Hasley 2002;
GDR MiDi 2004; Pouliquen 2004). Explaining the flow threshold of granular material is
far beyond the scope of this study. However, it is interesting to wonder if a connection
exists between the minimum thickness observed in the inclined plane configuration and
the minimum flow rate we observe for flows on heap. When decreasing the flow rate on
a heap, the flow thickness decreases. The critical flow rate can then be interpreted as a
critical thickness. How does it compare with the minimum thickness hstop(θ) observed
on inclined plane?

In order to answer this question, we consider a flow on a pile in a channel of width W .
For a given flow rate Q, the inclination of the free surface θ and the thickness h are given
in our model by equations (4.9). They are related by the linear relation (4.5) such that
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Figure 15. Comparison of the domain of steady uniform flows between flows on a heap (black
dots, same data as in figure 4) and flows on inclined plane (dashed line, function hstop/d from
Forterre & Pouliquen (2003) ). The continuous straight lines indicate how h/d and tan θ vary
in the heap flow configuration when varying the flow rate Q at a fixed channel width W .

in the plane (tan θ, h/d) the system follows a straight line when varying Q. In figure 15,
five of such lines are drawn corresponding to five different channel widths. In the model,
each point of the lines corresponds a priori to a flow. However, experimentally this is not
the case. Because there exists a critical flow rate below which the flow is intermittent,
only the upper part of the lines in figure 15 can be reached. Our measurement of the
critical flow rate Qc(W ) then gives a critical thickness hc(W ) and a critical inclination
θc(W ), which are plotted in figure 15 for five widths. The striking results comes from
the comparison between the positions of the points (tan θc(W ), hc(W )) and the flow
threshold hstop(θ) observed on inclined plane. In figure 15, we have plotted as a dashed
line the frontier between flow and no flow hstop(θ)/d coming from the inclined plane
experiments by Forterre & Pouliquen (2003) using the same glass beads. One observes
that the transition points (θc(W ), hc(W )) between steady and intermittent flows on a
heap coincide with the frontier hstop(θ) between flow and no flow in inclined plane. This
result shows that the two a priori different conditions to get steady uniform flows in
both configurations, heap flow and inclined plane flows, are quantitatively the same.

6. Discussion

6.1. Limits of the model

The theoretical model, which takes into account both the specificity of the granular rheol-
ogy and the influence of lateral walls, gives good quantitative predictions for the steady
uniform flows observed on heap. However, although the major features are captured,
some discrepancies exist which give information about the limits of the approach.
The first limit is that we have written the forces balance assuming the flow to be

uniform across the channel. This choice, which simplifies the theoretical description,
does not allow to describe the velocity variations experimentally observed across the
channel. If one wants to capture these three-dimensional effects, one has to take into
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Figure 16. Modification of the velocity profile when a rigid bottom is introduced in the model
for a given angle. (a) No bottom. (b) The rough bottom is deeper than the zero velocity level
zb > h. (c) zb < h. The dashed lines correspond to the velocity profile in the case of semi-infinite
flow.

account shear in the transverse direction. It is then necessary to write a generalization
of the constitutive law (4.2) for fully three-dimensional deformations.
A second limit concerns the use of the local rheology written as a simple rate dependent

friction law. As discussed in GDR MiDi (2004), this local approach is probably no
longer valid close to the flow threshold or close to the boundaries. This limit is indeed
observed in our case and gives rise to several discrepancies between the prediction and the
measurements. The first one concerns the flow threshold. The local rheology is not able
to predict the critical flow rate observed experimentally below which intermittent flows
occur. We have been able to understand the existence of this minimum flow rate only by
stipulating a priori that the flow cannot occur below a critical thickness, by analogy to
the case of flows on inclined planes. The second discrepancy concerns the velocity profiles.
The predicted profile presents a zero shear rate at the free surface and a static region with
zero velocity deep inside the pile. Experimentally the velocity profile exhibits a non zero
shear rate at the surface and an exponential tail deep in the pile (GDR MiDi 2004). One
possible explanation for the limit of the local rheology is that close to the flow threshold
or close to boundaries, non local phenomena have to be taken into account. Grain
motions are correlated on lengths which become comparable to the flow thickness or to
the distance to the boundaries (Ertas & Hasley 2002; GDR MiDi 2004; Pouliquen 2004).
The precise understanding of this limit and the development of constitutive laws taken
into account the non-local effects are still a challenge.

The last limit of our model lies in the description of the interaction of the flowing layer
with the side walls. The stress that develops between the material and the glass wall is
described in our model as a simple Coulomb friction. Whereas it is reasonable for slow
flows, for fast flows collisions between particles and wall could occur and become predom-
inant, leading to a rate dependent wall stress. This limitation could affect the maximum
inclination predicted in our theory. According to our model, no steady uniform flow on
a pile can occur above the angle θ2. This value is typically between 30 and 40 degrees
depending on the material used (Forterre & Pouliquen 2003). Recent experiments by
Taberlet et al. (2003) report much higher slopes up to 60 degrees in narrow channels
and at high flow rates. A plausible explanation for such high inclinations could be that
the stress at the wall becomes collisional. Our model should then be modified to take
into account a rate dependent wall friction.

6.2. Transition between flow on an inclined plane and flow on a pile

In the theory presented in section 4.2, the medium is considered as semi-infinite in order
to model flows on a pile. However, flows of a finite layer corresponding to inclined plane
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Figure 17. Sketch of the transition between (a) flow on rough inclined plane and (b) heap
flow when increasing the flow rate.

experiments carried out in narrow channels can be described using the same approach.
One just has to stipulate that the velocity should vanished at a given depth zb in order
to reproduce the no slip condition on a rough surface. If the bottom plate is located
deeper than the critical thickness predicted in the semi-infinite case, the bottom does
not introduce any modification. The flow is made of a static layer close to the rough
surface with a flowing region on top of it (figure 16b). However, when the bottom plate is
close to the free surface, the model predicts that the whole granular layer is flowing. The
velocity profile is therefore given by the upper part of the velocity profile for an infinite
heap (figure 16c). This simple observation allows to better understand the formation
of static piles observed in experiments on inclined planes in narrow channels. Savage
(1979), Ancey (2001) and Taberlet et al. (2003) have shown that when the inclination
is low or the flow rate is high, the material does not flow down to the bottom plate
but a static pile develops. A transition is then observed between flow on a plane and
flow on a pile. This can be understood as follow. In an inclined plane experiment
the two control parameters are the inclination of the plane and the flow rate. For a
given inclination, if the flow rate is less than the flow rate predicted in the case of semi
infinite pile at this angle, we are in case of figure 16(c). The flow extends over the
whole granular layer, the free surface being parallel to the bottom plane (figure 17a).
However, when increasing the flow rate, the thickness increases and the friction with
the wall becomes more and more important. Eventually, the only way for the system to
overcome the side wall friction is to increase the free surface inclination at an angle higher
than the bottom inclination θb (figure 17b). The formation of a static pile in confined
inclined planes is thus controlled by the side walls. This explains why in very wide
set-ups (Pouliquen 1999), or in molecular dynamic simulations using periodic boundary
conditions (Chevoir et al. 2001; Silbert, Landry & Grest 2003), no static layer was ever
observed, as soon as the inclination of the plate is above the repose angle of the material.

7. Conclusion

In this paper, steady uniform flows obtained when granular material is released at the
top of a pile have been investigated. The influence of the side walls on these surface
flows has been carefully studied, and a theoretical model has been proposed. From the
experimental and theoretical analysis, two main conclusions emerge.
The first conclusion is that steady uniform flows on a pile are entirely controlled by

side wall effects. The characteristics of flows in wide channels differ notably from the ones
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observed in narrow channels. For the same flow rate per unit of width, the flow is thicker
and slower in a wide channel than in a narrow channel, thicknesses up to 70 particle
diameters being observed. These observations contrast dramatically with the picture
commonly accepted that the flowing zone is necessarily thin with a shear rate roughly
constant. It means that precautions have to be taken when interpreting experimental
results in narrow channels to get information about the intrinsic flow rheology.
The second result concerns the constitutive law for dense granular flows. Using the

local rheology recently proposed in GDR MiDi (2004) and taking into account the friction
due to the lateral walls, we have been able to reproduce the major characteristics of
granular heap flows. In particular the localisation of the flow at the free surface is
predicted, but appears to be a consequence of the wall friction and is not an intrinsic
property of the rheology. Our analysis therefore dispels the difficulty raised in the article
GDR Midi (2004), that flows on inclined planes and flows on a heap are not compatible
when side wall effects are neglected. We have shown here that both configurations can
actually be unified in the same framework choosing the rheology µ(I). The unification
is not only qualitative but also quantitative. The flow thickness, the velocity and the
free surface inclination measured for flow on a heap are predicted within 15 %, when
the friction law is calibrated based on measurements for flows on inclined planes. The
comparison also extends to the flow threshold, which appears to be the same in both
configurations once the critical flow rate observed in heap flows is interpreted in terms
of a critical thickness. Of course, number of limits exists that has been identified and
related to the fact that the proposed constitutive law is local. However, we believe that
this approach represents a very serious candidate for a constitutive law for dense granular
flows, as it is able to describe in the same framework three different configurations:
Couette flows, inclined planes, and flows on a heap.

This study, which contrasts with previous results on surface flows, raises many ques-
tions. The first one concerns the generalisation of the constitutive law to three-dimensional
deformations. We have seen that the approach proposed in this paper does not allow to
describe the deformation observed in the transverse direction. What kind of constitutive
law has to be written to capture this variation?

The second question concerns the role of the channel length. We have seen that in the
steady uniform regime the flow thickness is controlled by the width of the channel. What
would happen for very wide channels, when the width of the flow becomes comparable
to the total length of the flow? Is the flow length in this case the new relevant length
scale of the problem?

Another question concerns unsteady and non-uniform flows. What will happen for
transient flows for example when avalanches are triggered on top of a pile? Do the side
walls still play an important role in this case? To describe the complex dynamics of
avalanches, several models have been proposed based on depth-averaged hydrodynamics
equations (Bouchaud et al. 1994; Boutreux, Raphaël & de Gennes 1998; Douady, Andreotti & Daerr 1999;
Khakhar, Orpe & Ottino 2001; Aradian, Raphaël & de Gennes 2002). What is the link
between these approaches and the model presented here? Is it possible to get deeper
insight on these models, now that we have more information about the internal rheology
suitable for dense granular flows? These questions represent work for future investiga-
tions.

Finally, a last but fundamental issue concerns the physical origin of the constitutive
law. Up to now the proposed rheology rests on an empirical ground. Attempts to link the
observed macroscopic behaviour to the microscopic grain motion exist (Mills,Loggia & Tixier 1999;
Pouliquen, Forterre & Le Dizes 2001; Ertas & Hasley 2002; GDR MiDi 2004) which are
based on the idea that grains experience correlated or cluster-like motions. Recent exper-
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iments seem to support this idea (Pouliquen 2004; Choi et al. 2004), but the derivation
of constitutive laws from microscopic bases remains an open challenge.

The authors thank Bruno Andreotti for enlightening discussions and advices for the
PIV method and Frédéric Ratouchniak for technical support.

Appendix A. Rheological law

In this appendix we show how the local constitutive law µ(I) (4.3) can be obtained
from the expression of the basal friction law obtained in experiments on inclined planes
(Pouliquen & Forterre 2002; Forterre & Pouliquen 2003).

To this end we consider a granular layer of thickness h flowing on a plane inclined
at an angle θ. On one hand the experiments on steady uniform flows have shown that
the bottom friction can be expressed in term of the thickness h and the depth-averaged
velocity 〈V 〉 as follow:

µb(〈V 〉, h) = µs +
µ2 − µs

βh
√
gh

〈V 〉L0

+ 1

, (A 1)

where µs, µ2, β and L0 are constants. One the other hand, if one assumes that the
material is described by the constitutive law µ(I) with I = |γ̇|d/

√

P/ρs, the force balance
in the bulk implies µ(I(z)) = tan(θ). This implies that the parameter I is constant
across the layer, independent of z, depending only on the inclination of the plane. As a
consequence, from the definition of I, we obtain the velocity profile (GDR MiDi 2004):

V (z)√
gd

=
2

3
I(θ)

√

φ cos(θ)
(h3/2 − z3/2)

d3/2
. (A 2)

From this equation we can compute the depth-averaged velocity:

〈V 〉√
gh

=
2

5
I(θ)

√

φ cos(θ)
h

d
. (A 3)

From this result we can then rewrite the basal friction coefficient (A 1) in terms of the
parameter I as follow:

µb(I) = µs +
µ2 − µs

5βd

2L0I
√
φ cos θ

+ 1

. (A 4)

For consistency reason, the friction law µ(I) is then given by:

µ(I) = µs +
µ2 − µs

I0
I + 1

, (A 5)

with

I0 =
5

2

dβ

L0

√

φ cos(θ)
.. (A 6)

In the constitutive law I0 should be a constant, whereas it depends on θ through
the term

√

cos(θ). However, this term does not vary much in the experimental range,
such that one can think that it is missing in the expression (A 1) coming from the
experimental data. Finally, from experimental measurements, Forterre and Pouliquen
(2003) give L0/d = 1.65, β = 0.136, µs = tan(20.9◦), µ2 = tan(32.76◦). Taking φ ≈ 0.6
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and an average value of 25◦ for θ, we obtain I0 = 0.279. The parameters µs, µ2 and I0
then quantitatively define the constitutive law.

Appendix B. Analytical expressions for velocity profiles and for flow

rate

Here we derive the expressions of the velocity profile and the flow rate as a function
of the angle θ and of the depth z. The local friction law (4.3) and the forces balance
equation (4.4) give the following equation for the shear rate:

γ̇∗(z∗)

W ∗
1

2

= −I0

√

z∗

W ∗
φ cos(θ)

(

tan(θ)− µw
z∗

W∗
− µs

µ2 − tan(θ) + µw
z∗

W∗

)

≡
√

z∗

W ∗
F

(

z∗

W ∗
, θ

)

. (B 1)

The minus sign before I0 comes from the sign of the shear stress in our configuration.
To simplify the expressions, we define:

h∗

W ∗
=

tan(θ)− µs

µw
,

h∗

2

W ∗
=

µ2 − tan(θ)

µw
, and ∆µ = µ2 − µs, (B 2)

which leads to:

γ̇∗(z∗)

W ∗
1

2

= −I0

√

z∗

W ∗
φ cos(θ)

(

h∗ − z∗

h∗

2
+ z∗

)

. (B 3)

Integrating the above equation with the boundary condition V ∗ = 0 at z∗ = h∗, we find:

V ∗(z∗, θ)

W ∗
3

2

= 2I0
√

φ cos(θ) (B 4)

×
[

∆µ

µw

(

√

h∗

W ∗
−
√

z∗

W ∗
−
√

h∗

2

W ∗

(

arctan

√

h∗

h∗

2

− arctan

√
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h∗

2

))

−1

3

(
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W ∗

)
3

2

+
1

3

(

z∗

W ∗

)
3

2

]

≡ G

(

z∗

W ∗
, θ

)

≡ G2

(

z∗

W ∗
,
h∗(θ)

W ∗

)

.

Integrating the previous equation from the bottom of the flowing layer (z∗ = h∗) to
the free surface yields:

Q∗(θ)

W ∗
5

2

=
V ∗

surf (θ)

W ∗
3

2

h∗

W ∗
+ 2I0

√

φ cos(θ)

(

h∗

2

W ∗

)
3

2

× (B 5)

{

2

15

h∗

2
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2

)
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− 2

3

∆µ
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)
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+
∆µ
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2

+ 1

)
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√
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2

−
√
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2

]}

≡ K (θ)

≡ K2

(

h∗(θ)

W ∗

)

.

where Vsurf is the velocity at the free surface (z∗ = 0). Equations (B 2-left), (B 4) and
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(B 5) can be rewritten with the following form:

tan(θ) = f1

(

Q∗

W ∗
5

2

)

,
V ∗(z∗, Q∗)

W ∗
3

2

= f2

(

z∗

W ∗
,

Q∗

W ∗
5

2

)

and
h∗

W ∗
= f3

(

Q∗

W ∗
5

2

)

,

(B 6)
where:

f1(X) = tan
(

K−1 (X)
)

, f2(X,Y ) = G2

(

X,K−1

2
(Y )
)

and f3(X) = K−1

2
(X) . (B 7)

Appendix C. Asymptotic expressions at low flow rates

In this appendix we give the asymptotic relations between (4.11) for low flow rate,
i.e. Q∗/W ∗5/2 → 0, h∗/W ∗ → 0 and θ → θs. Then (B 4) and (B 5) at the lower order
give:

V ∗

surf

W ∗
3

2

≈ 4

15
I0
√

φ cos(θs)
∆µ

µw

(

h∗

W ∗

)
5

2

, (C 1)

Q∗

W ∗
5

2

≈ 4

35
I0
√

φ cos(θs)
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∆µ

(
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W ∗

)
7

2

, (C 2)

which can be rewritten as follow:

V ∗
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W ∗
3

2

≈ 4
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(
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4

)
5

7 (
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√
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2
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h∗

W ∗
≈
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4
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I0
√

φ cos(θs)
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)

−
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(
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W ∗
5

2

)
2

7
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