Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

Olivier Aycard 1, 2 Jean-François Mari 1 Richard Washington 3
1 ORPAILLEUR - Knowledge representation, reasonning
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
2 E-MOTION - Geometry and Probability for Motion and Action
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes
Abstract : In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

Contributeur : Jean-François Mari <>
Soumis le : lundi 24 janvier 2005 - 11:59:46
Dernière modification le : mercredi 11 avril 2018 - 01:55:20
Document(s) archivé(s) le : jeudi 1 avril 2010 - 17:12:20





Olivier Aycard, Jean-François Mari, Richard Washington. Learning to automatically detect features for mobile robots using second-order Hidden Markov Models. 2004. 〈hal-00003940〉



Consultations de la notice


Téléchargements de fichiers