Canonical basic sets for Hecke algebras
Nicolas Jacon

To cite this version:

HAL Id: hal-00003907
https://hal.archives-ouvertes.fr/hal-00003907
Submitted on 14 Jan 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Canonical basic sets for Hecke algebras

Nicolas Jacon

Abstract. We give an explicit description of the “canonical basic set” for all Iwahori-Hecke algebras of finite Weyl groups in “good” characteristic. We obtain a complete classification of simple modules for this type of algebras.

1. Introduction

Let W be a finite Weyl group with set of simple reflections $S \subset W$ and let H be the generic Iwahori-Hecke algebra of W over $A = \mathbb{Z}[v, v^{-1}]$, where v is an indeterminate. Let $u := v^2$. H has a basis $\{T_w \mid w \in W\}$ and we have the following multiplication rules. Let $s \in S$ and $w \in W$, then:

$$T_s T_w = \begin{cases}
T_{sw} & \text{if } l(sw) > l(w), \\
u T_{sw} + (u - 1)T_w & \text{if } l(sw) < l(w),
\end{cases}$$

where l is the usual length function. Let K be the field of fractions of A and let $\theta: A \to k$ be a homomorphism into a field k such that K is the field of fractions of $\theta(A)$ and such that $\theta(v)$ has finite order.

Let $H_K := K \otimes_A H$ and let $H_k := k \otimes_A H$. It is known that H_K is a split semi-simple algebra, isomorphic to the group algebra $K[W]$ and that the simple H_K-modules are in natural bijection with the simple modules of $K[W]$. The problem of determining a parametrization of the simple H_K-modules is much more complicated. To solve this problem, it is convenient to use the notion of decomposition map, which relates the simple H_K-modules with the simple H_k-modules via a process of modular reduction. We obtain a well-defined decomposition map between the Grothendieck groups of finitely generated H_K-modules and H_k-modules:

$$d_\theta : R_0(H_K) \to R_0(H_k).$$

Assume that the characteristic of k is either 0 or a good prime for W. Then, in $[G3]$ and in $[GR2]$, M.Geck and R.Rouquier have defined a canonical set $B \subset \text{Irr}(H_K)$ by using Lusztig’s a-function. This set is called the “canonical basic set” and it is in natural bijection with $\text{Irr}(H_k)$. Hence, it gives a way to parametrize the simple H_K-modules. Moreover, the existence of the canonical basic set implies that the decomposition matrix of d_θ has a lower triangular shape with 1 along the diagonal.

In characteristic 0, the canonical basic set has been completely described for type A_{n-1} in $[G3]$, for type B_n in $[J3]$ and for type D_n in $[G2]$ and $[J1]$. Moreover,
this set can be easily deduced for the exceptional types from the explicit tables of decomposition numbers obtained by M. Geck, K. Lux and J. Müller. The aim of this paper is to report these results and to show that the parametrization of \(B \) in characteristic 0 holds in “good” characteristic. We note that the existence of “basic sets” has been also proved for the class of cyclotomic Hecke algebras of type \(G(d, 1, n) \) in [GR1] and recently, for the class of cyclotomic Hecke algebras of type \(G(d, p, n) \) in [GR2].

The paper is organized as follows. In the first part, we recall the definition of the canonical basic set. Next, in the second part, we give some useful properties of the decomposition map and we show that the problem of determining the canonical basic set can be reduced to the case of characteristic 0. We finally give an explicit description of the canonical basic set for all Hecke algebras of finite Weyl groups and for all specializations.

2. Existence of canonical basic sets

2.1. Decomposition maps. Let \(H \) be an Iwahori-Hecke algebra of a finite Weyl group \(W \) over \(A := \mathbb{Z}[v, v^{-1}] \) as it is defined in the introduction. Let \(K = \mathbb{Q}(v) \) and let \(H_K \) be the corresponding Hecke algebra. Then \(A \) is integrally closed in \(K \) and \(H_K \) is a split semi-simple algebra. Let \(\theta : A \rightarrow k \) be a specialization into a field \(k \) such that \(k \) is the field of fractions of \(\theta(A) \) and such that \(\theta(v) \) has finite order. We assume that the characteristic of \(k \) is 0 or a good prime number for \(W \).

Then, there exists a discrete valuation ring \(\mathcal{O} \) with maximal ideal \(J(\mathcal{O}) \) such that \(A \subset \mathcal{O} \) and \(J(\mathcal{O}) \cap A = \ker \theta \). By [GP, Theorem 7.4.3], we obtain a well-defined decomposition map \(d_\theta : R_0(H_K) \rightarrow R_0(H_K) \). This is defined as follows: let \(V \) be a simple \(H_K \)-module. Then, by [GP, section 7.4], there exists a \(H_{\mathcal{O}} \)-module \(\tilde{V} \) such that \(K \otimes_{\mathcal{O}} \tilde{V} = V \). By reducing \(\tilde{V} \) modulo the maximal ideal of \(\mathcal{O} \), we obtain a \(H_{k_\mathcal{O}} \)-module where \(k_\mathcal{O} \) is the residue field of \(\mathcal{O} \). We obtain a map:

\[
d_\theta' : R_0(H_K) \rightarrow R_0(H_{k_\mathcal{O}}).
\]

Since \(H_k \) is split and since \(k_\mathcal{O} \) can be seen as an extension field of \(k \), we can identify \(R_0(H_k) \) with \(R_0(H_{k_\mathcal{O}}) \). We obtain the desired decomposition map \(d_\theta \) between \(R_0(H_K) \) and \(R_0(H_k) \). Moreover, for \(V \in \text{Irr}(H_K) \), there exist numbers \((d_{V,M})_{M \in \text{Irr}(H_k)} \) such that:

\[
d_\theta([V]) = \sum_{M \in \text{Irr}(H_k)} d_{V,M}[M].
\]

The matrix \((d_{V,M})_{V \in \text{Irr}(H_K), M \in \text{Irr}(H_k)} \) is called the decomposition matrix. For more details about the construction of decomposition maps, see [G4].

2.2. Canonical basic sets. In this part, we recall the results of [G3] and [GR2] which show that the above decomposition matrix has always a lower triangular shape. First, we need to attach non negative integers which are called “\(a \)-values” to the simple modules of \(H_K \) and \(H_k \) as follows.

Let \(\{C_w\}_{w \in W} \) be the Kazhdan-Lusztig basis of \(H \). For \(x, y \in W \), the multiplication between two elements of this basis is given by:

\[
C_x C_y = \sum_{z \in W} h_{x,y,z} C_z
\]
where $h_{x,y,z} \in A$ for all $z \in W$. For any $z \in W$, there is a well-defined integer $a(z) \geq 0$ such that

\begin{align*}
v^{a(z)}h_{x,y,z} &\in \mathbb{Z}[v] \text{ for all } x, y \in W, \\
v^{a(z)}-1h_{x,y,z} &\notin \mathbb{Z}[v] \text{ for some } x, y \in W.
\end{align*}

We obtain a function which is called the Lusztig’s a-function:

\[
a : \ W \rightarrow \mathbb{N} \\
z \mapsto a(z)
\]

Now, following [L, Lemma 1.9], to any $M \in \text{Irr}(H_k)$, we can attach an a-value $a(M)$ by the requirement that:

\[
C_w.M = 0 \text{ for all } w \in W \text{ with } a(w) > a(M), \\
C_w.M \neq 0 \text{ for some } w \in W \text{ with } a(w) = a(M).
\]

We can also attach an a-value $a(V)$ to any $V \in \text{Irr}(H_K)$, in an analogous way.

We can now give the theorem of existence of the canonical basic set. The main tool of the proof is the Lusztig’s asymptotic algebra.

Theorem 2.1 (M.Geck [G3], M.Geck-R.Rouquier [GR2]). Recall that we assume that the characteristic of k is 0 or a good prime for W. We define the following subset of $\text{Irr}(H_K)$:

\[
B := \{ V \in \text{Irr}(H_K) \mid d_{V,M} \neq 0 \text{ and } a(V) = a(M) \text{ for some } M \in \text{Irr}(H_k) \}.
\]

Then there exists a unique bijection

\[
\begin{array}{c}
\text{Irr}(H_k) \\
\rightarrow \\
B
\end{array}
\begin{array}{c}
M \\
\mapsto \\
V_M
\end{array}
\]

such that the following two conditions hold:

1. For all $V_M \in B$, we have $d_{V,M} = 1$ and $a(V_M) = a(M)$.
2. If $V \in \text{Irr}(H_K)$ and $M \in \text{Irr}(H_k)$ are such that $d_{V,M} \neq 0$, then we have $a(M) \leq a(V)$, with equality only for $V = V_M$.

The set B is called the canonical basic set with respect to the specialization θ.

Hence, to find the elements of the canonical basic set, for each $M \in \text{Irr}(H_k)$, we have to search for $V_M \in \text{Irr}(H_K)$ such that $a(V_M) = a(M)$ and $d_{V,M} \neq 0$.

Note that a description of the set B would lead to a natural parametrization of the set of simple H_K-modules. If H_k is semi-simple, we know by Tits deformation theorem that the decomposition matrix is just the identity. Hence, we obtain the following result.

Proposition 2.2. Assume that θ is such that H_k is a split semi-simple algebra. Then, we have:

\[B = \text{Irr}(H_K)\]

We now want to give an explicit description of B in the non semi-simple case. By [GR, Theorem 7.4.7], H_k is semi-simple unless $\theta(u)$ is a root of unity. Thus, we can restrict ourselves to the case where $\theta(u)$ is a root of unity. In the next section, we will see that it is sufficient to know the canonical basic set when the characteristic of k is 0.
3. Canonical basic sets in positive characteristic

In this section, we assume that p is a “good” prime number for W. Let $\theta_p : A \rightarrow k_p$ be a specialization into a field k_p of characteristic p such that k_p is the field of fractions of $\theta_p(A)$. We obtain a decomposition map

$$d_{\theta_p} : R_0(H_K) \rightarrow R_0(H_{k_p}).$$

Let B^p be the canonical basic set associated to θ_p, as it is defined in Theorem 2.1. By Proposition 2.2, we can assume that $\theta_p(u)$ is a root of unity. We put:

$$e := \min\{i \geq 2 \mid 1 + \theta_p(u) + \theta_p(u)^2 + \ldots + \theta_p(u)^{i-1} = 0\} \in \mathbb{N}.$$

We first show that the decomposition matrix of d_{θ_p} can be obtained in two steps: one step from u to an e^{th}-root of unity over C and another step from characteristic 0 to characteristic p.

Following \cite{GeckRouquier5}, we denote $p := \ker \theta_p$. Let $\Phi_e(u) \in \mathbb{Z}[u]$ be the e^{th} cyclotomic polynomial. We have $\Phi_e(u) \in p$ and:

$$\Phi_e(u) = \Phi_{2e}(v) \quad \text{if } e \text{ is even,}$$
$$\Phi_e(u) = \Phi_e(v)\Phi_{2e}(v) \text{ and } \Phi_{2e}(v) = \pm \Phi_e(-v) \quad \text{if } e \text{ is odd.}$$

Thus, choosing a suitable square root of $\theta_p(u)$ in k_p, we can assume that $\Phi_{2e}(v) \in p$. Let $q \subset A$ be the prime ideal generated by $\Phi_{2e}(v)$. We have $A/q \simeq \mathbb{Z}[\eta_{2e}]$ where η_{2e} is a primitive $2e^{th}$ root of unity. Then, since A/q is integrally closed in $k_0 := \mathbb{Q}(\eta_{2e})$ and since H_{k_0} is split, the natural map $\theta_0 : A \rightarrow A/q$ induces a decomposition map

$$d_{\theta_0} : R_0(H_K) \rightarrow R_0(H_{k_0}).$$

Similarly, the canonical map $\pi : A/q \rightarrow A/p$ induces a decomposition map

$$d_{\pi} : R_0(H_{k_0}) \rightarrow R_0(H_{k_p}).$$

The following result shows that d_{θ_p} is entirely determined by d_{θ_0} and d_{π}.

Proposition 3.1 (Factorization of decomposition maps, M.Geck-R.Rouquier \cite{GeckRouquier1}). The following diagram is commutative:

\[
\begin{array}{ccc}
R_0(H_K) & \xrightarrow{d_{\theta_p}} & R_0(H_{k_p}) \\
\downarrow{d_{\theta_0}} & & \downarrow{d_{\pi}} \\
R_0(H_{k_0}) & &
\end{array}
\]

If D_{θ_0}, D_{θ_p} and D_{π} are the decomposition matrices associated to θ_0, θ_p and π respectively, we have:

$$D_{\theta_p} = D_{\theta_0}D_{\pi}.$$

Now, by Theorem 2.1, we have a canonical basic set $B^p \subset \text{Irr}(H_K)$ associated to the specialization θ_p and a canonical basic set $B^0 \subset \text{Irr}(H_K)$ associated to θ_0.

Theorem 3.2 (M.Geck-R.Rouquier \cite{GeckRouquier1, GeckRouquier5}). Assume that the characteristic of k_p is good. Then, we have:

$$|\text{Irr}(H_{k_p})| = |\text{Irr}(H_{k_0})|.$$
Hence, we have:

$$|\mathcal{B}^p| = |\mathcal{B}^0|$$

We can now give the main result of this section. Note that another proof of this theorem can be found in [J2, chapter 3]. The author wants to thank the referee for suggesting him this more elementary proof.

Theorem 3.3. Assume that the characteristic of k_p is good. Then, we have:

$$\mathcal{B}^p = \mathcal{B}^0$$

Proof. Let $\mathcal{M} \in \text{Irr}(H_{k_p})$ and let $V := V_{\mathcal{M}} \in \mathcal{B}^p \subset \text{Irr}(H_K)$ be the associated element of the canonical basic set as in Theorem 2.1. In $R_0(H_{k_p})$, we have:

$$d_{\theta_p}(V) = \mathcal{M} + \text{lower terms with respect to } a-\text{value}$$

with $a(V) = a(\mathcal{M})$. Then, by the factorization of the decomposition map, there is a simple H_{k_0}-module M such that:

- $[M] \in R_0(H_{k_0})$ appears in $d_{\theta_0}(V)$ with non zero coefficient,
- $[\mathcal{M}] \in R_0(H_{k_p})$ appears in $d_{\theta}(M)$ with non zero coefficient.

Then

$$a(\mathcal{M}) = a(V) \geq a(M) \geq a(M),$$

together with the characterization of V_M in Theorem 2.1 implies that $V = V_M \in \mathcal{B}^0$.

By Theorem 3.2, we have $|\mathcal{B}| = |\mathcal{B}^p|$. Thus, we obtain:

$$\mathcal{B} = \mathcal{B}^p.$$

□

Hence, it is sufficient to determine the canonical basic set in characteristic 0 to describe the canonical basic set in “good” characteristic.

4. **Description of the canonical basic sets**

4.1. **FLOTW multipartitions.** The canonical basic set has been explicitly computed for all types and all specializations in characteristic 0. In this part, we recall the parametrizations of these sets and we use Theorem 3.3 to compute the canonical basic set in “good” characteristic.

In [J3], the existence of a “canonical basic set” has been proved for another type of algebras known as Ariki-Koike algebras (or cyclotomic Hecke algebras of type $G(d,1,n)$). This type of algebras can be seen as an analogue of Hecke algebras for complex reflection groups. Moreover, this canonical basic set has been explicitly described and can be parametrized by some FLOTW multipartitions arising from a crystal graph studied by Foda et al. [FL] and Jimbo et al. [JM]. The key of the proof is the Ariki’s theory [A] relating decomposition numbers with canonical basis of Fock space.

Let $v_0, v_1, \ldots, v_{d-1}$ be integers such that $0 \leq v_0 \leq \ldots \leq v_{d-1} < e$. For $d \in \mathbb{N}$, we say that λ is a d-partition of rank n if:

- $\lambda = (\lambda^{(0)}, \ldots, \lambda^{(d-1)})$ where, for $i = 0, \ldots, d-1$, $\lambda^{(i)} = (\lambda_1^{(i)}, \ldots, \lambda_{r_i}^{(i)})$ is a partition of rank $|\lambda^{(i)}|$ such that $\lambda_1^{(i)} \geq \ldots \geq \lambda_{r_i}^{(i)} > 0$,
- $\sum_{k=0}^{d-1} |\lambda^{(k)}| = n$.

We denote by Π_d^r the set of d-partitions of rank n. To define the FLOTW d-partitions, we must introduce some notations. Let $\underline{\lambda} = (\lambda^{(0)}, ..., \lambda^{(d-1)})$ be a d-partition of rank n. The diagram of $\underline{\lambda}$ is the following set:

$$[\underline{\lambda}] = \left\{ (a, b, c) \mid 0 \leq c \leq d - 1, \ 1 \leq b \leq \lambda^{(c)}_a \right\}.$$

The elements of this diagram are called the nodes of $\underline{\lambda}$. Let $\gamma = (a, b, c)$ be a node of $\underline{\lambda}$. The residue of γ associated to the set $\{e; v_0, ..., v_{d-1}\}$ is the element of $\mathbb{Z}/e\mathbb{Z}$ defined by:

$$\text{res}(\gamma) = (b - a + v_c) \pmod{e}.$$

Definition 4.1. We say that $\underline{\lambda} = (\lambda^{(0)}, ..., \lambda^{(d-1)})$ is a FLOTW d-partition associated to the set $\{e; v_0, ..., v_{d-1}\}$ if and only if:

1. for all $0 \leq j \leq d - 2$ and $i = 1, 2, ..., \lambda^{(j+1)}_i - \lambda^{(j)}_i$, we have:

 $$\lambda^{(j)}_i \leq \lambda^{(j+1)}_{i+v_{j+1}-v_j},$$

 $$\lambda^{(d-1)}_i \geq \lambda^{(0)}_{i+e+v_0-v_{d-1}};$$

2. for all $k > 0$, among the residues appearing at the right ends of the length k rows of $\underline{\lambda}$, at least one element of $\{0, 1, ..., e - 1\}$ does not occur.

We denote by $\Lambda^{1}_{\{e; v_0, ..., v_{d-1}\}}$ the set of FLOTW d-partitions associated to the set $\{e; v_0, ..., v_{d-1}\}$.

Now, we are able to give the parametrizations of the canonical basic sets for all Hecke algebras of finite Weyl group and for all specializations. Let H be a Hecke algebra of a finite Weyl group W, let $\theta : A \rightarrow k$ be a specialization into the field of fractions k of $\theta(A)$ such that the characteristic of k is 0 or a good prime for W. Let K be the field of fractions of A.

4.2. Type A_{n-1}. Assume that W is a Weyl group of type A_{n-1} and that $\theta(u)$ is a primitive e^th-root of unity. Let λ be a partition of rank n, then, we can construct an H-module S^λ, free over A which is called a Specht module (see the construction of “dual Specht modules” in [A], Chapter 13] in a more general setting). Moreover, we have:

$$\text{Irr}(H_K) = \{ S^\lambda_K \mid \lambda \in \Pi_n^1 \}.$$

Now, Hecke algebras of type A_{n-1} are special cases of Ariki-Koike algebras. Hence, we can use the results in [B] to find the canonical basic sets. We note that we can also find this set using results of Dipper and James as it is expained in [G3, Example 3.5]. Note also that there is no bad prime number for $W = A_{n-1}$.

Proposition 4.2. Assume that W is a Weyl group of type A_{n-1} and that $\theta(u)$ is a primitive e^th-root of unity. Then, we have:

$$B = \{ S^\lambda_K \mid \lambda \in \Lambda^{1}_{\{e; 0\}}, \ |\lambda| = n \}.$$

Note that:

$$\lambda \in \Lambda^{1}_{\{e; 0\}} \iff \lambda = (\lambda_1, ..., \lambda_r) \ is \ e - \text{regular}.$$

$$\iff \text{For all } i \in \mathbb{N}, \text{we can’t have } \lambda_i = ... = \lambda_{i+e-1} \neq 0.$$
4.3. Type B_n. Assume that W is a Weyl group of type B_n and that $\theta(u)$ is a primitive e^{th}-root of unity. Let $(\lambda^{(0)}, \lambda^{(1)})$ be a 2-partition of rank n, then, we can construct an H-module $S(\lambda^{(0)}, \lambda^{(1)})$, free over A which is called a Specht module. Moreover, we have:

$$\text{Irr}(H_K) = \{ S_K(\lambda^{(0)}, \lambda^{(1)}) \mid (\lambda^{(0)}, \lambda^{(1)}) \in \Pi^2_n \}.$$

Now, Hecke algebras of type B_n are special cases of Ariki-Koike algebras. Hence, we can use the results in [J3] to find the canonical basic sets. The only bad prime for type B_n is $p = 2$.

Proposition 4.3. Assume that W is a Weyl group of type B_n and that $\theta(u)$ is a primitive e^{th}-root of unity. Then, we have:

- if e is odd:
 $$B = \{ S_K^{(\lambda^{(0)}, \lambda^{(1)})} \mid (\lambda^{(0)}, \lambda^{(1)}) \in \Lambda_{e,0}^1, |\lambda^{(0)}| + |\lambda^{(1)}| = n \}.$$

- if e is even:
 $$B = \{ S_K^{(\lambda^{(0)}, \lambda^{(1)})} \mid (\lambda^{(0)}, \lambda^{(1)}) \in \Lambda_{e,1.\frac{e}{2}}^1, |\lambda^{(0)}| + |\lambda^{(1)}| = n \}.$$

Recall that $(\lambda^{(0)}, \lambda^{(1)}) \in \Lambda_{e,1.\frac{e}{2}}^1$ if and only if:

1. for all $i = 1, 2, ..., n$, we have:
 $$\lambda^{(0)}_i \geq \lambda^{(1)}_{i+\frac{e}{2}-1},$$
 $$\lambda^{(1)}_i \geq \lambda^{(0)}_{i+\frac{e}{2}+1};$$

2. for all $k > 0$, among the residues appearing at the right ends of the length k rows of $(\lambda^{(0)}, \lambda^{(1)})$, at least one element of $\{0, 1, ..., e-1\}$ does not occur.

4.4. Type D_n. Assume that W is a Weyl group of type D_n and that $\theta(u)$ is a primitive e^{th}-root of unity. Then, H can be seen as a subalgebra of an Hecke algebra H_1 of type B_n with the following diagram (see [G6]).

![Diagram](image)

The specialization θ induces a decomposition map for H_1:

$$d^3_1: R_0(H_1,K) \rightarrow R_0(H_1,k).$$

Similarly to the equal parameter case, for all $(\lambda^{(0)}, \lambda^{(1)}) \in \Pi^2_n$, we can construct an H_1-module $S(\lambda^{(0)}, \lambda^{(1)})$, free over A which is called a Specht module. We have:

$$\text{Irr}(H_{1,K}) = \{ S_K^{(\lambda^{(0)}, \lambda^{(1)})} \mid (\lambda^{(0)}, \lambda^{(1)}) \in \Pi^2_n \}.$$

Now, we have an operation of restriction Res between the set of $H_{1,K}$-modules and the set of H_K-modules. For $(\lambda^{(0)}, \lambda^{(1)}) \in \Pi^2_n$, we have:

- if $\lambda^{(0)} \neq \lambda^{(1)}$, we have $\text{Res}(S_K^{(\lambda^{(0)}, \lambda^{(1)})}) \simeq \text{Res}(S_K^{(\lambda^{(1)}, \lambda^{(0)})})$ and the H_K-module $V^{(\lambda^{(0)}, \lambda^{(1)})} := \text{Res}(S_K^{(\lambda^{(0)}, \lambda^{(1)})})$ is a simple H_K-module.

- if $\lambda^{(0)} = \lambda^{(1)}$, we have $\text{Res}(S_K^{(\lambda^{(0)}, \lambda^{(1)})}) = V^{\lambda^{(0)}, +} \oplus V^{\lambda^{(0)}, -}$ where $V^{\lambda^{(0)}, +}$ and $V^{\lambda^{(0)}, -}$ are non isomorphic simple H_K-modules.
Moreover, we have:

$$\text{Irr}(H_K) = \left\{ V^{[\lambda, \mu]} \mid \lambda \neq \mu, (\lambda, \mu) \in \Pi_n^2 \right\} \cup \left\{ V^{[\lambda, \pm]} \mid \lambda \in \Pi_n^1 \right\}. $$

Hecke algebras of type B_n with unequal parameters are special cases of Ariki-Koike algebras. Hence, we can also define a canonical basic set for these algebras (the existence has been previously proved in \mathbb{C}^6). Furthermore, in \mathbb{C}^6, M.Geck has shown that the simple H_K-modules in the canonical basic set for type D_n are those which appear in the restriction of the simple $H_{1, K}$-modules of the canonical basic set for type D_n. We obtain the following description of B. Note that the only bad prime for type D_n is $p = 2$.

Proposition 4.4. Assume that W is a Weyl group of type D_n and that $\theta(u)$ is a primitive e^{th}-root of unity. Then:

- if e is odd, we have:
 $$B = \left\{ V^{[\lambda^{(0)}, \lambda^{(1)}]} \mid \lambda^{(0)} \neq \lambda^{(1)}, (\lambda^{(0)}, \lambda^{(1)}) \in \Lambda^1_{\{e,0\}}, |\lambda^{(0)}| + |\lambda^{(1)}| = n \right\} \cup \left\{ V^{[\lambda^{(0)}, \pm]} \mid \lambda^{(0)} \in \Lambda^1_{\{e,0\}}, 2|\lambda^{(0)}| = n \right\}. $$

- if e is even, we have:
 $$B = \left\{ V^{[\lambda^{(0)}, \lambda^{(1)}]} \mid \lambda^{(0)} \neq \lambda^{(1)}, (\lambda^{(0)}, \lambda^{(1)}) \in \Lambda^1_{\{e,0, \pm\}}, |\lambda^{(0)}| + |\lambda^{(1)}| = n \right\} \cup \left\{ V^{[\lambda^{(0)}, \pm]} \mid (\lambda^{(0)}, \lambda^{(0)}) \in \Lambda^1_{\{e,0, \pm\}}, 2|\lambda^{(0)}| = n \right\}. $$

Recall that $(\lambda^{(0)}, \lambda^{(1)}) \in \Lambda^1_{\{e,0, \pm\}}$ if and only if:

1. for all $i = 1, 2, ..., e$, we have:
 $$\lambda_i^{(0)} \geq \lambda_i^{(1)},$$
 $$\lambda_i^{(1)} \geq \lambda_i^{(0)}.$$

2. for all $k > 0$, among the residues appearing at the right ends of the length k rows of $(\lambda^{(0)}, \lambda^{(1)})$, at least one element of $\{0, 1, ..., e - 1\}$ does not occur.

4.5. Exceptional types. The decomposition matrices are explicitly known for type G_2, F_4, E_6 and E_7 (see \mathbb{C}^5, \mathbb{C}^1, \mathbb{C}^2, \mathbb{C}^1 and \mathbb{C}^1) for all specializations in characteristic 0. Hence, in this case, it suffices to study these matrices and to use Theorem 2.1 to obtain the canonical basic set in characteristic 0. Next, Theorem 3.3 gives the canonical basic sets in “good” positive characteristic.

For type E_8, Müller has given in \mathbb{M}^2 a set of projective H_σ-modules which is in bijection with the set of projective indecomposable H_σ-modules (which corresponds to the columns of the decomposition matrices, see \mathbb{C}^5, Section 7.5). It is easy to obtain the canonical basic set by studying these projective H_σ-modules.

An explicit description of the canonical basic set for all exceptional types and for all specializations can be found in \mathbb{F}^2, Chapter 3.

References

CANONICAL BASIC SETS FOR HECKE ALGEBRAS

Laboratoire de Mathématiques Nicolas Oresme, Université de Caen, BP 5186, F 14032 Caen Cedex, France.

E-mail address: jacon@math.unicaen.fr