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Abstract

This paper is concerned with propagation phenomena for reaction-diffusion
equations of the type

uy — V- (A(x)Vu) = f(z,u), z € RN

where A is a given periodic diffusion matrix field, and f is a given nonlinearity
which is periodic in the z-variables. This article is the sequel to [8]. The existence
of pulsating fronts describing the biological invasion of the uniform 0 state by a
heteregeneous state is proved here. A variational characterization of the minimal
speed of such pulsating fronts is proved and the dependency of this speed on the
heterogeneity of the medium is also analyzed.
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1 Introduction and main results

This paper deals with the mathematical analysis of a periodically fragmented environ-
ment model which is given by the reaction-diffusion equation

u, — V- (A(x)Vu) = f(z,u), z€RY (1.1)

with periodic dependence in the x variables. It is the sequel to the paper [8], which
focused on some conditions for the stationary equation

~V - (A(x)Vp) = f(z.p) in RY,
{p(w) >0, z epRN, g (1.2)

to have a bounded solution, and on the effects of the heterogeneity in x. The present
paper is concerned with the propagation pheneomena, and especially the propagation
of fronts, associated to (1.1) precise definitions will be given below. Some formulas
for the speeds of propagation of fronts are proved and the dependence in terms of the
coefficients of (1.1) is analyzed.

The archetype of such reaction-diffusion models is the following equation

uy — Au = f(u) in RY (1.3)

which was introduced in the pioneering papers of Fisher [15] and Kolmogorov, Petrovsky
and Piscounov [25]. An example of nonlinear term is given by the logistic law f(u) =
u(1—wu). This type of equation was first motivated by population genetics, and, as (1.1),
it also arises in more general models for biological invasions or combustion.

Of particular interest are the propagation phenomena related to reaction-diffusion
equations of the type (1.3), or (1.1). First, equation (1.3) may exhibit planar travelling
fronts, which are special solutions of the type u(t,x) = U(z - e + ct) for some direction
e (le] = 1, —e is the direction of propagation) and U : R — (0,1) (assuming that
f(0) = f(1) = 0). Such solutions are invariant in time in the comoving frame with
speed c in the direction —e. Second, starting with an initial datum ug > 0, # 0 which
vanishes outside some compact set, then, under some assumptions on f, u(t,z) — 1 as
t — 400 ; furthermore, the set where u is close to 1 expands at a certain speed which
is the asymptotic speed of spreading and which, in the case of equation (1.3) with a
nonlinearity f positive in (0, 1), is the minimal speed of planar fronts (see e.g. [1]).

Whereas the homogeneous equation (1.3) has attracted many works in the mathe-
matical literature, propagation phenomena for heterogeneous equations of the type (1.1),
where both the diffusion and the reaction coefficients depend on the space variables x,
were studied more recently (see e.g. [4, 16, 21, 26, 30]). In models of biological invasions,
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the heterogeneity may be a consequence of the presence of highly differentiated zones,
such as forests, fields, roads, cities, etc., where the species in consideration may tend to
diffuse, reproduce or die with different rates from one place to another.

One focuses here on periodic environments models, which were first introduced by
Shigesada, Kawasaki and Teramoto (see [26, 27]), and for which the diffusion matrix

A(z) and the reaction term f(z,u) now depend on the variables x = (z1,--+ ,zx) in a
periodic fashion. As an example, f may be of the type
[z, u) = u(p(z) — K(z)u), (1.4)

or even, simply,

f,u) = u(p(z) — ). (L5)
where the periodic coefficient p(x), which may well be negative, can be interpreted as an
effective birth rate of the population and the periodic function k(zx) reflects a saturation
effect related to competition for resources (see [23, 26, 27]).! The lower p is, the less
favorable the environment is to the species.

In the paper [8] and in the present one, we discuss these types of problems in the
framework of a general periodic environment, and we give a complete and rigorous math-
ematical treatment of these questions. In the first paper [8], we discussed the existence
of a positive stationary state of (1.1), that is a positive bounded solution p of (1.2).
The latter is referred to as biological conservation. We also analyzed in [8] the effects
of fragmentation of the medium and the effects of coefficients with large amplitude on
biological conservation. Here, we connect the condition for species survival (existence of
such a solution p) to that for propagation of pulsating fronts for which the heterogeneous
state p invades the uniform state 0. This type of question is referred to as biological in-
vasion. We also analyze the effects of the heterogeneity of the medium on the speed of
propagation. We especially prove a monotonous dependence of the speed of invasion on
the amplitude of the effective birth rate.

Let us make the mathematical assumptions more precise. Let Lq,---, Ly > 0 be
N given positive real numbers. A function ¢ : RY — R is meant to be periodic if
g(xy, - xp + L, -+ ,xn) = g(xg, -+ ,xy) forall k = 1,--- | N. Let C be the period
cell defined by

C=1(0,L1) x---x (0, Ly).

The diffusion matrix field A(x) = (a;;(x))1<i,j<n is assumed to be symmetric (a;; = a;;),
periodic, of class C (with o > 0), and uniformly elliptic, in the sense that

Jag >0, Vz € RN, VE € RN, )~ ay(2)&€; > aol¢)”. (1.6)

1<i,j<N

The function f : RY x R, — R is of class C%* in z locally in u, locally lipschitz-
continuous and bounded with respect to u, periodic with respect to . One assumes that

!The model considered in [26, 27] was equation (1.1) with nonlinearity f given by (1.5), where A
and p are piecewise constant and only take two values. Numerical simulations and formal arguments
were discussed in [27] and [23] about this model — in space dimensions 1 or 2 — which is referred to as
the patch model.



f(x,0) =0 for all x € RY and that f is of class C! in RY x [0, 8] (with 8 > 0), and one
sets fu(x,0) :=lim,_o+ f(z,s)/s. Furthermore, throughout the paper, one assumes that

Vr € RY, s f(z,s)/sis decreasing in s > 0 (1.7)

and
IM >0, Vs > M, Yz € RN, f(x,s) <0. (1.8)

Examples of functions f satisfying (1.7-1.8) are functions of the type (1.4) or (1.5),
namely f(z,u) = u(p(z) — k(z)u) or simply f(z,u) = u(u(x) — u), where p and K are
C% periodic functions.

Let A1 be the principal eigenvalue of the operator Ly defined by

Lo¢ = =V - (A(x)Vo) = fu(z,0)¢,

with periodicity conditions. Namely, A\; is the unique real number such that there exists
a C? function ¢ > 0 which satisfies

—V - (A(x)V¢) — fu(z,0)¢ = A\i1¢ in RY, 1.9
¢ is periodic, ¢ > 0. (1.9)

One says that 0 is an unstable solution of (1.2) if \; < 0, and “stable” if A\; > 0.

We especially proved in [8] that, if A\; > 0, then 0 is the only nonnegative bounded
solution of (1.2) and any solution of (1.1) with bounded nonnegative initial condition
ug converges to 0 uniformly in z € RY as t — +oo (one refers to this phenomenon
as extinction). On the other hand, if A\; > 0, then there is a unique positive bounded
solution p of (1.2), which turns out to be periodic,? and the solution u(t,x) converges to
p(z) locally in z as t — 400, as soon as ug > 0, % 0.

The above results motivate the following

Definition 1.1 We say that the hypothesis for conservation is satisfied if there exists a
positive bounded solution p of (1.2).

A simple necessary and sufficient condition for the hypothesis for conservation (or
survival) to be satisfied is that A; < 0, and the solution p is then unique and periodic.
This hypothesis is fulfilled especially if f,(z,0) > 0,%Z 0. An example of a function
f satisfying the hypothesis is the classical Fisher-KPP nonlinearity f(z,u) = f(u) =
u(l —u) (see [15, 25]), where p(z) = 1. For a general nonlinearity f satisfying (1.7) and
(1.8), comparison results and conditions on f,(x,0) for A\; to be negative are given in
8] (see also Theorem 1.3 below). However, it is not easy to understand in general the
interaction between the heterogeneous diffusion and reaction terms.

One focuses here on the set of solutions which describe the invasion of the uniform
state 0 by the periodic positive function p, when the hypothesis for conservation is

2Notice that the periodicity is forced by the uniqueness, but was not a priori required in the formu-
lation of equation (1.2).



satisfied. A solution u(t,z) of (1.1) is called a pulsating travelling front propagating in
the direction —e with the effective speed c # 0 if

V(t,r) € RxRY, uy— V- (A@)Vu) = f(z,u),

N
k- _
Vi € [[LZ Va € RN,u(t+_e,x) — ult,z+ k), (1.10)
c
i=1
with the asymptotic conditions
u(t,e) — 0, ult,z) —p(x) — 0. (1.11)

T-e——00 x-e——+00

The above limits are understood as local in ¢, and uniform in the directions of RY
orthogonal to e.
Our first result is the following existence theorem :

Theorem 1.2 Under the above assumptions on A and f, and under the hypothesis for
conservation, there exists ¢* > 0 such that problem (1.10-1.11) has a classical solution
(c,u) if and only if ¢ > c*. Furthermore, any such solution u is increasing in the variable
t.

Lastly, the minimal speed c* is given by the following variational formula

¢ =min{c, 3 A > 0 such that p.(\) = 0},
where p.(N) is the principal eigenvalue of the elliptic operator

Lot = —V - (A@)VY) — 2X eA(2) Vo

—[AV - (A(z)e) + )\QGA(.T)B — e+ fula, 0], (1.12)

with periodicity conditions.

Before going further on, let us briefly comment this result and recall some earlier
works in the literature. Observe first that the formula for the minimal speed simply
reduces to the well-known Fisher KPP formula 24/ f/(0) for the minimal speed of planar
front ¢(z - e+ ct) for the homogeneous equation u; — Au = f(u) in RY with f satisfying
(1.7-1.8) and p(z) = min {s > 0, f(s) < 0}. Periodic nonlinearities f(z,u) in space
dimension 1 were first considered by Shigesada, Kawasaki and Teramoto [27], and by
Hudson and Zinner [21].> The case of equations u; — Au + v - Vu = f(u) with shear
flows v = (a(y),0,---,0) in straight infinite cylinders {(z1,y) € R x w} was dealt with
by Berestycki and Nirenberg [11], under the assumption that f stays positive in, say,
(0,1) ; min-max type formulas for ¢* were obtained in [17]. Berestycki and Hamel [4]
generalized the notion of pulsating fronts and got existence and monotonicity results in
the framework of more general periodic equations u; — V- (A(z)Vu) +v(x)-Vu = f(z,u)
in periodic domains, under the assumption that f > 0 and f(x,0) = f(z,1), f(x,s) >0

3Hudson and Zinner proved the existence of one-dimensional pulsating fronts for problems of the
type us — Uuge = f(x,u), provided ¢ > ¢*, but did not actually prove that ¢* was the minimal speed.

D



for all s € (0,1). A formula for the minimal speed is given in [7] under the assumption
that f(x,s) < fu(x,0)s for all s € [0, 1] and the dependence of ¢* in terms of the diffusion,
advection, reaction coefficients as well as the geometry of the domain, is analyzed. Some
lower and upper bounds for the minimal speed when the advection term v is large are
given in [2, 3, 6, 12, 19, 24]. Lastly, let us add that some previously mentionned works,
as well as other ones, [1, 4, 10, 11, 13, 14, 17, 18, 19, 20, 22, 28, 30], were also devoted to
other types of nonlinearities (combustion, bistable), for which the speed of propagation
of fronts may be unique.

One of the difficulties and specificities of problem (1.10-1.11) with a nonlinearity f
satisfying (1.7-1.8) is that f may now be negative at some points z, whereas it is positive
at other places, for the same value of u. Besides the existence of pulsating fronts and
the variational characterization of the minimal speed, Theorem 1.2 above also gives the
monotonicity of all fronts in the variable ¢ (notice that a similar formula for ¢* was given
by Weinberger in [29], with a different approach, but the monotonicity of the front was
a priori assumed there).

Consider now a nonlinearity f satisfying (1.7-1.8), and such that f,(z,0) = p(z) +
Buv(z), where p and v are given periodic functions and B is a positive parameter. If
A1 < 0 (namely if the hypothesis for conservation is satisfied), one calls ¢*(B) the minimal
speed, given in Theorem 1.2, of the pulsating fronts solving (1.10-1.11). The following
theorem especially gives a monotonous dependency of ¢*(B) on B as well as some lower
and upper bounds for large or small B (when p = 0, B can then be viewed as the ampli-
tude of the effective birth rate of the species in consideration). Furthermore, Theorem
1.3 below also deals with the influence of the heterogeneity of f on the minimal speed of
pulsating fronts.

Theorem 1.3 Assume that A is a constant symmetric positive matriz and assume that
[ satisfies (1.7-1.8) and that f,(z,0) is of the type f,(x,0) = u(x)+ Br(x), where p and
v are given periodic C%® functions, and B € R.

a) Assume that max v > 0. Then the hypothesis for conservation (A < 0) is satisfied
for B > 0 large enough and

B) < 2v/eAemax(u+ Bv) ;

furthermore, if p = po is constant, then c¢*(B) is increasing in B (for B large enough so
that Ay < 0).

b) Assume that /,u >0, /V > 0 and max v > 0. Then the hypothesis for conser-

c c
vation is satisfied for all B > 0, and ¢*(B) is increasing in B > 0 under the additional
assumption that p = po > 0 is constant. Furthermore, for all B > 0,

eAe c*(B)
o [ )+ vlanan < 2

< 2v/eAe max(B~lpu +v)

and

eAe max v <

c'(B) < lim sup ¢'(B) < 2veAe max v.
T B-+o /B T Bote VB



¢) Assume that p =0, f,(x,0) = Bv(z) with /u >0, max v > 0. One has

eAe
lim

dz.
B0+ \/_ el

Theorem 1.3 implies especially that, when f,(x,0) is of the type u(z) + Br(x), and

no matter how bad the environment may be elsewhere, it suffices to have a very favorable

(even quite narrow) zone (namely v > 0 somewhere) to allow for species survival and

to increase the speed of propagation of fronts. Furthermore, the speed is comparable to

VB for large amplitudes B as soon as, say, / v> 0.

c
Lastly, call ¢*[p] the minimal speed of pulsating travelling fronts solving (1.10-1.11)
with f,(z,0) = p(zx), provided the assumption for conservation is satisfied. From the
previous theorem, one immediately deduces the following corollary :

Corollary 1.4 Assume that A is a constant symmetric positive matriz and assume that
f satisfies (1.7-1.8), with f,(x,0) = p(x). Assume that /u > 1o|C| with po > 0. Then
c

f satisfies the hypothesis for conservation and
c*lu] = ¢ po] = 2v/(eAe) g

This corollary simply means that the heterogeneity of the medium increases the speed
of propagation of pulsating fronts, in any given unit direction of RY.

As already underlined, the main difference with the results in [4], in the existence
and monotonicity result (Theorem 1.2), is that the function f here is not assumed to be
nonnegative. The nonnegativity of f played a crucial role in [4], where the existence of
the minimal speed ¢* was proved by approximating f with cut-off functions, as in [11].
Although we solve some regularized problems in bounded domains as in [4], the method
used in this paper is rather different since we directly prove that the set of possible speeds
¢ is an interval which is not bounded from above, and we define ¢* as the minimum of
this interval. Existence of pulsating fronts is proved in Section 2. Monotonicity is proved
in Section 3. Lastly, the characterization of ¢* is given in Section 4, as well as the effects
of the heterogeneity of the medium on the propagation speeds.

2 Existence result

This section is devoted to the proof of the existence of pulsating fronts for (1.10-1.11) for
large speed. Throughout this section, one assumes that the hypothesis for conservation
is satisfied, namely that there exists a (unique) positive bounded solution p of (1.2),
which is periodic.



2.1 Existence result in finite cylinders for a regularized problem

Let us make the same change of variables as Xin [30] and Berestycki, Hamel [4]. Let
¢(s, ) be the function defined by :

for all s € R and x € RY, where u is a classical solution of (1.10-1.11).
The function ¢ satisfies the following degenerate elliptic equation

Vo - (A(z)Ve9) + (eA(z)e)dss + V- (Az)eds) (2.13)
+0,(eA(x)V20) — cos + f(z,0) =0 in DL (R x RY)

together with the periodicity condition
¢ is L-periodic with respect to x. (2.14)

Moreover, since u(t,z) — 0 as x-e — —oo and u(t,z) — p(z) — 0 as - e — 400,
locally in ¢ and uniformly in the directions of RY which are orthogonal to e, and since ¢
is L-periodic with respect to x, one gets

#(—00,2) =0, ¢(+00,x) = p(x) uniformly in » € RN, (2.15)

Conversely, if ¢ is a solution of (2.13-2.15) such that u(t,z) = ¢(z-e+ct,z) is C* in
t, C? in z, then u is a classical solution of (1.10-1.11).

Let a and € be two positive real numbers, and set ¥, = (—a, a) x RY. As it was done
in [4], one first works with elliptic regularizations of (2.13) of the type

Lo+ f(z,¢) = 0in X,
¢ is L-periodic w.r.t. z, (2.16)
Vz €RY, ¢(-a,.) =0, ¢(a,z) = p(2),

where L. is the elliptic (in the (s, z)-variables) operator defined by

L.¢ = V.- (Ax)V,0) + (eA(x)e + €)dss
+V. - (A(z)eps) + 0s(eA(x)V 10) — cos.

We will follow the scheme as in [4] to prove the existence of solutions of (2.16) and
state some of their properties, only indicating the differences which may appear.
Let us establish at first the

Lemma 2.1 For each ¢ € R, there exists a solution ¢¢ € C? (Z_a) of (2.16).



s+a

PROOF. Let v be the function defined by (s, x) = p(z) PR One sets v = ¢ — 1.
a

Then, since p satisfies —V-(A(z)Vp)— f(z,p) = 0in RY, the problem (2.16) is equivalent
to

s+ a

—L.v = f(I7U+¢)_ f(I,p)
+(2a)"[2A(z)e - Vp+ V- (A(z)e) p— cp] in Xy, (2.17)
v is L-periodic w.r.t. x,

v(—a,.) = 0, v(a,.) = 0.

Using the fact that f(z,p), p, A, Vp and V, - (Ae) are globally bounded, (since p and
A are L-periodic and C*), one can follow the proof of Lemma 5.1 of [4]. Namely, using
Lax-Milgram Theorem with Schauder fixed point Theorem, one can find a solution v of
the first equation of (2.17), in the distribution sense, in Y,. Then, from the regularity
theory up to the boundary, this solution v is a classical solution of (2.17) in ¥,. Finally,
the function ¢ = v+ € C? (X,) is a classical solution of (2.16). O

Lemma 2.2 The function ¢° defined above is increasing in s and it is the unique solution

of (2.16) in C* ().

PROOF. One has to show at first that 0 < ¢°(s,z) < p(z) in X,. Since f = 0 in
RY x (=00, 0], the strong elliptic maximum principle yields that ¢¢ > 0 in (—a, a) x RV.
Let us show that ¢°(s, z) < p(z).

Set

v  =inf {7, yp(x) > ¢°(s,z) for all (s,z) € X,}.

Since p > 0 and p is L-periodic with respect to z, there exists 6 > 0 such that p > ¢ in
Y,. Therefore v* does exist. Moreover since ¢¢(a,z) = p(z), v* > 1. One has to show
that v* = 1.

Assume 7* > 1. By continuity, one has v*p > ¢° in 3,. On the other hand,
there exists a sequence v, — 7, v, < 7* and a sequence (s,,z,) in X, such that
Yup(Zn) < ¢°(8n, Tn). Since p and ¢° are L-periodic in z, one can assume that x, € C.
Up to the extraction of a subsequence, one can also assume that (s,,z,) — (s1,21) €
[—a,a] x C. Passing to the limit n — oo, one obtains y*p(z1) = ¢°(s1, 1)

Next, set z = v*p — ¢°. One has f(z,7*p) < ~v*f(x,p) since f(.,s)/s is supposed to
be decreasing in s. Thus L.(v*p) + f(x,7*p) < 0. As a consequence, L.z + f(x,v*p) —
f(z,67) < 0.

Hence,

{ f; g b2<0 4w (2.18)

where b is a bounded function (because f is globally lipschitz-continuous). Moreover,
one has (@) o )
v'o(z) > ¢°(—a,x) =0,
. . 2.19
L S Sas) Lo 219

for all z in RY (the last inequality follows from the assumption v* > 1 and from the
positivity of p in RY). Therefore, the point (si,z;) where z vanishes, lies in (—a,a) x



C. Using (2.18) with the strong maximum principle, one obtains that z = 0, which
contradicts (2.19).

Thus v* = 1 and ¢¢ < p. Using again the strong maximum principle, one obtains
#°(s,x) < p(x) for all (s,z) € [~a,a) x RY.

In order to finish the proof of the lemma, we only have to follow the proof of Lemma
5.2 given in [4], which uses a sliding method in s (see [11]), replacing ¢°(a,x) = 1 by
¢c(a7 x) = p(x) [

Lemma 2.3 The functions ¢¢ are decreasing and continuous with respect to c in the
following sense : if ¢ > ¢, then ¢¢ < ¢¢ in X, and if ¢, — ¢ € R, then ¢ — ¢° in
C2(%0)-

PROOF. The proof is similar to that of lemma 5.3 in [4]. O

In the following, for any ¢ > 0, a > 0 and ¢ € R, we call ¢Z , the unique solution of
(2.16) in C* ().
Set

p~ =min p(z) = min p(x) >0 and p* = max = max p(z) > 0.
zeC z€RN zeC  z€RN

Lemma 2.4 There exist ay and K such that, for all a > a; and € € (0,1],

(> K) = (m@(qﬁga((),:c) < p—) .
zel ’ 2
PROOF. Let n > 2 be an integer and g be a C' function defined on [0, np*], such
that ¢(0) = 0, g(np™) = 0, g(u) > 0 on (0,np*), ¢'(np™) < 0. For n large enough,
one can choose (using hypothesis (1.8)) g such that f(z,u) < g(u) for all z € RY and
u € [0,npt].
Then, using a result of [9], one can assert that there exists ¢! such that the one-
dimensional problem
U”—k’U’Jr@:OiHR,
o (2.20)

v(—00) =0 < v(.) <v(+oo) =npt and v(0) = %,

admits a unique solution v, for each k > ¢! > 0 (remember that oy > 0 is given in (1.6)).

Set k = ¢!, and let v = v(s) be the unique solution of (2.20) associated to k = c!. Tt is

also known that v is increasing in R. Take ¢ > z € max {(eA(x)e+ 1)k + V - (A(x)e)},
R

and € € (0,1]. One has

Lev+ f(z,v) = (eA(z)e+e)v"(s) + (V- (Ax)e) = )v'(s) + f(z,v(s))
= {(eA(z)e +e)k+ V - (A(z)e) — c}v'(s)
—(eA(z)e +¢e)g(v(s))/ao + f(z, v(s)),

10



from (2.20). Thus
Lo+ f(z,v) < {(eA(z)e + &)k + V(-A(z)e) — c}v'(s) —eg(v(s))

since eA(z)e > ap and f(z,u) < g(u) for all (z,u) € RN x [0,np™]. Moreover g > 0,
v' > 0and (eA(z)e+e)k+ V- A(x)e—c < 0, owing to the choice of c¢. As a consequence,
one gets

Lov+ f(z,v) <0 in X,.

By using a sliding method as in Lemma 2.2, with v and ¢¢,, and by using the
monotonicity of v and the fact that v(—a) > 0 and v(a) > p* > p(z) for all z € RY and
for a large enough, one can conclude that

cals ) <w(s),

for all (s,2) € 3, and for a large enough.
Hence, it follows that

.
c,0,7) = c,0,z) <v(0) = —,
max ¢ ,(0,2) = maxf,(0,2) < v(0) = 5

for ¢ > m%x{(eA(x)e+ )k+ V- (A(z)e)} and a large enough, which completes the
R

proof of the lemma. [J

Let us now consider the functions gb?w associated to ¢ = 0. Take a sequence a,, —
+00. Let us pass to the limit n — +o00. From standard elliptic estimates and Sobolev’s
injections, the functions ¢2,an converge (up to the extraction of a subsequence) in C*P (Rx

loc
RY), for all 0 < 3 < a, to a function ¢ which satisfies

L.¢° + f(x,4°) = 0 in R x RY,
¢° is L-periodic w.r.t. z,
¢° is nondecreasing w.r.t. s,

with ¢ = 0. Furthermore, 0 < ¢°(s, z) < p(z) for all (s,z) € R x R".
One then has the

Lemma 2.5 There exist x1 € C and Ny € N such that for alln > Ny, qbg,an(O, x1) > %

PROOF. Assume ¢°(0, ) < p(z) for all z € C. Then

0 < max¢°(0,z) < p*.
zeC

Let (sp)nen be a sequence in (—a, a), such that

1 1
max 6, (5,,7) = § 2= gp" + 5 max (0, ).
zeC zeC
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Let us show that s, > 0 for n large enough.
Assume by contradiction that there exists a subsequence a; — +oco such that s, <0
for all £ € N. Then, since ¢2,ak is increasing in s,

6 = max (bg,ak(sk: CL’) < max ¢g,ak(0a x):
zeC zeC

while

max @2, (0,2) — max ¢°(0,z) as k — +oo.

zeC zeC

Passing to the limit £k — 400, one obtains

3 < max ¢°(0, z).
zeC

That leads to a contradiction since p™ > max ¢°(0,x). Therefore, one has shown that
zeC
s, > 0 for n large enough.

Set g, (s,7) =@, (5+ sp,z), defined on (—a, — s,, a, — s,) X RY. Then

€,an

ma‘_)((ban(o’ :1;) - /8

zeC
One easily sees that —a,, — s, — —o0 as n — +o0o. Then two cases may occur, up to
the extraction of some subsequence :

case 1 : a, — s, — +oo. From standard elliptic estimates and Sobolev’s injections,
the functions ¢,, converge (up to the extraction of a subsequence) in 012 O’f (R x RY), for
all 0 < 8 < a, to a nonnegative function ¢ satisfying

( Lo+ f(x,¢) = 0 in R xRY (with ¢ = 0),
¢ is L-periodic w.r.t. x,
¢ is nondecreasing w.r.t. s, (2.21)
0<¢ < p(x)
max qb(o’ l‘) = B
\ zeC

Moreover, from standard elliptic estimates, from the monotonicity of ¢, and from the
periodicity in x, it follows that

B(s,2) — ¢+ () in C*(RY) as s — o0,
where each function ¢4 satisfies

V- (A(l’)VQSi) + f(xa ¢:|:) =01n RN;
¢+ is L-periodic,
¢+ > 0.

From the uniqueness Theorem 2.1 of [8], one can conclude that either ¢ (z) = 0
or ¢4(z) = p(x). Moreover, ¢1 (z) < ¢1(0,2) because of the monotonicity of ¢; with

12



respect to s. Therefore ¢7 () < 8 < p*. Thus, ¢; (z) # p(x), and ¢; = 0. Similarly,
& (z) > ¢1(0, ). Thus there exists zo € C such that ¢7 (z¢) > 3 > 0. As a consequence,
¢ =p.

Next, multiply the equation (2.21) (with ¢ = 0) by ¢ and integrate it over (=N, V) x
C, where N is a positive real number. Then,

/ (eA(x)e + &) psspsdsdx + / V.- (A(z)V,0)psdsdx
(=N,N)xC

(=N,N)xC

+/ 1V (A(z)eds) + 0s(eA(x) V. 0)} psdsdx (2.22)
(=N,N)xC
s ot = o
(=N,N)xC

First, one has

/ (eA(2)e + &) ustrydsda — % / (eA@)e + )67 dsde.  (2.23)
(=N,N)xC

(]

From standard elliptic estimates, one knows that ¢, — 0 as s — +o00. Passing to the
limit N — 400 in (2.23), one obtains

/ (eA(x)e + €)psspsdsdr = 0. (2.24)
RxC

Next, using an integration by parts over (—N, N) x C' and the periodicity of ¢ with
respect to x, one has

/ V. (A@)V,0)6.dsds = — / Voo, - Al)V,dsda
(=N,N)xC N,N)x

A(x)V,0)sdsdr  (2.25)

)V~ dsdz,

g
2/NN><C

since the matrix field A(z) is symmetric. Passing to the limit N — +o00 in (2.25), one
obtains, using standard elliptic estimates :

/ V.- (A(2)V,0)psdsdr = —% / Vp - (A(x)Vp)dsdz. (2.26)
RxC C

Next, from the periodicity of ¢ with respect to x, one can similarly show that

/R ) {V. - (A(z)eps) + 0s(eA(x) V) } psdsdx = 0. (2.27)
Set F(x,u) = /uf(:c, s)ds. Then,

f(z, ¢)¢sdsdr = /

RxC

Flz, é(s, 7))dsdz — / Flz, p(z))da. (2.98)

RxC C

13



Passing to the limit N — +o0 in (2.22), and using (2.24), (2.26), (2.27) and (2.28),
one gets

/C {F(:c, p(z)) — %Vp- (A(:):)Vp)] dr = 0. (2.29)

Moreover, using a property on the energy of p, which has been established in Proposition
3.7 of [8], one asserts that

1
[ [F@stan - 590 09| o = -B) > o
c
The latter is in contradiction with (2.29), therefore case 1 is ruled out.

case 2 1 a, — s, — b < +00. Up to the extraction of some subsequence, the functions
a, converge in C7((—oco,b) x RY) (for all 0 < 8 < a) to a function ¢ satisfying (2.21),
with ¢ = 0, in the set (—oo,b) x RY. Moreover, the family of functions (¢,, ) is equi-
Lipschitz-continuous in any set of the type [a, — s, — 1,a, — s,] x C. Therefore, for all
n > 0, there exists kK > 0 such that

Ve € C, Vn, Vs € [an — Sn — Ky apn — Sp), p(T) =1 < @0, (5,2) < p(). (2.30)

Then choose zy € C such that p(zy) = p*. Formula (2.30) applied on z, together
with

max ¢, (0,2) = § < p*
zeC

implies that a, — s, > 0 for some § > 0. Hence b > 0 and

max ¢(0, z) = f.

zeC
Moreover (2.30) implies that ¢ can be extended by continuity on {b} x RY with ¢(b, ) =
p(z). Furthermore, from standard elliptic estimates up to the boundary, the function ¢
is actually in C* ((—oc,b] x RY).

Following the proof of case 1, one shows that ¢(—oo,.) = 0. The next steps are

similar to those of case 1. One gets a contradiction.

Therefore, there exists z; € C such that ¢°(0,z;) = p(z;). Hence, taking any se-
quence a, — +oo such that the sequence (¢°, ) converges in C2°(R x RN) for all

€,an

0 < B < a, there exists Ny such that for all n > Ny, ¢°, (0,21) > % That completes

£,an

the proof of Lemma 2.5. [

Finally, one gets

Proposition 2.6 Fiz e € (0,1]. Let a,, — 400 be the sequence defined above. Then,
there exist K € R, N1 € N such that for all n > Ny there exists a unique real number
c = ¢ such that ¢¢ , satisfies the normalization condition

max ¢Z , (0,2) = max¢Z, (0,7) = %. (2.31)

zeRN 7" zeC
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Furthermore,
VO0<e<l1l, Vn>N, 0<&™ < K.

PROOF. Fix ¢ € (0,1]. Under the notations of the two preceding lemmas, let us define
Ny such that ay, > a; and Ny > Nj. It follows from this lemmas that for each n > Ny,

Ve > K, max ¢2, (0,2) <
z€eRN T

for ¢ =0, max¢?, (0,z) >
z€RN T

On the other hand, Lemma 2.3 yields that, for each n > Ny, the function

=(¢) = max ¢, (0. 2)

is decreasing and continuous with respect to ¢. Therefore the proposition follows. [

2.2 Passage to the limit in the infinite cylinders

Using the result of Proposition 2.6, we are going to pass to the limit n — 400 in the
infinite cylinder R x R for the solutions ¢¢ " satisfying (2.31).

Proposition 2.7 Under the notations of Proposition 2.6, one has

Ve >0, 0< ¢ := liminf & < K.

n——+o00,n>N1

PROOF. From Proposition 2.6, one has 0 < ¢ < K. Up to the extraction of a subse-
quence, one can assume ¢ — ¢ as n — 400 and qbgsai" — ¢ in 01205 (R x RY), for all
0 < B < a, where ¢ satisfies

L.+ f(x,¢) =0in R x RV,
¢ is L-periodic w.r.t. x,
¢ is nondecreasing w.r.t. s,

with ¢ = ¢® and B
max ¢(0,z) = b

zeRN 2

Then, following the calculus of Lemma 2.5, case 1, one can assert that ¢(—oo, z) = 0,
é(+00,x) = p(x) for all z € R and

1
[ opdsaa— [ [F(:c,p) - IVp-(A@VP)| de = —E(p) >0, (232)
RxC c 2
from Proposition 3.7 of [8]. Therefore ¢¢ > 0. O
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Proposition 2.8 Up to the extraction of some subsequence, the functions qbgi';n converge
in C’Q’B(R X RN) (for all 0 < 8 < ), to a function ¢F such that, in R x RY,

loc
(Vo (A(@)Ve6F) + (eA(z)e + €)¢5, + Vo - (A(z)ed)
+05(eA(z)V,0°) — cos + f(x,¢°) =0,
o° is L-periodic w.r.t. =,
max ¢°(0,z) =

z€RN
¢° is increasing w.r.t. s.

P
2

)

Furthermore, ¢°(—o0,z) = 0 and ¢°(+00,z) = p(x) for all z € RV,

PROOF. The convergence follows from the same arguments that were invoqued in the
preceding propositions. Moreover, ¢° in nondecreasing w.r.t. s because each ¢§Eain is
increasing in s. The limits ¢f(—o0,z) = 0 and ¢°(+00,x) = p(x) can be proved in the
same way as in Lemma 2.5, case 1, using

e 4
max¢(0.2) =5
and the fact that ¢° in nondecreasing in s. The only thing that it remains to prove is
that ¢° is increasing in s.

For any h > 0, the function ¢°(s + h,z) — ¢°(s, z) is a nonnegative and nonconstant
solution of a linear elliptic equation with bounded coefficients. It follows then from the
strong maximum principle that ¢°(s+ h,x) — ¢°(s,z) > 0, for all (s,z) € R x RN. That
proves that the function ¢° is increasing in the variable s. [

2.3 Passage to the limit ¢ — 0

Our first aim is to prove that the real numbers ¢ are bounded from below by a positive
constant.

Proposition 2.9 Under the notations of Proposition 2.6, one has

0 < liminfc¢® < K.

e—0

PROOF. From Proposition 2.6, for each € > 0, one has 0 < ¢ < K. Assume that there
exists a sequence ¢, — 0, &, > 0 such that ¢» — 0 as n — +o0. In the sequel, for the
sake of simplicity, we drop the index n. Set u®(t,z) = ¢°(x - e + ¢°t,x). Then u® is a
classical solution of
ﬁuit + Ve (A(x) Vo) — 5 + f(z,u®) = 0in R x RV,
CE
al k-e
Vke HLZ-Z, u® (t—l——,x> =u'(t,z+ k) inRxRY, (2.33)
c

i=1
us(t,z) — 0 as t — —oo, u(t,z) — p(x) as t — +oo.
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Moreover, 0 < u®(t,z) < p(z) for all (t,x) € R x RY. Lastly, since ¢ is increasing in the
variable s and ¢© > 0, each function u® is increasing in the variable ¢.

Up to the extraction of some subsequence, as it was said in [4] (Proposition 5.10),
three cases may occur :

— k€ (0,+00), — +00 or — 0 ase— 0%,

9 9 €
(c)? (c)? (c)?

Let us study the :

€
case 1 : Assume T)z — k € (0,4+00). Let zog RY be such that zy € Hfil L7

c
and xy - e > 0. Since u®(t,z9) — 0 as t — —oo and u°(t,xy) — p(xg) as t — +00
from our assumptions on uf, one can assume, up to translation with respect to t, that

p
U8<O, ./I,'(]) = ? .
Since E — K, standard elliptic estimates imply that the functions u® converge (up
c

to extraction of some subsequence) in C27(R x RY) (for all 0 < 3 < a) to a function u
satisfying
Kuy + Vi - (A(@)Veu) —up + f(z,u) = 0in R x RY,
{ 0<u<p, u > 0in R x RY,

and u(0,zg) = % Now, fix any B € R. Since ¢ — 07 and 29-e > 0, B < #&< for

¢ sufficiently small. Thus, as u® is increasing in ¢, one has u*(B,0) < u®(%2<,0). But

CE

g

uf (%€, 0) = u(0, ) = B-. Therefore, passing to the limit ¢ — 0, one obtains
¥V B>0, u(B0)< %. (2.34)

Let u™ be the function defined in RY by u*(x) = limy_, o u(¢, ). This function can
be defined since u is bounded and nondecreasing in t. From standard elliptic estimates,

the convergence holds in C2_(RY), and u™ solves

V- (A(@)Vu®) + f(z,ut) =0in RY (2.35)

with 0 < u™(z) < p(z) for all z € RY. But it follows from our hypotheses on f and
from Theorems 2.1 and 2.3 of [8] that the equation (2.35) admits exactly two nonneg-

ative solutions, which are 0 and p. Therefore, as u(0,z9) = %- and u; > 0, one has
ut(zg) > & > 0, thus ut = p. However, (2.34) gives u*(0) < &-. As a consequence, u™*
cannot be equal to p and case 1 is ruled out.

case 2 : Assume that ( 6)2 — +o00. As it was done in [4] (Proposition 5.10), one
CS
- . NG
makes the change of variables 7 = (¢°/y/e)t. The function v*(r,2) = v | —7,z
cE
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satisfies

( ot

Ve + Vi - (A(2)Varr) —

VkeHLZv (
o(r, @

UE(T,LL’)—>0aST—> —00, v

U + f(z,v°) = 0in R x RY,

#)

p(z) = 0 as 7 — +o0.

v (1,x+ k) in R x RY,

\

Moreover, 0 < v® < p and v is nondecreasing with respect to 7. Furthermore, as
it was done in case 1, one can assume that v¥(0,z¢) = & for some 2y € RY such that
2o € [[Y, LiZ and z - e > 0. Since ¢¢//g — 07, the functions v° converge (up to the

extraction of some subsequence) in C22(R x RY) (for all 0 < § < a) to a function v
which satisfies

Vrr + Vi (A(2) Vo) + f(z,v) = 0in R x RY,
0<v<p v, > 0in R xR",

and v(0,xy) = %. Moreover, as in case 1, one can show that

VB>0, vB,0)<

[\>|B

By defining v*(x) := lim,_,, - v(7, ), one can also obtain a contradiction the same
way as in case 1.

case 3 : Assume that — 0. The elliptic operators in (2.33) become degenerate

€
(c=)?
at the limit ¢ — 0, and one cannot use the same arguments as in cases 1 and 2.
In order to pass to the limit ¢ — 0, let us state two new inequalities on u°.

Using the same calculations as those which were used to prove (2.29) and (2.32), and

. . S—T-€ .
making the change of variables t = ——— one obtains
c

Vee (1), / () ==E)

Therefore, the periodicity condition in (2.33) gives us that

Ve € (0,1), Vn € N, (uf)* = —(2n)N E(p). (2.36)

/RX(nL1,nL1)><---><(nLN,nLN)

Similarly, multiplying equation (2.33) by 1 and u®, one gets the existence of v > 0
such that

Ve € (0,1), Yn € N, flz,u® + |Voul | < (2n)Vy. (2.37)

/]RX(—nL1,nL1)><---><(—nLN,nLN)

Next, using Theorem A.1 of [4] (see also [5]), one has the following a priori estimate :
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Lemma 2.10 There exists a constant M, which does not depend on e, such that the
function u® solving (2.33) satisfies

IV uf| < M in R x RY (2.38)
for & small enough.

From (2.36) and (2.38), and arguing as in [4] (Proposition 5.10), we obtain that u®
converges (up to the extraction of some subsequence) almost everywhere in R x RY to a
function u € H. (R x RY) and

loc
(v, ug, Vou') = (u,u, Vyu) in LQ(IC),

for every compact subset X C R x RY. From (2.36) and (2.38), one can actually assume
that v* — w in L}, (R x RY) strong. Moreover, 0 < u < p(z), u; > 0 and from (2.36),

loc

(2.37) and (2.38),

/]RXIC Voul? + (u)? < C(Ky), (2.39)

for every compact subset K; C RY.
From parabolic regularity, u is then a classical solution of

uy — V- (A(x)Veu) — f(z,u) = 0in R x RY,
. N (2.40)
0<u<p, uy > 0in RxR™.
Moreover, one can assume, up to a translation in ¢, that
Ve>0, / us(t, & + xo)dadt = |C’|p— (2.41)
0,1)xC 2

for some xg € Hfil L;7Z such that xo - e > 0. Since ¢ — 0" and v is increasing in t, it
follows that for all B € R, and for ¢ sufficiently small,
T - €

cs. , o) = u(t, x + o)

V(t,x) € (0,1) x C, u*(B+t,z) <u(t+

from (2.33). Next, one integrates over (0,1) x C' and passes to the limit ¢ — 0*. By
using (2.41) and the fact that u* — win L}, (R x RY) weak,! one obtains

loc
V BEeR, / w(B + t,2)dzdt < |O|2%-. (2.42)
(0,1)xC 2

Using the monotonicity of u in ¢, let us define u™(x) = tligl u(t, ). Then, one has

ut > 0and V, - (A(z)V,ut)+ f(x,ut) = 0. Therefore, as it was stated in Theorems 2.1
and 2.3 of [8], u™ = 0 or u™ = p. But (2.41), passing to the limit ¢ — 0 and ¢ — +o0,
rules out the case u™ = 0. Hence ut = p. Next, using (2.42), and since u is nonincreasing

in ¢, one obtains
[ s <iol
(0,1)xC 2

which is impossible. The proof of Proposition 2.9 is complete. [J

4This convergence is actually strong.
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2.4 Existence of a solution (c!,u')

Let us choose a subsequence & — 0 such that ¢¢ — ¢! > 0. For each e, set u®(t,z) =
¢°(z-e+ct,x). As it was done in case 3 of Proposition 2.9, the functions u® converge (up
to the extraction of some subsequence), in H. (R x RY) weak, and almost everywhere,
to a classical solution u! of (2.40).

k-
Let us prove that u' (t + —16,5(:> = ul(t,x + k) for all k € [[Y, L;Z and for all
c

(t,z) € R x RN, For all B > 0 and every compact set K; in RY, one has,

whence

k-e 2
/ {ua (t+ —l,av) —uE(t,aH—k)]
(~B,B)xK1 ¢ ) )
k-e k-e k-e k-e
(e s (-
c c RxK, c c

from (2.39). Therefore, by passing to the limit ¢ — 0, we obtain

k-e
ut (t e x) =ul(t,x + k) (2.43)

almost everywhere in R x RY. Since u! is continuous, the equality holds for all (¢,z) €
R x RV,

In order to obtain our result, one has to prove that u!'(¢,z) — 0 as z - e — —oco and
ul(t,z) — p(x) — 0 as x- e — +oo, locally in ¢. Since u! verifies (2.43), and ¢ > 0, it
is equivalent to prove that ul(t,z) — 0 as t — —oco and u*(t,x) — p(z) as t — +o0,
locally in x.

As it was done in the proof of Proposition 2.9, case 3, one can assume, up to a
translation in ¢, that

Ve, / W (t, o) dedt = O (2.44)
(0,1)xC 2

Since u! is bounded and nondecreasing with respect to ¢, one can define u*(t, r) =
lim; 4 ul(t, 7). As done above, one knows that u* satisfies V-(A(z)Vu®)+ f(z,u*) = 0
and one has 0 < u* < p. As already said, this equation admits exactly two nonnegative
solutions, which are not larger than p, namely 0 and p.

Passing to the limit € — 0 in (2.44), and using the fact that u! is nondecreasing with
respect to t, one has

/C w(x) = 012 (2.45)
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and _
/C u(z) < |C|%. (2.46)

One then easily concludes from (2.45) that u™ is not equal to 0, and therefore u™ = p,
and from (2.46), u~ is not equal to p, thus u~ = 0.

From strong parabolic maximum principle, one obtains that u! is increasing in ¢. The
existence result follows.

2.5 [Existence of a solution (c,u) for all ¢ > ¢!

Proposition 2.11 For each ¢ > ct, there exists a solution u of (1.10-1.11), associated
to the speed c, and u is increasing in t.

S—xT-€

PROOF. Set ¢*(s, x) = u (
c

,x), and, as before, define L. by

L.p =V, - (Ax)V,0) + (eA(z)e + €)pss + V- (A()eds) + 0s(eA(x)V,0) — cos.

Then, as it was done in [4] (Proposition 6.3), using Krylov-Safonov-Harnack type inequal-
ities applied to v = dyu', one gets the existence of a constant C' such that |Oyut| < COu'
in R x RY, whence

L' + f(z,6') = £6}, + (' = )¢} <0 in R x RV, (247)

for € > 0 small enough. In what follows, let € > 0 be small enough so that (2.47) holds.
For any a € Rt and 7 € R, set

h’T - HLin¢1(_a + T, )
C

With a similar method as in Lemma 2.1, one can show the existence of a solution ¢, €
C? (X,) of the following problem :

LE¢’T + f(xad)'r) = 0in Eav

¢, is L-periodic w.r.t. x, (2.48)

¢ (—a,z) = hf%, é-(a,r) = ¢Ya+T,2)forallz € RV,
p(z)

Let us now show that h, < ¢, for all (s,z) € 3,. First, since f(z,u) =0 for all

p* _
u < 0, one has, from the strong maximum principle, ¢, > 0 in ¥,. Therefore, one can
define
x
~v* = sup {’y >0, ¢ > ’yhTZLJF) in Za} )
p

Assume that v* < 1. As in the proof of Lemma 2.2, using the fact that v*h,.p(z)/p* <
é-(Fa,z) for all z € RY (since p(z)/p™ < 1 and ¢' is increasing w.r.t. s), one gets
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the existence of (s*,2*) € (—a,a) x C such that v*h,p(z)/pt < ¢,(s,x) for all (s,z) €
[—a,a] x RN, with equality at (3* 7*) € (—a,a) x RY. On the other hand,

& p *h’T ES p
L (h77 ) Y ]F E(p) > —f(I,")/ hTF):

since v*h,/p*t < 1, and since f ( s)/s is decreasing in s from our hypothesis on f. That
leads to a contradiction as in Lemma 2.2.
Therefore, v* > 1, whence ¢, > h,p/p", and the strong maximum principle yields

V (s,x) € X, hf% < ¢r(s, ). (2.49)

Similarly, one can easily show that ¢.(s,z) < p(z) for all (s,x) € X,. Therefore,
¢*(s + 7+ k,x) > ¢.(s,z) in 3, for k large enough. Let k& be the smallest k such that
the latter holds. From the boundary conditions in (2.48), one knows that & > 0. Assume
k > 0. By continuity, it necessarily follows that ¢*(s + 7+ k,z) > ¢.(s, ) with equality
at a point (3,7) € X,. Since ¢ is increasing in s,

¢(—a+T7+k ) > ¢ (—a+T,) > h, > hT% =¢"(—a,-),
and ¢'(a+ 7+ k,-) > ¢'(a+7,-) = ¢"(a,-). Therefore (3,7) € (—a,a) x C (one can
assume this using the L-periodicity in x of ¢! and ¢,). But, from (2.47), it is found that
@'(s + 7+ k,x) is a supersolution of (2.48). Therefore, the strong maximum principle
implies that ¢! (s+7+k,z) = ¢,(s,x) in X,. One gets a contradiction with the boundary
condition at s = a. As a consequence, k = 0 and one has

Y (5,7) € X4, ¢r(s,2) < (s + 7, 2). (2.50)
Since ¢! is increasing in s, it also follows that ¢.(s,z) < ¢*(a + 7,7) in X,.
As a conclusion, from (2.49) and (2.50), one has
p(z)
V(s,z) € X4, h, s < ¢.(s,2) < ¢'(a+ T,2).

Using the same sliding method as in Lemma 5.2 in [4], it follows that ¢, is increasing
in s and is the unique solution of (2.48) in C? (3,). Moreover, using the fact that the
boundary conditions for ¢, at s = +a are increasing in 7, one can prove, as in Lemma 5.3
in [4], that the functions ¢, are continuous with respect to 7 in C? (Z_a) and increasing
in 7. But, since ¢!(—o0,z) = 0 and ¢*(+00,7) = p(x) in RV, it follows from (2.49) and
(2.50) that ¢, — 0 as 7 — —oo uniformly in ¥, and that,

Va>0, 3T, V7>T, ¢T(s,x)>p—+p—ain§]_a.
p

Therefore, for each a > 1, there exists a unique 7.(a) € R such that ¢** := ¢, (,) solves
(2.48) and satisfies

—\2
/(O ) G (s,a)dsde = %m min(c, 1). (2.51)

22



Let a, — +4o00. From standard elliptic estimates, the functions ¢=%* converge in
01205 (R x RY) (for all 0 < 8 < a), up to the extraction of a subsequence, to a function
¢° satisfying

{ L.¢ + f(z,¢°) = 0in R x RY,

. S 2.52
¢° is L-periodic w.r.t. . ( )
Moreover, ¢¢ is nonincreasing with respect to s, satisfies 0 < ¢°(s, z) < p(z) in R x RV,

and
/ (s, x)dsdr = (p_)2|C’|min(c 1)
0,1)xC 7 2p* 7

From standard elliptic estimates, and from the monotonicity of ¢° with respect to s,
one states that ¢°(s,z) — ¢5.(x) as s — +oo in C?(C). Moreover, ¢ are L-periodic
and satisfy

V- (A@)Ve5) + f(z,65) = 0in T,

with 0 < ¢5.(x) < p(x) in C.

But, as one has said before, from Theorems 2.1 and 2.3 of [8], the former equation,
together with the bounds 0 < ¢ (z) < p(z), admits exactly two nonnegative solutions,
which are 0 and p. Since ¢° is nondecreasing in s, and from (2.51), one has

5 7)Ao
L¢+(I)dx > 2pﬁ|C| min(c, 1) > 0, (2.53)
and (v’
e p -
/Cqb_(x)d:c < ot |C'| min(c, 1) < /Cp(x)dac. (2.54)

From (2.53) one deduces that ¢S = p and from (2.54) one has ¢° = 0.

Coming back to the original variables (¢, z), one defines u®(t,z) = ¢°(x-e+ct,z). As
it was done in the proof of (2.36) and Lemma 2.10, it follows from (2.52) and from the
limiting behavior of ¢° as s — oo that u® satisfies the estimates (2.39), independently
of e. As it was done in subsection 2.4, there exists a function v € H. (R x RY) such

that (up to the extraction of a subsequence), u® — u weakly in H. (R x RY). From
parabolic regularity, u is then a classical solution of

U — Vi - (A@)Veu) = fa,u) = :
0<u<p, u > 0inR xRN,

Moreover, as it was done in subsection 2.4, one still has u(t 4+ =%, z) = u(t,z + k) in
R x RY for all k € [/, L;Z. Furthermore, u satisfies
(p™)?

u(t, z)dtdr = ——|C|min(c, 1).

/{0<az-e+ct<1, zeC'} 2Cp+

One deduces from standard parabolic estimates and from the monotonicity of  in ¢, that
u(t,z) — u*(z) locally in o as t — 200, and that u* solve V- (A(2)Vu®) + f(z,u*) =0
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in RY. Moreover, 0 < u* < p. From the monotonicity of u with respect to ¢, one can
also assert that

/Cqu(x)dm > (p7)2|C| min(c, 1) > 0,

2cpt
and )2
— P .
u (z)dr < |C| min(c, 1) < / p(z)dz.
/c 2ep™* c
Therefore using the same argument as for ¢<, one concludes that u™ = p and u= = 0.

Finally, one deduces from the (¢, x)-periodicity of u and the positivity of ¢ that
u(t,z) - 0as x-e — —oo and u(t,xz) —p(z) — 0 as & - e — +00, locally in t. Thus
(c,u) is a classical solution of (1.10-1.11). Moreover, since u; > 0, the strong parabolic
maximum principle yields that wu is increasing in .

That completes the proof of Proposition 2.11. [J

3 Monotonicity of the solutions

We are going to establish the monotonicity result in Theorem 1.2, namely, each solution
(c,u) of (1.10-1.11) is such that u is increasing with respect to ¢t. This will enable us to
define a minimal speed ¢* in the next section.

One first establishes the following lemma, which is close to LLemma 6.5 of [4]. Nev-
ertheless, its proof does not use the fact that f has a given sign (which is not true in
general) and clearly uses the property that 0 is an unstable solution of the stationary
problem.

Lemma 3.1 Let (c,u) be a classical solution of (1.10-1.11). Then ¢ > 0 and

0<A := liminf w(t, 2)
t——o0, mea U(t, I)

< +00.

PROOF. Let us first prove that ¢ > 0. Set ¢(s,z) = u (w, x) From standard
c

parabolic estimates, u:(t,z) — 0 ast — too, V,u(t,z) — 0ast — —oo and V,u(t, z) —
V.p(z) as t — +oo. Therefore ¢4(s,z) — 0 as s — oo, V,é(s,2) — 0 as s — —o0
and V,¢(s,z) — V,p(z) as s — +00. Then, arguing as in Lemma 2.5 (case 1), one can
prove that

c / (62 = —E(p) > 0.
RxC

Therefore ¢ > 0.

Next, as it was done in [4] (Lemma 6.5), one can assert, using standard interior
estimates, Harnack type inequalities and the (¢, x)-periodicity of u, that u;/u and Vu/u
are globally bounded. Let A be defined as in the stating of the above lemma. Then A is
a finite real number.
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Let (t,,7,) be a sequence in R x C such that ¢, — —oo and
u(tn, Tn) Ju(ty, x,) — A as n — +o00.

Up to the extraction of some subsequence, one can assume that z, — r, € C as

n — +o0o. Now set
u(t +t,, )

u(ty, xn)

From the boundedness of u;/u and Vu/u, one can assert that the functions w, are
locally bounded. Moreover, they satisty

wy(t,z) =

flz,u(t +t,, x))

w, =01in R x RY.
u(t +t,,x)

Oyw, — V - (A(z)Vw,) —

From standard parabolic estimates, the positive functions w,, converge, up to the ex-
traction of some subsequence, to a function w.,, which is a nonnegative classical solution
of

OWoo — V + (A(2) Vo) — ful@,0)wee = 0 in R x RY,

since u(t,x) — 0 as t — —oo locally in z. Moreover, wy(0,2) = 1, thus wy is
positive from the strong parabolic maximum principle. One also has wy(t+k-e/c,x) =
Wao(t, x4 k) for all (t,z) € R x RN and for all k € [[X, LiZ.

Then using the arguments of the Lemma 6.5 of [4], one can check that the func-
tion ws(t, z)e ™ does not depend on t. Indeed, one clearly has (wu)/ws > A, and
(Woo)t(0, Too) = Aweo(0,24) from the definition of (t,,z,). Therefore, the function
2 = (Wx)t/Ws satisfies

Oz —V - (A(x)Vz) —2—2.Vz=0 in R xRY

with z > A and 2(0, 2. ) = A, and Vw. /ws is bounded. The strong maximum principle
yields z = A ; in other words, wy(t, z)e ™ does not depend on t.
Therefore the C?(RY) function 1(z) = ws (0, 7)e"2@¢)/¢ is positive and L-periodic.
Moreover, it satisfies
— Lot = 0, (3.55)

where one has set A = A/c, and

Lo =~V (A@)VE) — 2(eA@)VY)
—[N2eA(z)e + AV - (A(z)e) — Ac+ fulz,0)]2).

Now, from [4] (Proposition 5.7.1), one knows that for all A and ¢ in R, there exists a
unique z1.(A) € R and a unique positive function ¥, € C?(RY) such that

_Lc,/\w)\ = MC(A)¢A in RN) (3 56)
¥y is L-periodic, ¢yl = 1. '
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That allows us to define the function A — p.(A\). Let us show that it is concave.
First, using the result 2) of Proposition 5.7 in [4], one has

_Lc,)\¢

(A) = inf
o) = g iy

where £ = {¢ € C*(RY), ¢ >0,¢ is L — periodic}. Let Ef be the set defined by
Ey={¢ € C)(RY), 3T € E with ¢(z) = T},

Then, p.(A) = cA + h(\) with
B(A) = max inf {‘V ' (f;(x)w) - fu(x,O)} |

¢ € B\ RN

Our aim is to show that h is concave. Let A;, Ap € R and t € [0,1]. Set A =
tA1 + (1 — t)A9. One only has to show that A(\) > th(A;) + (1 — t)h(A2). Let ¢; and
¢2 be two arbitrary chosen functions in £} and £}, respectively, and set z; = In(¢1),
2o = In(¢a), z =tz1 + (1 —t)z9 and ¢ = €*. It easily follows that ¢ € E}. Therefore

[V A@Ye)
b > i { =5 )}

Moreover,

—V - (A(2)V9)
¢

— ful@.0) = =V - (A(x)V2) — V2A(2)Vz — fu(2,0),

and
VzA(@)Vz = tV2A(2)Vz + (1 =)V A(2) Vi
—t(1 —1)(Vzy — Vzo) A(z)(Vz1 — V)
< tV7A(@)V2 + (1 — ) V2 A(2) V2,

since 0 <t < 1.
As a consequence,

—V - (A(@)V¢)

5 — fu(z,0) = {[=V - (A(@)Vz1) = V21 A(2) V21 — fu(z,0)]
(1 —t V (A(2)Vzy) — V2 A(2)V 2z — fu(z,0)]
Awvey
- ( N h(0)).
Thus,
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and, since ¢; and ¢ were arbitrarily chosen, one bets that h(A) > th(A;) + (1 —t)h(A2).
Therefore h is concave. This implies that A is continuous. Thus A — p.(A) = cA + h(A)
is continuous and concave.

Next, let us show that p.(0) < 0. By definition, x.(0) is the first eigenvalue of the
linear problem —V - (A(x)Vy)yY — fu(z,0)y with L-periodicity conditions. From the
hypothesis for conservation, it follows that p.(0) < 0.

Finally, it remains to show that p/(0) > 0. For each A € R, consider the positive and
L-periodic eigenfunction ¢, € C*(RY) for problem (3.56), associated to the eigenvalue
te(A). By definition, it satisfies the equation

—V - (A(x)Vhy) — 2X\(eA(x) V)
—(N2eA(z)e + AV - (A(z)e) — Ac+ ful@,0))n = 11 (N)ihy.

Multiply this equation by 1y, and integrate it by parts over C'. One obtains, using
the L-periodicity of 1, and v, and since the matrix field A(z) is symmetric,

/ UV - (A(z) Vi) — /C[V (A(x)ewy) + eA(x)Viba]ig

_/C [(NeA(z)e — Xe)a + fulz, 0)hn] o = pe(A /%Tﬁo
(3.5

7)
Multiplying by 1, the equation satisfied by 1), one obtains,

- /C Y - (A@)Vado) + fu(, Ointhe] = 1a(0) /C ato. (3.58)

Substituting (3.58) into (3.57), and dividing by A, one gets

- /O V- (A(2)etss) + eA(@) Vibn]to -
- [ GeAt@le - ain = o) el0) [ |
C C

Now, take an arbitrary sequence A\, — 0. Since p.(A\,) — p.(0), standard elliptic
estimates, and Sobolev injections imply, up to the extraction of some subsequence, that
the functions v, converge locally (and therefore uniformly by L-periodicity) in C*# (for
all 0 < 8 < a) to a nonnegative function ¥° such that [|¢°||, = 1, ¥° is L-periodic and
satisfies

V- (A@) VYY) = fulz, 000 = p(0).

From strong elliptic maximum principle, it follows that ¥° > 0, and by uniqueness
(up to normalization), ¥° = 1), and the whole family 1, converges to 1y as n — +oo.
Therefore, passing to the limit A — 0 in (3.59), one obtains that p. is differentiable at
0, and

- [+ (Aw)ewn) + eA@) Vo +c [ o = pie00) [ v
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From the L-periodicity of 1y, and since the matrix field A(z) is symmetric, one has

/C [V - (A(z)evn) + eA(z) Vipolto = /C [eA(x) Vo — A(x)e - Viholthg = 0,
whence
p.(0) =c¢ > 0.

Therefore, one has shown that A — pu.(\) is concave, with 1.(0) < 0 and .(0) > 0.
Moreover, coming back to our solution v of (3.55), one has u.(A/c) = 0. Therefore
A > 0, and the lemma is proved. [

One can now turn to the proof of the monotonicity result in Theorem 1.2. Set

(s, x) =u <3—x-e’x). Then

u(t, x) Ju(t, ) = cos(x - e + ct,z)/Pp(x - e + ct, x).

One knows from Lemma 3.1 that ¢ > 0 and

lminf %) g
t——o00, 2€C U(t, ZL‘)
Therefore,
lim inf 9s(5,7) >0

s——o0, z€RN qf)(S./ CE)
and, from the L-periodicity of ¢ with respect to x, one can deduce that there exists s €
R such that
Vs<3 VzeRY, ¢ s,z)>0.

Moreover  inf Nqb(s,a:) > (0 and ¢(—oco,z) = 0 uniformly in x € RY. As a conse-
s>3s, z€R

quence, there exists B € R such that —B <5 and
V7>0,Vs<—B, VY eRY, ¢(s,z) <¢"(s,2) (3.60)

where one has defined ¢7(s, z) = ¢(s+ 7,2). One can assume that B > 0.
Fix now any 7 > 0. Set

A =inf {\, \¢” > ¢ in [-B,+o00) x RV}

The real A\* is well defined since ¢ is bounded and ~ inf  ¢"(s,z) > 0.

s>—B, zeRN
Assume A\* > 1. Since ¢(s,x) — p(x) > 0 as s — 400 uniformly in z, with p bounded
from below, and since ¢ is L-periodic in z, there exists a point (so, ) € [~ B, +00) x C
such that \*¢7 (s, z¢) = &(so, o).
Furthermore, A\*¢™ > ¢ in € [—B, +00) x RY by continuity and in (—oo, —B] x RY
by (3.60) and because A\* > 1. Coming back to the original variables (¢, x), set z(¢,x) =
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NoT(z-e+ct,xr) — ¢p(x-e+ct,x). Then 2 > 0 in R x RY, moreover, z satisfies the
following equation :

2=V (A(CL’)VZ) - /\*f(x*gﬁr) - f($,¢)

Therefore, using (1.7), one obtains

fla, XoT) < X f(z, ¢7).

Thus one has
z— V- (sz) > f(xv )‘*¢T) - f(xv ¢)

Therefore, there exists a bounded function b such that

2z — V- (A(z)Vz) 4+ b(z)z > 0. (3.61)

Furthermore, since \*¢(so, o) = ¢(s0.70), setting ty = *=72¢, one has z(to, zo) =
0. Besides, z is nonnegative, and satisfies (3.61); therefore, from the strong parabolic
maximum principle, one has z(t,z) = 0 for all t < t; and z € RY, whence z(¢,z) = 0 in
R x RY since z (t + &2, 2) = 2(t,x + k) for all (t,2) € R x RN and &k € [[, L,Z. One
gets a contradiction since z(t,z) — (A\* — 1)p(z) > 0 as t — +o00.

Thus A\* < 1 for all 7 > 0, whence ¢” > ¢ in R x RN for all 7 > 0. One therefore
gets that ¢ is nondecreasing with respect to s, and u is nondecreasing in ¢ because
¢ > 0. Finally, with the same arguments as above, one can prove, using the strong
parabolic maximum principle, that « is increasing in ¢. That concludes the proof of the
monotonicity result in Theorem 1.2. [

Remark 3.2 Notice that this monotonicity result especially implies that any solution
(c,u) of (1.10-1.11) is such that 0 < u(t,z) < p(z) for all (t,x) € R x RV,

4 The minimal speed c*

This section is devoted to the proof of the existence of a minimal speed of propagation
of the pulsating fronts, and some properties of this minimal speed with respect to the
nonlinearity f.

4.1 Existence of a positive minimal speed c¢*

As it was proved in Lemma 3.1, any solution (c,u) of (1.10-1.11) is such that ¢ > 0. In
order to complete the proof of the first part of Theorem 1.2 and to obtain the existence
of a ¢* > 0 such that there exists a solution of (1.10-1.11) if and only if ¢ > ¢*.

Proposition 4.1 There exists ¢ > 0 such that, for ¢ > c*, there exists a solution u of
(1.10-1.11), while no solution exists for ¢ < c*.
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PROOF. First, assume by contradiction that there exists a sequence ¢, — 07 and some
classical functions w, such that (c,,u,) is a solution of (1.10-1.11).
As already done, let z( € Hf\il L;Z, be such that zy-e > 0. One can assume that

U, (0, z9) = p_

From standard parabolic estimates, the positive functions w,, converge locally uni-

formly, up to the extraction of some subsequence, to a nondecreasing (in t) function wu,
which is a classical solution of

Ou—V - (A(x)Vu) = f(z,u) € R xRN,

Moreover, u satisfies 0 < u < p and one has u(0, zo) = p_

Since u is nondecreasing in ¢, one can define v (z) =: lim wu(t,z), and from standard

t——+o00
elliptic estimates, u™ satisfies V - (A(x)Vu™) + f(z,u™) = 0. Moreover 0 < u™ < p.
Hence, as already said (using Theorems 2.1 and 2.3 of [8]), u™ = 0 or ™ = p. But for
every B > 0, for n large enough, u,(B,0) < u,(%2,0) = u,(0,7) = E-. Therefore
ut(0) < &-. Thus u* = 0. But since u is nondecreasing and u(0, zo) = &, u*(0) > &,
which is contradictory with the preceding result.

On the other hand, the arguments used in Proposition 2.11 actually imply that, if
(co,up) is a solution of (1.10-1.11) with ¢y > 0 and (ug); > 0, then there is a solution
(c,u) of (1.10-1.11) for each ¢ > ¢.

Using Lemma 3.1, one concludes that there exits ¢* > 0 such that for all ¢ > ¢*, there
exists a solution u of (1.10-1.11), while no solution exists for ¢ < ¢*.

In particular, there exists a sequence (c,,u,) of solutions of (1.10-1.11), such that
¢, — ¢ as n — 400, with ¢, > ¢*. As it was done in the first part of the proof of this
Proposition assume that u, (0, z¢) = %. From standard parabolic estimates, u,, converge
locally uniformly in (up to the extraction of some subsequence), to a classical solution
u* of

ou* —V - (A(z)Vu*) = f(z,u*) € R xR,
with 0 < w* < p, and uj > 0. Moreover, u*(0,z9) = 5. Using the same argu-
ments as those of the beginning of this proof, one concludes that lim;__. u*(t,z) = 0
and limy_ o u*(t,z) = p(x), locally in x. Furthermore, by passing to the limit,
w (t+ 58 2) = w(t,x + k) for all (t,z) € Rx RN and k € [[, L;Z. Finally, the
strong maximum principle, with uy > 0, gives us that «* is increasing in ¢. [

4.2 Characterization of ¢*

This section is devoted to the proof of the variational characterization of the minimal
speed ¢*. Notice first that the assumption (1.7) implies that

Ve eRY Vu>0, fr,u) < fu(z,0)u. (4.62)

Let us define
cy=inf{c € R, 3 X > 0 with p.(\) =0},
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where p.(A) is the principal eigenvalue of the elliptic operator

L=~V (A@)VY) — 22 cA(@)VY
—[A2eA(x)e + AV - (A(x)e) — Ac + fu(z,0)]2),

with L-periodicity conditions.
Proposition 4.2 One has ¢* = c;.
The proof is divided into several lemmas.
Lemma 4.3 The real number ¢ does exist and 0 < cjj < c*.

PROOF. Let ¢ > ¢*, and (¢, u) be a solution of (1.10-1.11). Then, arguing as in the proof
of Lemma 3.1, one obtains a positive function 1, satisfying (3.55) with A = A/c¢ > 0. In
other words, p.(A\) = 0. That yields ¢ < c*.

Moreover, using the concavity of A — p.(A), which has been shown in the proof of
Lemma 3.1, together with p.(0) < 0 and (p.)'(0) = ¢, one immediately gets that if ¢ < 0,
then p.(A) < 0 for all A > 0. Therefore 0 is a lower bound of the set {c € R, 3 A > 0
with p.(A) = 0}. O

From Lemma 4.3 and Proposition 4.1, the next lemma follows :
Lemma 4.4 For all ¢ < ¢, problem (1.10-1.11) has no solution (c,u).
Now, for all € > 0, let us define
i =inf{ce R, 3> 0 with pi(\) =0},
where p5(A) is the principal eigenvalue of the elliptic operator

L=~V (A@)VY) - 2AeA@) Ve
—(eA(x)e + &)\ — AV - (A(x)e)y + Ay — fu(x, 0)1),

with L-periodicity conditions.
First, using a result of [4] (Proposition 5.7.2), one obtains that
—Lead

S )\ — 3 f )
He(A) %leab%( %}V ’

where £ = {¢ € C*(RY), ¢ >0, ¢ is L-periodic}.
Set

() = inf
J( ) I;)leaE)'( :L‘IEI]?llQN

{ —V - (A(z)V@) — 2 eA(z)Vo

5 — MeA(x)e — AV - (A(2)e) — fu(z, O)} :

Then,
HEN) = ) + de — N = p(A) — 2N

31



Lemma 4.5 The real number ¢ does exist for all ¢ > 0, and ¢ > 0.

PROOF. Let € be fixed. Let A be given. Since p(A\) = j(\) + Ac — e\?, there exists
¢ > 0 large enough such that pZ(A\) > 0. Since p2(0) = A\ < 0 (A; is the first eigenvalue
of =V - (A(2)V¥) — fu(x,0)1 with L-periodicity conditions), and since A — pi(\) =
pe(A) —eA? is concave, whence continuous, one gets the existence of X’ such that pS(\) =
0. Therefore ¢ < +oo for all € > 0.

Moreover, as it was done in Lemma 4.3, one easily sees that 0 is a lower bound of the

set {c e R, 3 X > 0 with p5(\) = 0}. O
Let us now show that
Lemma 4.6 For all ¢ > ¢, there exists A\ > 0 such that ps(\) = 0.

PROOF. Let ¢ be s.t. ¢ > ¢ From the definition of ¢, one knows that there
exists a sequence (¢,) such that ¢, — ¢ as n — +oo and, for each n, there is
An > 0 with p(\,) = 0. Therefore, there exists N such that ¢y < ¢. One has
pe(An) = pe, (An) + (¢ —en) Ay > 0. Using the same argument than this of Lemma 4.5,
one deduces that there exists A > 0 such that pS(A) =0. O

Next, let us prove that

Lemma 4.7 One has ¢ — ¢, as € — 0.

PROOF. First, one observes that ¢ > ¢ for all ¢ > 0. Indeed, for ¢ > ¢, there exists,
from Lemma 4.6, A > 0 such that p5(\) = 0. Thus, since u.(A) > pS(A) = 0, arguing as
in Lemma 4.6, one easily sees that there exists Ay > 0 such that p.(Ag) = 0.
Next, let us show that for any ¢ > ¢, there exists ¢y such that ¢ > ¢ for all € < ¢.
Indeed, one deduces from Lemma 4.6, adapted to ¢, that for each ¢ > ¢, there exists
A1 > 0 such that preicz (A1) = 0. Then

2

c—cp
He(A1) = peres (A1) + 0N — Nie.
Thus, pgz(A1) = CECS A1 — A2e. Hence, for € small enough, p5(A\;) > 0. Therefore, there

exists A > 0 such that pg(A) = 0. Finally, from the definition of ¢}, one deduces that
¢ > ci, and the lemma is proved. [

Let us now turn to the
PROOF of Proposition 4.2. Let c be such that ¢ > ¢j. Then, from Lemma 4.7, one
knows that for € small enough, ¢ > ¢?. Therefore, from Lemma 4.6, there exist A > 0
and 1 > 0 L-periodic, depending on ¢, and such that

—LE\ = 0. (4.63)
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Now, set ¢'(s,z) := b(z)e?, for all (s,z2) € R x RN, and let L, be defined as in the
proof of Proposition 2.11. Then,

L.t = { V- (A(x)VY) + 2 eA(z) V)
HeA()e + )% + AV - (A{x)e) & — Acts} e,

and, since v satisfies (4.63), one has

La¢1 = _fu(-rv 0)¢1

Therefore, using (4.62), one obtains,

L' + f(2,0") = f(z,¢") — fulz,0)6" < 0. (4.64)

Moreover, ¢! is increasing in s and L-periodic with respect to z.
Now, with the notations of Section 2.1, and as it was proved in Lemma 2.1, there
exists a solution ¢, € C? (Ea) of the following problem :

( LE¢’T + f(x’QsT) = 0 ln E(l)
¢, is L-periodic in z,

¢.(—a,x) = min { igggﬁl(—a + 7, y),p} p(z)/pt, (4.65)

y p—
or(a,x) = {p(x) if (¢(a+7,y)>p(y) forally e C)
o min(¢'(a + 7, z), p(x))otherwise.

\

First, following the proof of Proposition 2.11, one obtains that
V(s,z) € X4, ¢r(—a,x) < ¢r(s, ). (4.66)
Next, in the case ¢'(a+ 7,2) > p(x) for all z € C, one obtains in the same way that
YV (s,x) € X, ¢.(a,z) =p(x) > . (s,2). (4.67)

Now, in the other case, one has ¢,(a,z) = min{¢'(a+ 7,2),p(x)}. But, since
¢'(s,z) — +00 as s — +0o, one has, for k large enough, ¢'(s +7 + k,z) > ¢.(s,7) in
Y,. Let k be the smallest k such that the latter holds. It exists since ¢'(s,2) — 0 as
s — —oo and ¢,(s,2) > 0in ,. Assume k > 0. By continuity, ¢*(s+7+k,2) > ¢.(s, )
with equality at a point (35,7) € %,. Since ¢! is increasing in s, ¢*(—a + 7 + k,z) >
¢*(—a+7,2) > ¢.(—a,r) in C, and similarly, ¢'(a + 7+ k,7) > ¢'(a+7,2) > é.(a,z).
Thus, (3,Z) € (—a,a) x C (one can assume this using the L-periodicity in z of ¢! and
¢,). But, from (4.64), it is found that ¢'(s + 7 + k,z) is a super-solution of (4.65).
Therefore, the strong maximum principle implies that ¢'(s + 7 + k,2) = ¢.(s, ) in 3,.
One gets a contradiction with the boundary condition at s = a. As a consequence, k = 0
and, one has

V (s,2) € Tq, ¢r(s,2) < @' (s +7,2) (4.68)

and, since @' is increasing in s, it follows that ¢, (s, z) < ¢'(a + 7,x) in X,.
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As a conclusion, from (4.66), (4.67) and (4.68), one has
YV (s,x) € o, Or(—a,z) < ¢,(s,2) < ¢,(a, ). (4.69)

Using the same arguments as those of Proposition 2.11, it follows that ¢, is increasing
in s and is the unique solution of (4.65) in C?(X,). Moreover, since the boundary
conditions for ¢, at s = 4a are nondecreasing in 7, one can prove, as in Lemma 2.3,
that the functions ¢, are continuous with respect to 7 in C? (E_a) and nondecreasing in
7. But, since ¢'(—o0,2) = 0 and ¢'(+00,2) = 00 in RY, it follows from (4.69) that
¢, — 0 as 7 — —oo uniformly in ¥, and that,

Va>0,3T, Vr>T, ¢T>%—ain2_a.
Therefore, for each a > 1, there exists 7(a) € R such that ¢** := ¢, solves (4.65) and
satisfies
(p")?

¢“%(s, x)dsdxr = ——|C'| min(c, 1).
[, o emdsde = L Clmine. 1)

Moreover ¢.(a,.) is bounded independently of a. Thus, letting a,, — +oo, from
standard elliptic estimates, the functions ¢= converge in C>’(R x RN) (for all 0 < § <

loc
a), up to the extraction of a subsequence, to a function ¢° satisfying

L.¢® + f(x,¢°) = 0in R x RV,
¢° is L-periodic w.r.t. x.

Moreover, ¢° is nonincreasing with respect to s, and satisfies
0 < ¢°(s,2) < p(z) in R x RY,

and )
/ (s, x)dsdx = @|C’| min(c, 1).
0,1)xC ’ 2pt 7

Next, passing to the limit ¢ — 0 and using the same arguments as those of the end
of the proof of Proposition 2.11, one obtains a solution (¢, u) of the problem (1.10-1.11).

But since ¢ was chosen arbitrarily such that ¢ > ¢, one concludes that there exists
a solution (c,u) of (1.10-1.11) for all ¢ > ¢. Next, using Lemma 4.4, one obtains that
¢ =c;. U

That completes the proof of Theorem 1.2.

4.3 Dependency of ¢ with respect to the nonlinearity f

In this section, we study the dependency of ¢*, with respect to the ”shape” and the ”size”
of the nonlinearity f. This section is devoted to the proofs of Theorem 1.3 and Corolarry
1.4. In the whole section, one assumes that the matrix field A(z) = A is constant, and
one considers the problem (1.10-1.11), with a nonlinearity f such that f,(z,0) is of the

34



type fu(z,0) = u(x) + Br(z), where B is a positive real number and ,,u and v are
periodic C%® functions.
It then follows from Theorem 2.8 of [8] that the function f satisfies the hypothesis

forall B> 0if [ p >0 and / v > 0 with v # 0. It also follows from Theorem 2.8 of [§]

that f satisfies t?le hypothesiscfor conservation for B > 0 large enough under the only
assumption maxv > 0.

In the next propositions, we will make several uses of the following characterizations
of ¢* : first, from Theorem 1.2,

¢ =inf{c, 3 A >0 with u.5(\) =0}, (4.70)
where g, (M) is the principal eigenvalue of the elliptic operator
—Lep0 = =V - (AVY) — 20 Ae - Vip — (A\? ede — Ae)yp — (u(z) + Br(z))y,

on the set E of L-periodic C? functions. Furthermore, as it was said in [4] and in [30],
for pulsating fronts in R¥, the formula below is equivalent to the following one :

—k\(B
¢ = min r(B)

A0 A (4.71)

where k) (B) is the principal eigenvalue of the operator
—Lprp =—V - (AV®) — 2\Ae - Vo — \* eded — (u(z) + Br(z))s,

acting on the same set £ of functions ¢. We call ¢\ be the principal eigenfunction
associated to ky(B). It satisfies

—Lpdp = kr\(B)dB,),
¢ is L-periodic, ¢py > 0 in RY, (4.72)
léBAlloo =1 (up to normalization).

We are going to study the monotonicity of the function B — ¢* = ¢*(B), as soon as
the hypothesis for conservation if satisfied. One has the

Proposition 4.8 Assume that p = py > 0 is constant and assume that /u(x)d:c >0

c
with maxv > 0. Then, the hypothesis for conservation is satisfied for all B > 0 and
c*(B) is an increasing function of B > 0.

PROOF. As already underlined at the beginning of this section, the hypothesis for con-
servation is satisfied for all B > 0.
As done in the proof of Lemma 3.1, one has

kx(B) = max inf w

— - B
¢EE, RN Ho v(@),
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where EY be the set defined by
E\={¢e C*R"), 3T >0, T L-periodic with ¢(z) = e**T}.

Let By, B, € Rand t € [0,1]. Set B = tB; + (1 —t)By. Let ¢; and ¢y be two
arbitrary chosen functions in EY{, and set z; = In(¢y), 20 = In(¢o), 2 = tz; + (1 — )29
and ¢ = e*. It easily follows that ¢ € EY. Therefore
—V - (AV9)

¢

Then, arguing as in the proof of Lemma 3.1, one obtains that

kn(B) > inf{ o — By(x)} .

= RN

—V - (AVd)

kn(B) = tinfgy — Mo — BlV(x)}

+(1 —t) infpy {W — o — BQV(I)} )

and, since ¢; and ¢y were arbitrary chosen, one has kx(B) > tky(B1) + (1 — t)k\(Ba).
Therefore the function B +— ky(B) is concave. This also implies that this function is
continuous.

Next, one easily sees that ky(0) = —A2eAe— g, and that the associated eigenfunction
®o,» 1s equal to 1.

Now, let us calculate k)(0). Let ¢p ) be the principal eigenfunction associated to
kx(B) defined in (4.72), and let us integrate by parts the equation (4.72) over C'. Using
the L-periodicity of ¢p x, one obtains

—(\%A - B dr = ky\(B . 4.73
(A%e €+Mo)/c¢>3,>\ AV($)¢B,A T A( )/CCbB,/\ ( )

By continuity, one knows that ky(B) — kx(0) as B — 0. Still arguing as in the proof of
Lemma 3.1, one also knows that ¢p converges in C%7 (for all 0 < 8 < a) to ¢\ = 1
as B — 0. Then, dividing the equation (4.73) by B, one gets

Ex(B) + Xede + / OB\ = —/ v(z)ppadz.
c c ’

B

Therefore, passing to the limit B — 0, one obtains
K\(0) = —/ v(x)dz.
c

In the case [ v(x)dx > 0, one has k}(0) < 0. From the concavity of B +— ky(B), one

c
deduces that this function is decreasing with respect to B > 0. Since this is true for
all A > 0, one concludes that the minimal speed ¢*(B) given in (4.71) is an increasing
function of B > 0.
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Similarly, if /l/(x)d:z; = 0, and maxv > 0, divide the equation (4.72) by ¢p  and
c
integrate it by parts over C'. By L-periodicity, one obtains

_/ Vo AV g\
¢2

c B

and, since ¢p ) is not constant (because v is not constant) and the matrix A is elliptic,

one gets that ky(B) < —(A?eAe + po) = kx(0) for all B > 0. Hence, since £} (0) = 0 and

kx(B) is concave in B, one concludes that B +— ky(B) is decreasing in B > 0. Finally,
it follows that ¢*(B) is increasing in B > 0. O

— (M\?ede + po)|C] — B/Cl/(x)dx = k\(B)|C],

The biological interpretation of this proposition is that increasing the amplitude of
the favorableness of the environment increases the invasion’s speed.

Remark 4.9 If one only assumes that maxv > 0, then the function f satisfies the hy-
pothesis for conservation for B > 0 large enough. Furthermore, under the other assump-
tions of Proposition 4.8, the same arqguments as above imply that the function B — c*(B)
is an increasing function of B (for B large, as soon as the hypothesis forn conservation

is satisfied).

In the next proposition, one assumes that f satisfies the hypothesis for conservation.
As one has said above, it follows from Theorem 2.8 of [8] that it is true for all B > 0 if
/u(m) > 0 and /u(m) > 0 with v # 0 ; if one only has maxv > 0, it is true if B is
c c
large enough.
Proposition 4.10 Assume that maxv > 0 and that the function f satisfies the hypoth-
esis for conservation with f,(x,0) = pu(x) + Br(z). Then

¢*(B) < 2v/eAemax(p + Bv).

PROOF. Let us first observe that the definition of A; in (1.9) and that the hypothesis
for conservation (A1 < 0) imply that max(u + Br) > 0.
Next, using the characterization of ¢* given by (4.70), let us integrate by parts over
C' the equation —L. 5y = 0. Using the L-periodicity of 1, one obtains the following
inequalities :
pes(N) > —A?eAe + cA — max(p + Bv).

Therefore, if ¢ > 2y/eAemax(pu + Bv), there exists Ay > 0 such that s, (o) > 0.
On the other hand, p.p(0) = A; < 0 from the hypothesis for conservation. By
continuity, it follows that there exists a solution A > 0 of p.p(A) = 0 as soon as

¢ > 2y/eAemax(pu + Br). Thus, one finally has

¢*(B) < 2v/eAemax(u + Bv). (4.74)

That completes the proof of Proposition 4.10. O
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Remark 4.11 If the diffusion matrixz field A is not assumed to be uniform in the space
variables anymore (but still satisfies (1.6)), and if maxv > 0, then the hypothesis for
conservation is satisfied for B large enough and the same arguments as above imply that

) < 2¢y/max(eAe)y/maxv.

, (B
lim sup
B—+o00 B

Proposition 4.12 Assume now that f,(x,0) = p(z) + Bv(z), where /u >0, /1/ >0
c c

and maxv > 0. Then
eAe i c*(B) L
24 [ — — < <2 A — 4.
\/|C| C<B—|—u)dx_ N \/e emaX<B+V) (4.75)

1 *(B *(B
—VeAemaxv < liminf c'(B) < lim inf c'(B) < 2VeAemaxv. (4.76)
2 B—+oco /B B—+0o /B

and

PROOF. As already underlined, the assumptions of Proposition 4.12 guarantee that the
hypothesis for conservation is satisfied for all B > 0.

We will now use the characterization of ¢* given by (4.71). Let ¢p \ be defined by
(4.72). Dividing (4.72) by A¢p.|C| and integrating by parts leads to

(b + Bv)
AeAe + /C 30 < kA(AB). (4.77)

One deduces from (4.77) and (4.71) that

eAe .
2\/@ C(u + Br) < ¢*(B), (4.78)

and the result (4.75) follows from (4.74) and (4.78).
The proof of the lower bound in (4.76) is divided in two steps. Let

“(B
0<~:= lli?minf € (B) < 2vVeAemaxv
—+00
and (By,)neny — 400 such that ¢*(B,)/vB, — v as n — +o0. First, from (4.71), there
—kx. (B)

AV By,

—ky (B
#\/%n) < 2VeAemaxv + &,, (4.79)

exits a sequence (A,)nen in RY such that — 7y as n — +o00. Moreover, from

(4.74), one knows that
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where g,, — 0 as n — +o00. Using the equation (4.77), one obtains with (4.79)

Lo ey
A\ ede + € < <24/ B,edemaxv + e,/ By,

|C| A An

Assuming that / u >0 and / v > 0, one deduces that
c c

| By
< — . .
A <2 i maxv +enV/ By (4.80)

Next, consider the eigenvalue problem

-V (AV¢B,A) —2XAe - Viip

—/\26/161&3,)\ — (M + Bl/)wB,)\ = E/\(B)q/)B,Av
Ypr>0o0nC, Ypy=0o0n0dC, [[p|e =1,

and let us prove that ky(B) > ky(B) (for all A > 0 and B > 0). Assume that, on the
contrary, one has kx(B) < k,(B); then the function 5 ) satisfies

—V . (AV?#B’,\) — 2)\146 . VwB,/\ — )\2€A6w37A —(;i—*— BV)wB,)\ — k)\(B)wB,/\

— (ia(B) - ka(B))omn < 0. 8V

Since the function ¢z defined by (4.72) is positive in C, one can assume that g <
¢, in C for all k > 0 small enough. Now, set

K= sup {l{ > 0, K/QﬁB,,\ < d)B,)\ in 6} > (.

Then, by continuity, *tp y < ¢dp. in C and there exists z; in C such that £*p y(71) =
ép.(r1). But, since ¢p > 0in C and 95, = 0 on AC, it follows that x; € C. Therefore,
using (4.81), it follows from the strong elliptic maximum principle that k*yp, = ¢p.\
in U,~Which is impossible from the boundary conditions on 9C'. Finally, one concludes
that k/\(B) > k?)\(B)

Let us now define g, (z) = g (z). From (4.81), the function Wp , satisfies
the eigenvalue problem

—V - (AVVUg,) — (u+ Bv)Upg\ = k\(B) Vg,
\IJB,)\ > (0 on C, \IJB’)\ =0on 80,

and it follows that
[ 96+ (496) = (u(a) + Bu(a))?

EA(B) = min =

YeH(C), Y20 /¢2
C
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Let € > 0 be arbitrarily chosen. Then, there exists 1. in H}(C'), such that [|1). [ = 1,
1. > 0 and, for all x € C,

Ye(x) > 0= (maxv —v(x) <e).

One then easily obtains (see the proof of Proposition 5.2 in [§])
- [ Vo (4@ + [ ulae?
c c
.+
c g
for all A > 0.

Hence, using (4.80) and (4.82), and since ky, (By) > ki, (By) one has

+ B (maxv —¢) < —kx(B) (4.82)

. . _k)\ ( n) 1 9
niE > 4/ _ ]
l%minf "B, =2 eAe (\/maxu axy)

since —k,,(B) > 0. Since € > 0 was arbitrary, one concludes that

veAemaxv.

“(B
'y:liminfc( )

B—+oc0 \/E

1
>
-2

The formula (4.76) follows. O

PROOF of Corollary 1.4. In the special case where f,(z,0) = pu(x) (v = 0 and, say,
B = 1) with
[ nta)dz = woic| > o

C

it follows from the lower bound in (4.75) that ¢*[u] > ¢*[po] = 2V ede po. O

In other words, an heterogeneous medium increases the biological invasion’s speed,
in comparison with a constant medium, when / fulz,0)dx > 0.

Coming back to the case where f,(z,0) = ,u(%) + Bv(x), it follows from the Proposi-
tion 4.12 that, even if p and v have zero average, it suffices for v to be positive somewhere
for the speed c¢*(B) to increase like to the square root of the amplitude of the effective
birth rate.

Proposition 4.13 Assume that p =0, f,(z,0) = Bv(x) with /1/ > 0 and maxv > 0.

c
Then, one has

lim (B =2 cAe v(z)dx.
ICl Je
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PROOF. First, it follows from (4.75) that

2\/ ede [ )i < B (4.83)

for all B > 0.
In order to establish the opposite inequality at the limit B — 07, one shall consider
two cases :

Case 1 : /V > 0. Let ¢p \ be defined by (4.72) and call ¢ = ¢ », With

c
B
Ap = \/eAe|C| /Cl/(x)dm.

Multiply (4.72) by ¢p and integrate it by parts over C'. Dividing by / $%, one obtains
c

/ VopAVop / Vo
ka,(B) =2¢—  )ede— BIC
/ & / &,
C C
and

B / v

AB AB / 2

o3

C

Moreover, observing that A\g — 0 as B — +o00 and arguing as in the proof of Lemma
3.1, one knows that ¢p converges in CZ#(RY) (for all 0 < 3 < a) to ¢ =1 as B — 0.
Therefore, one can write

ki, (B) B B
—Bv L A —ep, 4.84
. < Age €+>\B|C|/CU +)\B53/ (4.84)

where eg — 0 as B — 0. Replacing Ag by its value in (4.84), one obtains

—ky,(B) < 2\/6A6£ - BeAe|C .

As C] /U "
C

From the characterization (4.71) of ¢*(B), one then obtains

c*(B) <9 eAe/ Lz
= V2 v )
VB Cl Jem 7
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where g — 0 as B — 0. Using (4.83), one concludes that

. *(B) eAe /
lim =2/ — V.
B0 /B Cl Je

Case 2 : /y = (0. Choose now Ag = VB for arbitrary o > 0. The above arguments

imply that

lim sup @ < V6 eAe

B—0t \/E

and the conclusion follows. [
Finally, Theorem 1.3 follows from the last four propositions.
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