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Abstract

This paper is concerned with the study of the stationary solutions
of the equation

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN ,

where the diffusion matrix A and the reaction term f are periodic in x.
We prove existence and uniqueness results for the stationary equation
and we then analyze the behaviour of the solutions of the evolution
equation for large times. These results are expressed by a condition
on the sign of the first eigenvalue of the associated linearized problem
with periodicity condition. We explain the biological motivation and
we also interpret the results in terms of species persistence in periodic
environment. The effects of various aspects of heterogeneities, such as
environmental fragmentation are also discussed.
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1 Introduction

“In the last two decades, it has become increasingly clear that the spatial dimension
and, in particular, the interplay between environmental heterogeneity and individ-
ual movement, is an extremely important aspect of ecological dynamics.”

P. Turchin, Qualitative Analysis of Movement1

Reaction-diffusion equations of the type

ut = ∆u+ f(u) in RN (1.1)

have been introduced in the celebrated articles of Fisher (1937) [24] and Kol-
mogorov, Petrovsky and Piskunov (1938) [39]. The initial motivation came from

11998, Sinauer Assoc. Inc., Sunderland, Mass.

2



population genetics and the scope was to shed light on spatial spreading of ad-
vantageous genetic features. The nonlinear reaction term considered there are
that of a logistic law of which the archetype is f(u) = u(1− u) or extensions like
f(u) = u(1− u2).

Several years later, Skellam (1951) [49] used this type of models to study bi-
ological invasions, i.e. spatial propagation of species. With these he succeeded
to propose quantitative explanations of observations, in particular of muskrats
spreading throughout Europe at the beginning of 20th Century or the early dis-
semination of birch trees in Great Britain.

Since these pioneering works, this type of equation has been widely used to
model spatial propagation or spreading of biological species (bacteria, epidemio-
logical agents, insects, plants, etc). Systems involving this type of equations have
also been proposed to model the spread of human cultures (Compare in particular
Ammerman and Cavalli-Sforza or Cavalli-Sforza and Feldman [2, 19]).

A vast mathematical literature has been devoted to the homogeneous equation
(1.1). Of particular interest is to understand the structure of travelling front
solutions and their stability, as well as propagation or spreading properties that
this equation exhibits. The former are solutions of the type u(t, x) = U(x·e−ct) for
any given direction e (|e| = 1, e is the direction of propagation) and U : R → (0, 1).
The latter are related to the fact that starting with an initial datum u0 ≥ 0, u0 6≡ 0
which vanishes outside some compact set, then u(t, x) → 1 as t→ +∞ and the set
where u is, say, close to 1 expands at a certain speed which is the asymptotic speed
of spreading. The papers of Aronson and Weinberger [3], and of Fife and McLeod
[23], in particular, represent two mathematical milestones in the literature.

With the important exception of the works of Gärtner and Freidlin (1979)[28]
and Freidlin [25], it is only relatively recently that the questions of travelling
fronts and the effects of the medium on the asymptotic speed of propagation have
been addressed within the framework of heterogeneous extensions of (1.1) (see e.g.
[5, 26, 27, 33, 47, 51]).

In ecological modelling or for biological invasions, indeed, the heterogeneous
character of the environment plays an essential role. It appears that even at macro-
scopic scales, the medium and its various characteristics are far from homogeneous.
In the words of Kinezaki, Kawasaki, Takasu and Shigesada, [38] : “... natural en-
vironments are generally heterogeneous. For example, they are usually mosaic of
heterogeneous habitats such as forests, plains, marshes and so on. Furthermore,
they are often fragmented by natural or artificial barriers like rivers, cultivated
fields and roads, etc. Thus growing attention has been paid in recent years to
the question of how such environmental fragmentations influence the spreading
and persistence of invading species”. For recent works on this aspect of ecologi-
cal modelling, we refer the reader for instance to [32, 34, 36] ; compare also the
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references on this model quoted in [38].
A first approximation to heterogeneous environments, therefore, is the so-called

patch model. In it, one assumes a mosaic of differentiated environments, each of
which having a relatively well defined structure which one might consider as homo-
geneous. This involves an equation with piecewise constant coefficients (compare
below). This type of model has been proposed by Shigesada, Kawasaki and Ter-
amoto [48] to study biological invasions in periodic environments and is described
in the book [47]. They have modified the Fisher’s model (1.1), assuming that the
intrinsic growth rate and the diffusion coefficient may vary with patches. Consid-
ering a situation where two kinds of patches are arranged alternatively, they have
introduced the following equation

ut = (A(x)ux)x + u(µ(x)− u) in R, (1.2)

where µ(x) is interpreted as the intrinsic growth rate of the population, and where
µ and A are piecewise constant, that is

µ(x) =
{
µ+ in E+ ⊂ [0, L],
µ− in E− = [0, L]\E+,

and

A(x) =
{
a+ in E+,
a− in E−;

next, µ(x) and A(x) are extended periodically to R.
Saying that the environment E+ is more favourable than E− means that

µ+ > µ−.

Thus, regions of space where µ(x) is relatively high represent favourable zones
where the species can develop well. On the contrary, low µ(x) regions are less
favourable to the species.

With the help of numerical experiments on the equation (1.2), Shigesada and
Kawasaki [47] found that, depending on the parameter values, the invading species
either survives or becomes extinct. Consequently, their first aim was to give a
mathematical condition for the species to survive. They empirically proved that
the stability of the zero solution of (1.2) was playing a key role ; more precisely,
they established that when 0 is a stable solution of (1.2), the population becomes
extinct, whereas, in the other case, the population converges to another positive
and periodic solution of (1.2).

Thanks to this result, they were able to study the very important ecological
issue of the effects of environmental fragmentation on biological conservation. For
the one-dimensional patch model, on the basis of numerical computations, they
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especially pointed out that, everything else equal, having small unfavourable zones
left less chances for survival than having one large zone (with the same total sur-
face). This is a remarkable discovery in this model which sets on a firm theoretical
ground the adverse effect of environment fragmentation. A good example to see
this is to wonder whether several roads across some forest are better or worse for
species survival than one large road with the same total width.

Similar models can also be formulated in higher dimensions. For instance, in
dimension two, if C = [0, L1] × [0, L2] (L1, L2 > 0) then one considers the same
definitions as above for problem (1.2) with A(x1, x2) and f(x1, x2, u) being L1-
periodic in x1 and L2-periodic in x2, with (E+, E−) being a partition of C which
is extended periodically in R2.

More generally, a periodic heterogeneous model is proposed in [47] to inves-
tigate the effect of heterogeneity of the environment for more general periodic
frameworks. Equation (1.2) is generalized to :

ut −∇ · (A(x)∇u) = f(x, u), x ∈ RN , (1.3)

where the diffusion matrix A(x) and the reaction term f(x, u) now depend on the
variables x = (x1, · · · , xN ) in a periodic fashion, and are not necessarily piecewise
constant.

The typical example considered in [38, 47, 48] is

f(x, u) = u(µ(x)− ν(x)u), (1.4)

where ν(x) reflects a saturation effect related to competition for resources. With
ν ≡ 1, one obtains

f(x, u) = u(µ(x)− u), (1.5)

which is also widely used in the literature. Moreover, the intrinsic growth rate µ(x)
can actually become negative. In such a region, if isolated from other regions, the
species would actually die out. The way the diffusion matrix A(x) depends on x in
more or less favourable environments varies from one case to another. As pointed
out by Shigesada and Kawasaki [47], certain species, upon arriving in unfavourable
environments, speed up (meaning, say in one dimension, that A(x) increases) while
the progression of others is hindered (meaning that A(x) decreases).

The periodic patch model considered by Shigesada and Kawasaki is a particular
important case of this periodic framework. However, Shigesada and Kawasaki have
not generalized their study to this model.

In this paper, we address the general case of equation (1.3) (not necessarily
piecewise constant) and in higher dimensions as well. The aim of the present work
is : (i) to give a complete and rigorous treatment of the mathematical questions
which have been raised by Shigesada and Kawasaki [47] and to discuss these types
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of problems in the framework of a general periodic environment and in higher
dimensions as well ; namely, we obtain existence, uniqueness and stability results
for the stationary problem associated to (1.3), and these results conduct to a
necessary and sufficient condition for a species to survive, (ii) to study, from a
mathematical standpoint, the question of environmental fragmentation. As far as
we know, even in the simplified case of the one-dimensional periodic patch model,
the results are proved rigorously here for the first time.

The present paper is the first one in a series of two. Here we are chiefly
concerned with discussing the existence of a stationary state of (1.3), that is a
positive solution p(x) of{

−∇ · (A(x)∇p) = f(x, p) in RN ,
p(x) > 0, x ∈ RN .

(1.6)

Under some assumptions which will be made precise later, solutions of (1.6) may
turn out to be periodic. But the periodicity assumptions will not always be made
a priori. Periodicity is understood here to mean L1-periodicity in x1,..., LN -
periodicity in xN (assuming that A(x) and f(x, u) have such a dependance in
x).

In problems (1.2), (1.3) and (1.6), it is not easy to understand the complex
interaction between more favourable and less favourable zones. Furthermore, how
does the balance between diffusion and reaction play a role? It is not obvious a
priori and it may actually sometimes be counter-intuitive. We establish here a
simple necessary and sufficient condition for such a solution of (1.6) to exist. This
criterion is related to existing results in the literature [13, 14, 15, 20, 44].

In the ecological context, existence of a solution of (1.6) should be viewed as a
condition allowing for the survival of the species under consideration. Thus, within
the framework of model (1.3), we obtain a necessary and sufficient condition for
the survival of this species in a periodic environment. This point is made precise
after the first results of Section 2. Using this criterion, we proceed to discuss
various conditions under which the species survives. In particular, we treat the
question of the role of fragmentation of the environment. We use here the method
of rearrangement.

Results of the same kind have been established in the case of bounded domains
with boundary conditions, which is different from the point of view that one has in
studying spreading, in a series of papers by Cantrell and Cosner (see in particular
[13, 14, 15]), who have also further discussed systems in [16]. We summarize
some of their results in Section 6. Furthermore, we show that the method of
rearrangement allows us to simplify and generalize many of the known results for
bounded domains.
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For general equation (1.6), we prove some new Liouville type results of inde-
pendent mathematical interest. These results will be stated in the next section.

The present paper is organized as follows. In the next section, we set the
mathematical framework and state all the main results. Each result is followed
by its biological interpretation. In Section 3, we prove uniqueness and existence
results for solutions of (1.6). In particular, there we establish a nonlinear Liouville
theorem. Next, in Section 4, we give some stability results concerning the long
time behaviour of solutions of problem (1.3) with initial data. In Section 5, we
apply the general results to some special classes of functions f arising in some
biological models, and we state some “species persistence” results. In Section
6, we summarize some facts on the bounded domains case with different types of
boundary conditions. Lastly, in Section 7, we conclude this paper with a discussion
on the biological implications of this work.

2 Statements of the main results

We are concerned here with equation

ut −∇ · (A(x)∇u) = f(x, u), t ∈ R+, x ∈ RN , (2.1)

and its stationary solutions given by

−∇ · (A(x)∇u) = f(x, u), x ∈ RN . (2.2)

Let L1,...,LN > 0 be N given real numbers. In the following, saying that
a function g : RN → R is periodic means that g(x1, · · · , xk + Lk, · · · , xN ) ≡
g(x1, · · · , xN ) for all k = 1, · · · , N . Let C be the period cell defined by

C = (0, L1)× · · · × (0, LN ).

Let us now describe the precise assumptions. Throughout the paper, the dif-
fusion matrix field A(x) = (aij(x))1≤i,j≤N is assumed to be periodic, of class C1,α

(with α > 0), and uniformly elliptic, in the sense that

∃α0 > 0, ∀x ∈ RN , ∀ξ ∈ RN ,
∑

1≤i,j≤N
aij(x)ξiξj ≥ α0|ξ|2. (2.3)

The function f : RN ×R+ → R is of class C0,α in x locally in u, locally Lipschitz-
continuous with respect to u, periodic with respect to x. Moreover, assume that
f(x, 0) = 0 for all x ∈ RN , that f is of class C1 in RN × [0, β] (with β > 0),
and set fu(x, 0) := lims→0+ f(x, s)/s. Unless otherwise specified, the assumptions
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above are made throughout the paper. In Remark 2.3 below we also explain how
to include in our results the case of the patch model which involves terms f(x, u)
and A(x) which are discontinuous with respect to x.

In several results below, the function f is furthermore assumed to satisfy

∀x ∈ RN , s 7→ f(x, s)/s is decreasing in s > 0 (2.4)

and/or
∃M ≥ 0, ∀s ≥M, ∀x ∈ RN , f(x, s) ≤ 0. (2.5)

Examples of functions f satisfying (2.4-2.5) are functions of the type (1.4) or (1.5),
namely f(x, u) = u(µ(x)− ν(x)u) or simply f(x, u) = u(µ(x)− u), where µ and ν
are periodic.

The criterion of existence (as well as uniqueness and asymptotic behaviour) is
formulated with the principal eigenvalue λ1 of the operator L0 defined by

L0φ := −∇ · (A(x)∇φ)− fu(x, 0)φ,

with periodicity conditions. Namely, we define λ1 as the unique real number such
that there exists a function φ > 0 which satisfies{

−∇ · (A(x)∇φ)− fu(x, 0)φ = λ1φ in RN ,
φ is periodic, φ > 0, ‖φ‖∞ = 1.

(2.6)

Let us recall that φ is uniquely defined by (2.6).
With a slight abuse of definition, in the following we say that 0 is an unstable

solution of (2.2) if λ1 < 0. The stationary state 0 is said to be stable otherwise,
i.e. if λ1 ≥ 0. These definitions will be seen to be natural in view of the results
we prove here.

2.1 Existence and uniqueness results

We are now ready to state the existence and uniqueness result on problem (2.2).
Let us start with the criterion for existence.

Theorem 2.1 1) Assume that f satisfies (2.5) and that 0 is an unstable solution
of (2.2) (that is λ1 < 0). Then, there exists a positive and periodic solution p of
(2.2).

2) Assume that f satisfies (2.4) and that 0 is a stable solution of (2.2) (that
is λ1 ≥ 0). Then there is no positive bounded solution of (2.2) (i.e. 0 is the only
nonnegative and bounded solution of (2.2)).
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Remark 2.2 For special nonlinearities f of the type f(x, u) = u(µ(x) − ν(x)u),
where µ and ν may not be periodic anymore, and for a more general non-divergence
elliptic operator like −∇ · (A(x)∇u) +B(x) · ∇u = f(x, u) with drift B, the above
results have a probabilistic interpretation. Such equations arise in the theory of
branching processes. In this framework, and for nonlinearities f(x, u) = u(µ(x)−
ν(x)u), Part 1) of Theorem 2.1 is due to Engländer and Pinsky [21] (see also
Engländer and Kyprianou [20] and Pinsky [44] and Remark 3.1 below). We are
very grateful to J. Engländer, A. Kyprianou and R.G. Pinsky for several useful
comments about this literature and on the relationship with the probabilistic point
of view.
In the case of bounded domains with Dirichlet, Neumann or Robin boundary
conditions, the same type of results as in Theorem 2.1 can be found in [40] (in
dimension 1), [13] (in higher dimensions, with constant diffusion) or [14] (with a
space and density varying diffusion and a drift term). We refer to Section 6 for
more details about the case of bounded domains.

Remark 2.3 We have assumed that f(x, u) was (at least) continuous with respect
to x and u. In fact, one can easily extend these results to more general classes
of f which cover, in particular, the case of the patch model. The more general
statement assumes the following :

(i) f(x, s) is measurable in x and bounded, uniformly on compact sets of s ∈
[0,+∞),

(ii) f(x, s) ≤ 0 for all s ≥M , a.e. x ∈ Rn,
(iii)There is some periodic bounded measurable function µ ∈ L∞(Rn) such

that f(x, s) ≤ µ(x)s for all s ∈ R and a.e. x ∈ RN ,
(iv) For all ε > 0 there exists δ > 0, such that f(x, s) ≥ µ(x)s − εs for all

s ∈ [0, δ) and a.e. x ∈ RN

(v) assumption (2.4) is understood a.e. x ∈ RN .
Notice that the eigenvalue problem (2.6) is still well defined. When s → f(x, s)
is C1, one necessarily must take µ(x) = fu(x, 0) ∈ L∞(RN ). Lastly, the assump-
tions are satisfied by nonlinear terms of the type f(x, s) = µ(x)s − ν(x)s2, when
µ, ν ∈ L∞(RN ).
Part 2) still holds good if, instead of (2.4), one only assumes that, for any β > 0,
there is ε > 0 such that f(x, s) ≤ fu(x, 0)s − ε for all x ∈ RN and s ≥ β. Part
2) also holds good if, instead of (2.4), the function f is assumed to be such that
f(x, s)/s is nonincreasing in s > 0 for all x ∈ RN , and (strictly) decreasing at least
for some x : we would like to thank R.G. Pinsky for pointing out this fact.
In the following, for simplicity, we write the proofs under the more stringent as-
sumptions of the theorem, but the arguments are readily extended to handle this
more general framework.
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Biological interpretation : As underlined by Shigesada and Kawasaki
[47], for an invading species to survive, “the population must increase when rare”.
Mathematically, this means that the stationary state 0 has to be unstable. In
Theorem 2.1, we prove that when 0 is an unstable solution of (1.6), there exists
another stationary solution p, which is positive periodic and bounded, and corre-
sponds to a steady state for the invading population. Moreover, Theorem 2.1 also
asserts that such a steady state can only exist if “0 is unstable”.

Yet, in general, the existence of a positive and bounded steady state p for
the invading population does not necessarily guarantee the survival of the species.
Indeed, we further have to look at the global stability of this steady state to
reach a conclusion about the species survival. Actually, as we will see in Theorem
2.6, this solution p is stable, that is, an initial introduction of the species into a
localized region will eventually lead to a stationary pattern in the whole periodic
environment through an invasive propagating wave.

Next we state our uniqueness result.

Theorem 2.4 Assume that f satisfies (2.4) and that 0 is an unstable solution
of (2.2) (that is λ1 < 0). Then, there exists at most one positive and bounded
solution of (2.2). Furthermore, such a solution, if any, is periodic with respect to
x. If λ1 ≥ 0 and f satisfies (2.4), then there is no nonnegative bounded solution
of (2.2) other than 0.

Remark 2.5 The last part of this theorem was already included in Theorem 2.1
above. We repeat it here for the statement to cover both cases λ1 < 0 and λ1 ≥ 0.
This theorem is a Liouville type result for problem (2.2). Notice that the solutions
of (2.2) are not a priori assumed to be periodic in x. The core part in Theorem
2.4 consists in proving that any positive solution of (2.2) is actually bounded from
below by a positive constant (see Proposition 3.2 below), which does not seem to
be a straightforward property.

Biological interpretation : This Theorem asserts that if a positive and
bounded steady state for the population exists, then it is unique. Mathematically,
uniqueness in such unbounded domains is much more delicate to prove than in the
bounded domains case. It turns out that this property is crucial in the proof of
Theorem 2.6. Thus, it is very much related to the global stability of the positive
and bounded steady state p, whence to the discussion of the survival of the species.

2.2 Large time behaviour

Let us now consider the parabolic equation (2.1), and let u(t, x) be a solution of
(2.1), with initial condition u(0, x) = u0(x) in RN . The asymptotic behaviour of
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u(t, x) as t→ +∞ is described in the following theorem:

Theorem 2.6 Assume that f satisfies (2.4) and (2.5). Let u0 be an arbitrary
bounded and continuous function in RN such that u0 ≥ 0, u0 6≡ 0. Let u(t, x) be
the solution of (2.1) with initial datum u(0, x) = u0(x).

1) If 0 is an unstable solution of (2.2) (that is λ1 < 0), then u(t, x) → p(x)
in C2

loc

(
RN

)
as t→ +∞, where p is the unique positive solution of (2.2) given by

Theorems 2.1, part 1), and 2.4.
2) If 0 is a stable solution of (2.2) (that is λ1 ≥ 0), then u(t, x) → 0 uniformly

in RN as t→ +∞.

Remark 2.7 In the above statement, the solution u(t, x) is the (unique) minimal
solution of (2.1) with initial condition u0, in the sense that

u(t, x) = lim
m→+∞

um(t, x),

where um solves (2.1) with initial condition u0,m, and the family (u0,m)m∈N is
any given nondecreasing sequence of nonnegative, smooth, compactly supported
functions which converge to u0 locally uniformly in RN . Actually, each um(t, x) is
itself the limit of um,n(t, x) as n→ +∞, where um,n solves

(um,n)t −∇ · (A(x)∇um,n) = f(x, um,n), t > 0, x ∈ Bn

with initial condition u0,m in Bn and boundary condition um,n(t, x) = 0 for t > 0
and x ∈ ∂Bn, where Bn is the open euclidian ball with center 0 and radius n
(for n in N large so that Bn contains the support of u0,m). For nonlinearities
of the type f(x, s) = µ(x)s − ν(x)sp with p > 1, where µ and ν are periodic
and infRN ν > 0, it follows from Theorem 2 of Engländer and Pinsky [22] that this
minimal solution u is the unique solution of (2.1) with initial condition u0. Without
the periodicity assumption and with more general non-selfadjoint operators with
unbounded coefficients, the subtle question of the uniqueness or nonuniqueness of
the solutions of (2.1) with a given initial condition u0 is discussed in [22].

Let us now consider the particular case f(x, u) = u(µ(x)− u) for u ≥ 0, where
µ is periodic with respect to x. Such nonlinearities arise in ecological models of
species conservation and biological invasions (see section 1 for the motivation and
[7, 33] for propagation phenomena related to these equations). Such a function
f(x, u) = u(µ(x)− u) fulfills conditions (2.4) and (2.5). Following Remark 2.3, we
may actually relax the regularity assumptions.

Gathering all the previous results, the following corollary holds :
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Corollary 2.8 Let f(x, u) = u(µ(x) − u) for u ≥ 0, where µ is in L∞(RN ) and
periodic. Let u0 ≥ 0, u0 6≡ 0 be a bounded and uniformly continuous function in
RN and let u(t, x) be the solution of (2.1) with initial datum u(0, x) = u0(x).

1) If 0 is an unstable solution of (2.2) (that is λ1 < 0) then there exists a unique
bounded positive solution p of (2.2), and u(t, x) → p(x) locally in x as t→ +∞.

2) If 0 is a stable solution of (2.2) (that is λ1 ≥ 0), then 0 is the unique
nonnegative bounded solution of (2.2), and u(t, x) → 0 uniformly in RN as t →
+∞.

Biological interpretation : We obtain here a complete description of the
asymptotic behaviour of solutions of the evolution equation (1.3). So, Theorem 2.6
helps us to sharpen the informations given by Theorem 2.1. Indeed, Theorem 2.1
asserted that the condition “0 is unstable” is a necessary and sufficient condition
for a positive and bounded steady state of the population to exist. Theorem 2.6
says that “0 is unstable” is also a necessary and sufficient condition for an invading
species to survive. Besides, Theorem 2.6 justifies the equivalence between “0 is
unstable” and λ1 < 0.

As underlined by Cantrell and Cosner [14] in the case of bounded domains,
having a criterion for persistence expressed in terms of λ1 offers a major advan-
tage. As a matter a fact, even though the criterion for persistence λ1 < 0 has a
very simple expression, it reflects many crucial informations regarding the interac-
tion between favourable and unfavourable areas, and also regarding both habitat-
dependent rates of movement and habitat-dependent rates of population increase.
Note that λ1 can be numerically calculated, so that the condition for survival can
be explicitly evaluated. Moreover, and most important from our point of view,
having λ1 < 0 as a criterion for species survival allows us to derive several quali-
tative statements about the effects of the environment’s shape on the population
as we will see with the next results,. Some of these effects have been studied, with
a similar criterion, in a series of papers by Cantrell and Cosner [13, 14, 15] in the
case of bounded domains. Compare also Section 6 of this work for extensions.

2.3 Effects of the heterogeneity on species survival

Let us denote by λ1[µ] the first eigenvalue of (2.6) with fu(x, 0) = µ(x). From
the previous results, we see that, in this model, the survival of the species or its
extinction hinge on the sign of λ1[µ]. Furthermore, we show in [7] that this sign
also determines biological invasions in the form of travelling front-like solutions
(actually pulsating travelling fronts). Hence it is of particular interest to investigate
how the various factors such as the shape of µ(x), the distribution of unfavourable
zones or large amplitude oscillations in µ(x), affect the sign of λ1[µ]. The next
series of results discuss these effects.
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2.3.1 Distribution effects

Let us first discuss the influence of a heterogeneous function µ, that is that µ
depends on x, as compared to the case where µ would be constant with the same
average.

Proposition 2.9 Under the above assumptions, one has

λ1[µ] ≤ λ1[µ0] = −µ0,

where µ0 =
1
|C|

∫
C
µ and |C| denotes the Lebesgue measure of the cell of periodicity

C = (0, L1)× · · · × (0, LN ).

Biological interpretation : The result given by Proposition 2.9 has a sim-
ple and interesting biological interpretation, since it illustrates that heterogeneity,
in some sense, can be an advantage in terms of species survival. As an example,
let us consider a periodic landscape of fields of corn (each periodicity cell corre-
sponding to a field) that would be attacked by a strictly host-specific insect pest.
Assume that the favourableness of this environment for the insect species is pro-
portional to the density of vegetable, and that n vegetables are planted on each
field. Proposition 2.9 asserts that an equal share of the n seedlings on the whole
area of the field is the worst for the insect survival. The chances of species survival
would have been better if, for instance, one would have planted the n seedlings on
one half of the field, letting the other half empty.

Let us now study the influence of the repartition of µ, assuming that the
distribution function of µ is given.

Let us first discuss the one-dimensional periodic patch model described in the
introduction. There, we assume that

µ(x) =
{
µ+ in E+ ⊂ R,
µ− in E− = R\E+.

Consider now another function µ∗(x) having the same distribution function as µ
but where the unfavourable zone is an interval in any periodicity cell. That is, we
set

µ∗(x) =
{
µ+ in E∗+ ⊂ R,
µ− in E∗− = R\E∗+,

with µ∗ being L-periodic, as is µ, and E∗− ∩ (0, L) is a (connected) interval. The
question we want to solve is to know which of the two configurations leaves most
chances for survival.

13



Proposition 2.10 With the above notations, assuming that the diffusion coeffi-
cient A(x) is a constant positive real number, one has

λ1[µ∗] ≤ λ1[µ].

Biological interpretation : Following the metaphor of Shigesada and
Kawasaki [47], one can think of a forest in which a periodic array of parallel roads
are cut through. The forest is thought of as a favourable homogeneous medium and
roads as an unfavourable homogeneous medium with a constant negative growth
rate µ− < 0. The question here is to know whether several small forest roads,
say of widths l1,...,lp, in a given periodicity cell, are better –in the sense of species
survival– than one big road of width l1+· · ·+lp. Relying on numerical calculations,
Shigesada and Kawasaki [47] have observed that the latter leaves more chances for
species survival (see also Section 6 for a discussion on such results with other
boundary conditions). Here, we actually prove this result rigorously.

For an initial configuration µ of the favourable and unfavourable areas, µ∗ cor-
responds to the configuration where the whole unfavourable zone is concentrated
on an interval (by sliding the periodicity cell by L/2, one can also say that the
whole favourable zone is concentrated on an interval).

Our result proves that whenever µ allows for survival, so does µ∗ but in some
cases, µ∗ will allow for survival while µ will not. It is indeed simple to construct
examples where λ1[µ∗] < 0 < λ1[µ].

We actually prove a much more general result, in arbitrary dimension, and for
general reaction terms f(x, u). The previous proposition is a particular case of it.

To state our result, we need to introduce the notion of Schwarz and Steiner
periodic symmetrizations of a function. For more details and properties about
these notions, we refer the reader to the monograph of B. Kawohl [37].

Consider a L-periodic function µ(x) defined on the real line R. There exists a
unique function µ∗(x), L-periodic on R, satisfying the following properties :

(i) µ∗ is symmetric with respect to x = L/2 and µ∗ is nondecreasing on [0, L]
away from the symmetry center L/2, i.e.

for all x, y ∈ [0, L], µ∗(x) ≤ µ∗(y) if |x− L/2| ≤ |y − L/2|

(ii) µ∗ has the same distribution function as µ, that is :

meas {x ∈ (0, L); µ(x) ≤ α} = meas {x ∈ (0, L); µ∗(x) ≤ α}

for all real α.
This function µ∗ is called the Schwarz periodic rearrangement. An example of

it is given in Figure 1.
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Figure 1: A function µ and its periodic Schwarz rearrangement µ∗

Consider now a function µ(x) periodic in RN with a period cell C = (0, L1)×
· · ·×(0, LN ). Keeping fixed all other variables but xk, we can rearrange as above the
function µ(x) with respect to xk. This is called Steiner periodic rearrangement in
the variable xk. By performing such Steiner periodic rearrangements successively
on all variables x1, x2, . . . , xN , we obtain a new function, µ∗(x1, · · · , xN ). Thus,
this function is periodic in all variables, symmetric with respect to each variable
xk, and nonincreasing with respect to each variable xk for xk ∈ [0, Lk/2].

Theorem 2.11 Assume that the diffusion matrix A is the identity matrix and de-
note by λ1[fu(x, 0)] the principal eigenvalue of (2.6) involving fu(x, 0). Let f∗u(·, 0)
be the successive Steiner symmetrizations of fu(·, 0) in the variables x1, . . . , xN .

Then,
λ1[f∗u(·, 0)] ≤ λ1[fu(·, 0)].

Biological interpretation : As already pointed out, this covers the case
of the patch model. Even in this case, in higher dimension, say N = 2, this
property is new. An example of how unfavourable zones are assembled by Steiner
rearrangement is described in Figure 2.

Theorem 2.11 shows that the µ∗ configuration, where the unfavourable zones
are concentrated, leaves better survival chances. In the configuration µ∗, in each
direction, the more unfavourable an area is, the closer it is to the center of the
periodic cell. Note that the result of the succession of Steiner symmetrizations
will depend on the order in which the variables are taken. This result supports
the adverse effect of fragmentation of the environment on species persistence. It
holds not only in the periodic patch model when µ(x) takes two values, but for
an arbitrary function µ(x) (also one taking several values). Note, however, that,
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Figure 2: The effect of Steiner symmetrization on unfavourable zones. Dis-
tribution of unfavorable zones: (a) for µ(x) and (b) for rearranged µ∗(x)
successively in the variables x1 and x2.

even in the patch model, for a given total area of unfavourable environment in one
periodicity cell, the/an optimal shape (i.e. the/a µ̂ that minimizes λ1[µ]) is not
known. However, thanks to Theorem 2.11, we know that there exists an optimal
shape which is stable by Steiner symmetrization (µ̂∗ = µ̂). It could actually be
like in figure 3. We think that it is an interesting open problem to determine the
optimal shapes and to derive their properties.

2.3.2 Effects of the amplitude of the heterogeneity

The following result is concerned with the study of the influence of the size of the
nonlinearity f . To stress this effect, we now call λ1(f) the first eigenvalue of (2.6)
with the nonlinearity f .

Consider the problem

−∇ · (A(x)∇u) = Bf(x, u) in RN , (2.7)

where B > 0 is a given positive real number and f satisfies assumptions (2.4) and
(2.5). As it follows from Theorems 2.1 and 2.4, this problem admits a positive
periodic solution if and only if 0 is an unstable solution of (2.7). Let us examine
the effect of the amplitude factor B. The following theorem below holds for general
functions f :
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Figure 3: (a) Initial distribution µ(x), (b) rearranged µ∗(x) successively in
the variables x1 and x2, (c) an example of a rearrangement µ̂, which has the
same distribution function as µ and µ∗, and is Steiner symmetric in both
variables but is not obtained by the procedure described here.

Theorem 2.12 1) If
∫
C
fu(x, 0) > 0, or if

∫
C
fu(x, 0) = 0 and fu(x, 0) 6≡ 0, then

λ1(Bf) < 0 for every B > 0, and the function B 7→ λ1(Bf) is decreasing in B ≥ 0.

2) If
∫
C
fu(x, 0) < 0, then λ1(Bf) > 0 for all B > 0 small enough. Assume

that there exists x0 ∈ C such that fu(x0, 0) > 0. Then λ1(Bf) < 0 for B large
enough, and the function B 7→ λ1(Bf) is decreasing in B for B large enough.

Likewise, if we assume that f has a dependence with respect to one parameter
B –we write f = fB– such that fBu (x, 0) = h(x) + Bg(x) for some h, g ∈ L∞ and
assuming that g > 0 on some set of positive measure, we can prove the following.
For large B (no matter how h and g are distributed), there is always survival. The
proofs are the same as for Theorem 2.12 and will not be detailed separately.

Remark 2.13 For the nonlinear elliptic eigenvalue problem

−ajk∂jkφ+ ai∂iφ = λmφ, (2.8)

in a bounded domain, with Neumann boundary conditions, and for a given real-
valued weight function m, some existence results of eigenvalues having positive
eigenfunction have been obtained by Senn and Hess [46], Senn [45] and Brown and
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Lin [12] (the last reference concerns the Laplace operator, with either Neumann
or Dirichlet conditions).

For time-periodic eigenvalue problems of the type

ω∂tφ− ρ∆φ− h(x, t)φ = λφ,

in bounded domains, where ω and ρ are positive constants and h is a continuous
function that is periodic in t, the dependence of the first eigenvalue λ on the
parameters is studied in Hess [31] and Hutson, Mischaikow and Polacik [35].

Biological interpretation : As a consequence of the last theorem, we can
say that increasing the amplitude of heterogeneity, assuming that the favourable
region is not empty, enhances the chance of having 0 unstable. Hence, it increases
the chance of biological survival (existence of a positive solution p of (2.2)). In
our forthcoming paper [7], we show that it also increases the speed of biological
invasion.

The second part of Theorem 2.12 means that, if in an initial environment, the
invading population becomes extinct, then it would suffice to have a favourable
zone, even quite small, to guarantee the survival of the species by increasing the
amplitude of favourableness and unfavourableness of the environment. For in-
stance, let us consider a periodic environment of fields with two kind of vegetal
species, the species A being favourable for an invading insect population, and the
species B being unfavourable (one can imagine that it is toxic for the insect, or
unfavourable for other reasons). Assume that, initially (i.e. with very few vegetal
species), the environment does not let the insect population survive. Theorem 2.12,
part 2), asserts that increasing sufficiently the favourableness and unfavourable-
ness of the environment, for instance by spreading some fertilizer will lead to the
insect survival (and spreading).

Although increasing the size of the heterogeneity is beneficial, the increase
of the frequency is not. Mathematically, the role of the amplitude (B in Theo-
rem 2.12), with respect to the inequality λ1 < 0, may be similar to that of the
period (say L if the periodicity cell is a square). In other words, a rise in fre-
quency may have the same effect as a reduction of the amplitude, and will lead
to weaker chances of survival. As an example, assume that we consider, in the
one-dimensional case, a population for whom the intrinsic growth rate is given by
µ(x) = a + b sin(2πx/l), where a < 0, b > 0, l > 0 are three constants. From
Theorem 2.12, part 2), for a fixed value of the period l, and a small value of the
amplitude b, the population becomes extinct (λ1 ≥ 0). Similarly, for the reasons
that have been mentioned above, for a fixed value of b, a small value of l (high
frequency) does not allow the species survival (indeed, with the notations of The-
orem 2.12, λ1 (f(x/l)) = 1/l2λ1

(
l2f(x)

)
→ a as l → 0). On the other hand, for a

fixed period l, a high value of b leads to species survival.
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3 Existence and uniqueness of a stationary

solution

We start with existence which is a simpler aspect here.

3.1 Proof of existence

Assume first that 0 is an unstable solution of (2.2) and that condition (2.5) is
fulfilled. Let us prove that there exists a positive and periodic solution of (2.2).
Let φ be the unique positive solution of{

−∇ · (A(x)∇φ)− fu(x, 0)φ = λ1φ in RN ,
φ is periodic, φ > 0, ‖φ‖∞ = 1,

(3.1)

with λ1 < 0. Since f(x, u) is of class C1 in RN × [0, β] (with β > 0), for κ > 0
small enough, one gets:

f(x, κφ) ≥ κφfu(x, 0) +
λ1

2
κφ in RN . (3.2)

Therefore, it follows that

−κ∇ · (A(x)∇φ)− f(x, κφ) ≤ λ1

2
κφ ≤ 0 in RN , (3.3)

and κφ is a subsolution of (2.2) with periodicity conditions. Moreover, if M is
taken as in (2.5), the constant M is an upper solution of (2.2) with periodicity
conditions, and (for κ small enough) κφ ≤ M in RN . Thus, it follows from a
classical iteration method that there exists a periodic classical solution p of (2.2)
which satisfies κφ ≤ p ≤M in RN . Theorem 2.1, part 1) is proved.

Next, assume that p is a nonnegative bounded solution of (2.2) and assume
that 0 is stable (λ1 ≥ 0). Let φ be the first eigenfunction of (3.1). From hypothesis
(2.4), one has f(x, γφ(x)) < fu(x, 0)γφ(x) for all x ∈ RN and γ > 0. Hence,

−∇ · (A(x)∇(γφ))− f(x, γφ) > λ1γφ ≥ 0 in RN (3.4)

for all γ > 0.
Recall that p is a nonnegative and bounded solution of (2.2). Since φ is bounded

from below away from 0 and p is bounded, one can define

γ∗ = inf
{
γ > 0, γφ > p in RN

}
≥ 0. (3.5)
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Assume that γ∗ > 0, and set z := γ∗φ−p. Then z ≥ 0, and there exists a sequence
xn ∈ RN such that z(xn) → 0 as n→ +∞.

Assume at first that up to the extraction of some subsequence, xn → x ∈ RN

as n → +∞. By continuity, z(x) = 0. As γ∗φ is a supersolution of (2.2) (in the
sense that it satisfies (3.4)) with periodicity conditions, it is easy to see from the
strong elliptic maximum principle that z ≡ 0. Therefore p ≡ γ∗φ is a positive and
periodic solution of (2.2). Since λ1 ≥ 0 (0 is assumed to be stable), it follows from
(2.2) and (3.4) that

0 = −∇ · (A(x)∇p)− f(x, p(x)) > 0.

One is thus led to a contradiction.
In the general case, let (xn) ∈ C be such that xn−xn ∈

∏N
i=1 LiZ. Then, up to

the extraction of some subsequence, one can assume that there exists x∞ ∈ C such
that xn → x∞ as n → +∞. Next, set φn(x) = φ(x+ xn) and pn(x) = p(x+ xn).
Since both A and f are periodic with respect to x, the functions γ∗φn and pn
satisfy

−∇ · (A(x+ xn)∇(γ∗φn))− f(x+ xn, γ
∗φn) > 0

−∇ · (A(x+ xn)∇pn)− f(x+ xn, pn) = 0
in RN . (3.6)

From standard elliptic estimates, it follows that (up to the extraction of some
subsequences) pn converge in C2

loc to a function p∞ satisfying

−∇ · (A(x+ x∞)∇p∞)− f(x+ x∞, p∞) = 0 in RN , (3.7)

while the sequence (γ∗φn) converges to γ∗φ∞ := γ∗φ(·+ x∞), and

−∇ · (A(x+ x∞)∇(γ∗φ∞))− f(x+ x∞, γ
∗φ∞) > 0 in RN . (3.8)

Let us set z∞(x) := γ∗φ∞(x)− p∞(x). Then

z∞(x) = lim
n→+∞

[γ∗φ(x+ xn)− p(x+ xn)] ,

whence z∞(x) = limn→+∞ z(x+xn). Therefore z∞ ≥ 0 and z∞(0) = 0. It then fol-
lows from the strong maximum principle that z∞ = 0 and reaches a contradiction
as above.

Finally, in all the cases, one has γ∗ = 0, thus p ≡ 0, and the proof of Theorem
2.1 is complete. �

Remark 3.1 Theorem 2.1 holds, as such, if equation (2.2) is replaced by

−∇ · (A(x)∇u) +B(x) · ∇u = f(x, u) in RN , (3.9)
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where B is a C0,α periodic drift. Indeed, the proof of Theorem 2.1 does not rely
on the variational structure of (2.2).
More generally, consider the case where A, B and f are not periodic (with respect
to x) anymore. One can wonder whether a result similar to Theorem 2.1 still holds
in this case. For this purpose, a possible generalization of the first eigenvalue λ1

of the operator L = −∇ · (A(x)∇) +B(x) · ∇ − fu(x, 0) in RN is

λ1 = inf {λ ∈ R, ∃ϕ ∈ C2(RN ) ∩ L∞(RN ), ϕ > 0, (L − λ)ϕ ≤ 0 in RN}

= inf
ϕ∈C2(RN )∩L∞(RN ), ϕ>0

sup
x∈RN

(
Lϕ(x)
ϕ(x)

)
.

.

This definition for λ1 gives the same value as before in the periodic case. With
the same arguments as above, one can easily prove that if f satisfies (2.5) and if
0 is an unstable solution of (3.9) (λ1 < 0), then there exists a positive solution p
of (3.9). On the other hand, if f satisfies (2.4) and if 0 is a strictly stable solution
of (3.9) (λ1 > 0), then there is no positive bounded solution of (3.9) (i.e. 0 is the
only nonnegative and bounded solution of (3.9)). For the proof, assume indeed
that there is a positive bounded solution p of (3.9) ; it follows from (2.4) that
Lp ≤ 0, whence λ1 ≤ 0. However, it is not clear whether, under assumption (2.4),
the nonexistence of positive bounded solutions p of (3.9) still holds if λ1 = 0. We
mention this question as an open problem.
Another possible generalized first eigenvalue of L in the non-periodic case is the
following

λ′1 = sup {λ ∈ R, ∃ϕ ∈ C2(RN ), ϕ > 0, (L − λ)ϕ ≥ 0 in RN}

= sup
ϕ∈C2(RN ), ϕ>0

inf
x∈RN

(
Lϕ(x)
ϕ(x)

)
. .

In the case of a bounded smooth domain, this definition reduces to the classical
first eigenvalue of L with Dirichlet boundary conditions (see [11], [42]). In the
periodic case in RN , one has λ1 ≤ λ′1, but with a strict inequality in general, even
in the case of constant coefficients (for instance, for Lu = −u′′ + u′ in R, one
has 0 = λ1 < λ′1 = 1/4), see [1], [8], [43]. But this definition of λ′1 is well-suited
for a condition on the existence of other types of solutions of (3.9), maybe not
bounded, in the general nonperiodic case. Namely, for a function f of the type
f(x, s) = µ(x)s− ν(x)s2, Pinsky [44] (see also [20]) proved that the existence of a
solution of minimal growth at infinity for (3.9) is equivalent to λ′1 < 0 (a solution
of minimal growth at infinity for (3.9) is a positive solution u of (3.9) such that
u ≤ v in RN\D for all bounded domain D and for all nonnegative solution v of
(3.9) in RN\D with u ≤ v on ∂D).
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3.2 Proof of uniqueness

For analogous problems on bounded domains with e.g. Dirichlet conditions on the
boundary, uniqueness of the positive solutions is well known (compare [4]). The
difficulty here arises because of the lack of compactness and because of the fact
that one does not assume a priori that u is bounded from below away from zero.

The proof of Theorem 2.4 essentially relies on the following property.

Proposition 3.2 Assume that 0 is an unstable solution of (2.2). Let u ∈ C2
(
RN

)
be a bounded nonnegative solution of (2.2). Then, either u ≡ 0 or there exists ε > 0
such that u(x) ≥ ε for all x ∈ RN .

Note that periodic solutions obviously satisfy this property. But, here, we look
at uniqueness within a more general class of functions. In particular, it is not
assumed a priori that inf

RN
u > 0, which we will now show.

We prove Proposition 3.2 through a succession of lemmas. Let BR be the open
ball of RN , with centre 0 and radius R. Let y be an arbitrary point in RN . It is
well-known that there exist a unique real number (principal eigenvalue) λyR, and a
unique function ϕyR (principal eigenfunction) in C2

(
BR

)
, satisfying2

−∇ · (A(x+ y)∇ϕyR)− fu(x+ y, 0)ϕyR = λyRϕ
y
R in BR,

ϕyR > 0 in BR,
ϕyR = 0 on ∂BR,

‖ϕyR‖∞ = 1.

(3.10)

Since both λyR and ϕyR are unique, standard elliptic estimates and compactness
arguments imply that the maps y 7→ ϕyR and y 7→ λyR are continuous with respect
to y (the continuity of ϕyR is understood in the sense of the uniform topology in
BR). Note that, since f is periodic in x, ϕyR and λyR are periodic with respect to
y as well.

Let λ̃y1 be the principal eigenvalue and φy the principal eigenfunction of −∇ · (A(x+ y)∇φy)− fu(x+ y, 0)φy = λ̃y1φ
y in RN ,

φy is periodic and positive in RN ,
‖φy‖∞ = 1.

(3.11)

First, it is straightforward to observe :

Lemma 3.3 The first eigenvalue λ̃y1 does not depend on y. In other words, λ̃y1 =
λ1 for all y ∈ RN , where λ1 is the first eigenvalue of (2.6).

2throughout the paper, the operator ∇ always refers to the derivation with respect to
the x variables
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Proof. Set φ(x) := φy(x− y). The function φ satisfies −∇ · (A(x)∇φ)− fu(x, 0)φ = λ̃y1φ in RN ,
φ is periodic and positive in RN ,
‖φ‖∞ = 1.

(3.12)

Therefore, by uniqueness, one has φ = φ0, and λ̃y1 = λ̃0
1 = λ1. �

Lemma 3.4 For all y ∈ RN and R > 0, one has λyR > λ1.

Proof. The function ϕyR satisfies
−∇ · (A(x+ y)∇ϕyR)− fu(x+ y, 0)ϕyR

−λ1ϕ
y
R = (λyR − λ1)ϕ

y
R in BR,

ϕyR > 0 in BR,
ϕyR = 0 on ∂BR,

‖ϕyR‖∞ = 1.

(3.13)

Assume that λyR ≤ λ1. Let φy be the solution of (3.11). Then φy satisfies{
−∇ · (A(x+ y)∇φy)− fu(x+ y, 0)φy = λ1φ

y in BR,
φy > 0 in BR.

(3.14)

Since φy > 0 in BR, one can assume that κϕyR < φy in BR for all κ > 0 small
enough. Now, set

κ∗ := sup
{
κ > 0, κϕyR < φy in BR

}
> 0.

Then, by continuity, κ∗ϕyR ≤ φy in BR and there exists x1 in BR such that
κ∗ϕyR(x1) = φy(x1). But, since φy > 0 in BR and ϕyR = 0 on ∂BR, it follows
that x1 ∈ BR.

On the other hand, the assumption λyR ≤ λ1 implies, from (3.13), that

−∇ · (A(x+ y)∇(κ∗ϕyR))− fu(x+ y, 0)κ∗ϕyR − λ1κ
∗ϕyR ≤ 0 in BR.

Therefore, it follows from the strong elliptic maximum principle that κ∗ϕyR ≡ φy

in BR, which is impossible because of the boundary conditions on ∂BR.
Finally, one concludes that λyR > λ1 (This can also be derived from a charac-

terization in [11]). �

Lemma 3.5 For all y ∈ RN , the function R 7→ λyR is decreasing in R > 0.

23



Proof. Let R1 and R2 be two positive real numbers with R1 < R2. The proof of
this lemma is similar to that of Lemma 3.4, replacing λyR by λyR1

and λ1 by λyR2
,

and using the fact that ϕyR2
> 0 in BR1 . �

The next lemma is a standard result (see e.g. [17]), but we include its proof
here for the sake of completeness.

Lemma 3.6 One has limR→+∞ λyR = λ1 uniformly in y ∈ RN .

Proof. For y ∈ RN , call Ly the elliptic operator defined by Lyu := −∇ · (A(x +
y)∇u) − fu(x + y, 0)u. Since it is a self-adjoint operator, one has the following
variational formula for λyR :

λyR = min
ψ∈H1

0 (BR), ψ 6≡0
QyR(ψ), (3.15)

where

QyR(ψ) =

∫
BR

[
∇ψ · (A(x+ y)∇ψ)− fu(x+ y, 0)ψ2

]
dx∫

BR

ψ2
. (3.16)

Choose a family of functions (χR)R≥2, bounded in C2
(
RN

)
(for the usual norm)

independently of R, and such that
χR(x) = 1 if |x| ≤ R− 1,
χR(x) = 0 if |x| ≥ R,
0 ≤ χR ≤ 1.

(3.17)

Set ψR = φyχR where φy is the solution of (3.11). Then ψR ∈ H1
0 (BR) and

QyR(ψR) =

∫
BR

[
∇ψR · (A(x+ y)∇ψR)− fu(x+ y, 0)ψ2

R

]
dx∫

BR

ψ2
R

. (3.18)

Integrating the numerator by parts over BR, and using the boundary conditions
on ∂BR, one gets

QyR(ψR) =

∫
BR

[
−∇ · (A(x+ y)∇ψR) ψR − fu(x+ y, 0)ψ2

R

]
dx∫

BR

ψ2
R

, (3.19)
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and, by definition of ψR,∫
BR

[−∇ · (A(x+ y)∇ψR) ψR − fu(x+ y, 0)ψ2
R]dx

=
∫
BR−1

[−∇ · (A(x+ y)∇φy) φy − fu(x+ y, 0) (φy)2]dx

+
∫
BR\BR−1

[−∇ · (A(x+ y)∇(φyχR)) φyχR − fu(x+ y, 0)(φyχR)2]dx.

(3.20)

From equation (3.11) satisfied by φy and using that φy and χR are bounded in
C2

(
RN

)
, uniformly with respect to y and R, it follows that there exists C ≥ 0

such that∣∣∣∣∫
BR

[
−∇ · (A(x+ y)∇ψR) ψR − fu(x+ y, 0)ψ2

R

]
dx

− λ1

∫
BR−1

(φy)2
∣∣∣∣∣ ≤ CRN−1

(3.21)

for all R ≥ 2 and y ∈ RN . Likewise, one has∣∣∣∣∣
∫
BR

ψ2
R −

∫
BR−1

(φy)2
∣∣∣∣∣ ≤ C ′RN−1 (3.22)

for some C ′ ≥ 0, for all R ≥ 2 and y ∈ RN .
But, since each function φy is continuous, positive and periodic, and since

the functions φy depend continuously and periodically on y (in the sense of the
uniform topology in RN ), there exists α > 0 such that φy(x) ≥ α for all x ∈ RN

and y ∈ RN . Thus
∫
BR−1

(φy)2 ≥ α2|BR−1|. Therefore,

∫
BR

ψ2
R∫

BR−1

(φy)2
→ 1 as R→ +∞, (3.23)

uniformly with respect to y ∈ RN . Using (3.19), (3.21) and (3.22), one gets that
QyR(ψR) → λ1 as R→ +∞, uniformly in y ∈ RN .

Next, (3.15) and Lemma 3.4 yield λ1 < λyR ≤ QyR(ψR). As a consequence,
λyR → λ1 as R→ +∞, uniformly in y ∈ RN . This completes the proof of Lemma
3.6. �
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We are now able to complete the
Proof of Proposition 3.2. Let u ∈ C2

(
RN

)
be a nonnegative and bounded

solution of (2.2). Let us assume that u 6≡ 0. The strong maximum principle then
implies that u > 0 in RN .

Since f(x, u) is of class C1 in RN × [0, β] (with β > 0), since f(x, 0) ≡ 0 in
RN and since f is periodic with respect to x, one can choose κ0 > 0 small enough
such that

f(x+ y, κϕyR) ≥ κϕyRfu(x+ y, 0) +
λ1

2
κϕyR in BR, (3.24)

for all 0 < κ ≤ κ0, y ∈ RN and R > 0 (recall that λ1 < 0, and ϕyR > 0 in BR).
From Lemmas 3.5 and 3.6, there exists R0 > 0 such that

∀ R ≥ R0, ∀ y ∈ RN , λyR <
λ1

2
< 0. (3.25)

In the sequel, fix some R ≥ R0. Set uy(x) := u(x+y). The function uy satisfies

−∇ · (A(x+ y)∇uy)− f(x+ y, uy) = 0 in RN . (3.26)

Furthermore, κ0ϕ
y
R satisfies

−κ0∇ · (A(x+ y)∇ϕyR) = fu(x+ y, 0)κ0ϕ
y
R + λyRκ0ϕ

y
R in BR. (3.27)

Thus, using (3.24) and (3.25), one has

−κ0∇ · (A(x+ y)∇ϕyR)− f(x+ y, κ0ϕ
y
R) ≤ (λyR −

λ1

2
)κ0ϕ

y
R ≤ 0 in BR. (3.28)

In other words, κ0ϕ
y
R is a sub-solution of (3.26).

Let us now show that uy > κ0ϕ
y
R in BR. If not, there exists 0 < κ∗ ≤ κ0

and x1 ∈ BR such that κ∗ϕyR(x1) = uy(x1) and uy ≥ κ∗ϕyR in BR (remember that
uy > 0 in RN , whence minBR

uy > 0). Next, since ϕyR ≡ 0 on ∂BR, it follows
that x1 ∈ BR. On the other hand, the computations above show that the function
κ∗ϕyR is still a sub-solution of (3.26). The strong maximum principle gives that
κ∗ϕyR ≡ uy in BR, which is in contradiction with the conditions on ∂BR.

Finally, one has uy > κ0ϕ
y
R in BR, thus uy(0) > κ0ϕ

y
R(0). In other words,

u(y) > κ0ϕ
y
R(0) for all y ∈ RN . Since the function y 7→ κ0ϕ

y
R(0) is periodic,

continuous and positive over RN , there exists ε > 0 such that κ0ϕ
y
R(0) > ε for all

y ∈ RN , and this completes the proof of Proposition 3.2. �

Let us now turn to the
Proof of Theorem 2.4. Let u and p ∈ C2

(
RN

)
be two positive and bounded

solutions of (2.2). By Proposition 3.2, there exists ε > 0 such that u ≥ ε and p ≥ ε
in RN .
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Therefore, we can define the positive real number

γ∗ = sup
{
γ > 0, u > γp in RN

}
> 0. (3.29)

Assume that γ∗ < 1, and let us set z := u−γ∗p ≥ 0. From the definition of γ∗,
it follows that there exists a sequence xn ∈ RN such that z(xn) → 0 as n→ +∞.

Assume first that, up to the extraction of some subsequence, xn → x ∈ RN as
n→ +∞. By continuity, one has z ≥ 0 in RN , and z(x) = 0. Moreover, z satisfies
the equation

−∇ · (A(x)∇z)− f(x, u) + γ∗f(x, p) = 0 in RN . (3.30)

Furthermore, by assumption (2.4), f(., s)/s is decreasing in R+ and since we have
assume γ∗ < 1, one has γ∗f(x, p) < f(x, γ∗p). Hence, (3.30) gives

−∇ · (A(x)∇z)− f(x, u) + f(x, γ∗p) > 0 in RN . (3.31)

Since f is locally Lipschitz continuous in the second variable, one infers from (3.31)
that there exists a bounded function b such that

−∇ · (A(x)∇z)− bz > 0 in RN . (3.32)

Since z ≥ 0 and z(x) = 0, it follows from (3.32) and from the strong maximum
principle that z ≡ 0, which is impossible because of the strict inequality in (3.32).

In the general case, let (xn) ∈ C be such that xn−xn ∈
∏N
i=1 LiZ. Then, up to

the extraction of some subsequence, one can assume that there exists x∞ ∈ C such
that xn → x∞ as n→ +∞. Next, set un(x) = u(x+ xn), and pn(x) = p(x+ xn).
Since both A and f are periodic with respect to x, the functions un and pn satisfy

−∇ · (A(x+ xn)∇un)− f(x+ xn, un) = 0
−∇ · (A(x+ xn)∇pn)− f(x+ xn, pn) = 0

in RN . (3.33)

From standard elliptic estimates, it follows that (up to the extraction of some
subsequences) un and pn converge in C2

loc to two functions u∞ and p∞ satisfying

−∇ · (A(x+ x∞)∇u∞)− f(x+ x∞, u∞) = 0
−∇ · (A(x+ x∞)∇p∞)− f(x+ x∞, p∞) = 0

in RN . (3.34)

Moreover, u∞ ≥ ε > 0 and p∞ ≥ ε > 0.
Let us set z∞(x) := u∞(x)− γ∗p∞(x). Then z∞ ≥ 0 and z∞(0) = 0. Further-

more, z∞ satisfies

−∇·(A(x+x∞)∇z∞)−f(x+x∞, u∞(x))+γ∗f(x+x∞, p∞(x)) = 0 in RN . (3.35)
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Then, arguing as for problem (3.30) above, one obtains a contradiction.
Therefore, we know that γ∗ ≥ 1, hence u ≥ p. By interchanging the roles of u

and p, one can prove similarly that p ≥ u. Furthermore, if p is a positive solution
of (2.2), so is the function x 7→ p(x1, · · · , xi + Li, · · · , xN ), for each 1 ≤ i ≤ N .
Hence, p is periodic. The proof of Theorem 2.4 is complete. �

The same arguments as above lead to the following uniqueness result for a class
of solutions of more general elliptic equations with drift terms, under a slightly
stronger version of assumption (2.4) :

Theorem 3.7 Let A = A(x) be a symmetric matrix field satisfying (2.3) and
assume that A is of class C1,α(RN ) and that A and its first-order derivatives are in
L∞(RN ). Let B be a vector field of class C0,α(RN )∩L∞(RN ). Let f : RN ×R+ →
R, (x, s) 7→ f(x, s) be Lipschitz-continuous in s uniformly in x and assume that
f(·, s) is of class C0,α(RN ) ∩ L∞(RN ) locally in s. Assume that

∀ 0 < s < s′, inf
x∈RN

(
f(x, s)
s

− f(x, s′)
s′

)
> 0.

Let u and v be two positive bounded solutions of{
−∇ · (A(x)∇u) +B(x) · ∇u = f(x, u)
−∇ · (A(x)∇v) +B(x) · ∇v = f(x, v)

in RN , (3.36)

such that infRN u > 0 and infRN v > 0.
Then u = v.

Remark 3.8 However, it is not true in general the positive solutions u of (3.36)
are bounded from below by a positive constant under the only assumption λ1 < 0,
where the generalized first eigenvalue λ1 is defined as in Remark 3.1 above.
Indeed, let f be a Lipschitz-continuous function defined in [0, 1], such that f(0) =
f(1) = 0, f > 0 on (0, 1), f ′(0) > 0 and f(s) ≤ f ′(0)s for all s ∈ [0, 1]. It is known
(see [39]) that, for any c ≥ 2

√
f ′(0), there are positive solutions u of

u′′ − cu′ + f(u) = 0, 0 < u < 1 in R

with u(−∞) = 0 and u(+∞) = 1. But, under the notations of Remark 3.1,
λ1 = −f ′(0) < 0 in this case.
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3.3 Energy of stationary states

This subsection is about an independent result, dealing with the sign of the energy
associated to a positive solution of (2.2), under condition (2.4). This result, of
independent interest, will be used in the forthcoming paper [7] on propagation
phenomena.

Assume in this subsection that there exists a positive and bounded solution p
of (2.2) and that condition (2.4) is fulfilled. It then follows from Theorem 2.1, part
2), that 0 is an unstable solution of (2.2) (λ1 < 0), and from Theorem 2.4 that
such a function p is then unique and periodic. As we have seen, the existence of
p is known for instance if λ1 < 0 and if condition (2.5) is satisfied (from Theorem
2.1, part 1)).

Consider the energy functional

E(u) :=
∫
C

{
1
2
∇u · (A(x)∇u)− F (x, u)

}
dx, (3.37)

defined on
H1
per :=

{
φ ∈ H1

loc(RN ) such that φ is periodic
}
,

with F (x, u) :=
∫ u

0
f(x, s)ds. We now prove that the energy of p is negative.

Proposition 3.9 Assume that condition (2.4) is satisfied and that there exists a
positive bounded solution p of (2.2). Then E(p) < 0.

Proof. Under the assumptions of Proposition 3.9, let θ be the function defined in
[0, 1] by

∀ t ∈ [0, 1], θ(t) = E(tp) =
∫
C

{
1
2
t2∇p · (A(x)∇p)− F (x, tp(x))

}
dx. (3.38)

The function θ is of class C1 and

∀ t ∈ [0, 1], θ′(t) =
∫
C
{t∇p · (A(x)∇p)− f(x, tp(x))p(x)} dx. (3.39)

From (2.4) and from the positivity and periodicity of f and p in x, it follows
that f(x, tp(x)) > tf(x, p(x)) in C for all t ∈ (0, 1). Therefore,

∀ t ∈ (0, 1), θ′(t) < t

∫
C
{∇p · (A(x)∇p)− f(x, p(x))p(x)} dx = 0, (3.40)

the last equality being obtained by multiplication of the equation (2.2) satisfied
by p and integration over C. As a conclusion,

E(p) = θ(1) < θ(0) = E(0) = 0. �
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4 The evolution equation

This section is devoted to the
Proof of Theorem 2.6. Assume that f satisfies (2.4) and (2.5). Let u0 be a non-
negative, not identically equal to 0, bounded and uniformly continuous function,
and let u(t, x) be the solution of{

ut −∇ · (A(x)∇u) = f(x, u), t ∈ R+, x ∈ RN ,
u(0, x) = u0(x), x ∈ RN .

(4.1)

Assume first that 0 is an unstable solution of (2.2) (λ1 < 0). Let ϕR = ϕ0
R

be the function satisfying (3.10) with y = 0, and call λR = λ0
R. Namely, ϕR ∈

C2
(
BR

)
and satisfies{

−∇ · (A(x)∇ϕR)− fu(x, 0)ϕR = λRϕR in BR,
ϕR > 0 in BR, ϕR = 0 on ∂BR, ‖ϕR‖∞ = 1.

(4.2)

From the strong parabolic maximum principle, one has u(1, x) > 0 in RN . There-
fore, for κ > 0 chosen small enough, κϕR < u(1, x) in BR. Let us extend κϕR
to RN by setting v0(x) := κϕR(x) in BR, and v0(x) := 0 in RN\BR. Define the
function v1 by{

∂tv1 −∇ · (A(x)∇v1) = f(x, v1), t ∈ R+, x ∈ RN ,
v1(0, x) = v0(x), for x ∈ RN .

(4.3)

As it has been done in the course of the proof of Proposition 3.2, using (3.28), for
R large enough and κ > 0 small enough, κϕR is a subsolution of (2.2) in BR, and
therefore v0 is a ”generalized” subsolution of (2.2) in RN . Thus v1 is nondecreasing
in time t. Furthermore, v1(0, x) ≤ u(1, x) in RN implies

v1(t, x) ≤ u(1 + t, x) in R+ × RN . (4.4)

Moreover, for κ > 0 small enough, v0(x) ≤ p(x) in RN , where p is the unique
positive, and periodic, solution of (2.2) (the existence and uniqueness of such a p
follows from assumptions (2.4), (2.5) and λ1 < 0, owing to Theorems 2.4 and 2.1,
part 1)). Since p is a stationary solution of (2.1), one has

v1(t, x) ≤ p(x) in R+ × RN , (4.5)

Because v1 is nondecreasing in time t, standard elliptic estimates imply that v1
converges in C2

loc

(
RN

)
to a bounded stationary solution v∞(≤ p) of (2.1). Fur-

thermore, one has v∞(0) ≥ v1(0, 0) ≥ κϕR(0) > 0. Using the strong maximum
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principle, it follows that v∞ > 0 in RN , and we infer from Theorem 2.4 that
v∞ ≡ p.

Next, from (2.5), there exists M > 0 such that f(x, s) ≤ 0 in RN for all s ≥M
and x ∈ RN . Take M large enough so that M ≥ u0 in RN and let v2 be defined
by {

∂tv2 −∇ · (A(x)∇v2) = f(x, v2), t ∈ R+, x ∈ RN ,
v2(0, x) = M, x ∈ RN .

(4.6)

Then, since M is a supersolution of (2.2), v2 is nonincreasing in time t. Besides,
since v2(0, x) = M ≥ u0(x) ≥ 0 in RN ,

v2(t, x) ≥ u(t, x) ≥ 0 in R+ × RN . (4.7)

Furthermore, since v2 ≥ 0 from the maximum principle, v2 converges in C2
loc

(
RN

)
as t→ +∞ to a bounded and nonnegative stationary solution v∞(≤ M) of (2.1).
From Theorem 2.4, either v∞ ≡ 0 or v∞ ≡ p. Finally, one has

v1(t, x) ≤ u(1 + t, x) ≤ v2(1 + t, x), t > 0 x ∈ RN . (4.8)

Since v1(t, x) → p(x) as t → +∞, it follows from (4.8) that v∞ ≡ p, and that
u(t, x) converges to p(x) in C2

loc

(
RN

)
as t → +∞. Part 1) of Theorem 2.6 is

proved.
Let us now assume that 0 is a stable solution of (2.2). Then, as carried above,

there exists M > 0 such that f(x, s) ≤ 0 for all s ≥ M and x ∈ RN . Taking M
large enough so that u0 ≤M , one again obtains, defining v2 as above,

v2(t, x) ≥ u(t, x) ≥ 0 in R+ × RN . (4.9)

But this time, from the result of Theorem 2.1, part 2), v2 converges in C2
loc

(
RN

)
to

0 as t→ +∞. Furthermore, the convergence is uniform in x : indeed, v2 is periodic
in x at each time t ≥ 0, since it is so at t = 0, and equation (2.1) is periodic in
x. It follows from (4.9) that u(t, x) converges to 0 uniformly as t→ +∞, and this
concludes the proof of Theorem 2.6, part 2). �

5 Conservation of species in ecological sys-

tems

In this section, we study various effects of the term fu(x, 0) on the principal eigen-
value λ1 of (2.6).
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5.1 Influence of the “amplitude” of the reaction term

This subsection is devoted to the stability condition of the zero steady state when
the nonlinearity f is replaced by Bf in (2.2), where B is a positive real number.
Here, the function f is fixed. Let us call λ1(Bf) the first eigenvalue of (2.6) with
the nonlinearity Bf , and φB ∈ C2

(
RN

)
the unique principal eigenfunction (with

the normalization condition ‖φB‖∞ = 1) of{
−∇ · (A(x)∇φB)−Bfu(x, 0)φB = λ1(Bf)φB,
φB is positive and periodic in RN .

(5.1)

The next two statements are concerned with the dependence of λ1(Bf) with
respect to B and correspond to parts 1) and 2) of Theorem 2.12 respectively.

Proposition 5.1 If
∫
C
fu(x, 0) > 0, or if

∫
C
fu(x, 0) = 0 and fu(x, 0) 6≡ 0, then

λ1(Bf) < 0 for every B > 0 and the function B 7→ λ1(Bf) is decreasing in R+.

Proof. One first shows that the mapping B 7→ λ1(Bf) is concave. Since the
operator Lu = −∇ · (A(x)∇u)−Bfu(x, 0) is self-adjoint, the eigenvalue λ1(Bf) is
obtained from the variational characterization:

λ1(Bf) = min
φ∈H1

per, φ 6≡0

∫
C
∇φ · (A(x)∇φ)−Bfu(x, 0)φ2∫

C
φ2

, (5.2)

where H1
per was defined in the previous section. Thus, it follows that B 7→ λ1(Bf)

is concave, whence continuous (on R).
Next, integrate equation (5.1) by parts over C. Using the periodicity of φB,

one obtains,

−B
∫
C
fu(x, 0)φB = λ1(Bf)

∫
C
φB. (5.3)

Take an arbitrary sequence Bn → 0. Since λ1(Bnf) → λ1(0) = 0, standard elliptic
estimates and Sobolev injections imply, up to the extraction of some subsequence,
that the functions φBn converge to a nonnegative function ψ, locally (and therefore
uniformly by periodicity) in W 2,p for all 1 < p < ∞ (we recall that fu(x, 0) is in
L∞). Furthermore, ψ is such that ‖ψ‖∞ = 1, ψ is periodic and satisfies

−∇ · (A(x)∇ψ) = λ1(0)ψ = 0. (5.4)

From the strong maximum principle, ψ is positive and ψ ≡ φ0 ≡ 1. By a classical
argument we can then show that the whole family φB converges to 1 as B → 0.
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Then, divide (5.3) by B and pass to the limit as B → 0, B 6= 0. It follows that

dλ1(Bf)
dB

∣∣∣∣
B=0

|C| = −
∫
C
fu(x, 0), (5.5)

where |C| denotes the Lebesgue measure of C.

Assume now that
∫
C
fu(x, 0) > 0. Since B 7→ λ1(Bf) is concave, λ1(0) = 0 and

dλ1(Bf)
dB

∣∣∣
B=0

< 0, it follows that λ1(Bf) < 0 for every positive B and the function

B 7→ λ1(Bf) is decreasing in R+.

Similarly, if
∫
C
fu(x, 0) = 0, then λ1(Bf) ≤ 0 for every positive B. Further-

more, dividing equation (5.1) by φB and integrating over C leads to :

λ1(Bf) |C| = −
∫
C

∇φB · ∇(A(x)∇φB)
φ2
B

. (5.6)

If λ1(Bf) = 0 for some B > 0, then φB is constant, whence fu(x, 0) ≡ 0. There-
fore, if one further assumes that fu(x, 0) 6≡ 0, then λ1(Bf) < 0 for each B > 0,
and the function B 7→ λ1(Bf) is decreasing in R+. This completes the proof of
Proposition 5.1. �

In the case
∫
C
fu(x, 0) < 0, we now prove the following result.

Proposition 5.2 If
∫
C
fu(x, 0) < 0, then λ1(Bf) > 0 for all B > 0 small enough.

If there exists x0 ∈ C such that fu(x0, 0) > 0, then, for B large enough, λ1(Bf) < 0
and λ1(Bf) is decreasing in B.

Proof. From the proof of Proposition 5.1, it is easy to show that, if
∫
C
fu(x, 0) < 0,

then λ1(Bf) > 0 for B > 0 small enough, since λ1(0) = 0 and, from (5.5),
dλ1(Bf)
dB

∣∣∣
B=0

= −
∫
C
fu(x, 0) > 0.

There exists a positive and periodic function φ0 such that∫
C
fu(x, 0)φ2

0 > 0. (5.7)

Then, from (5.2),

λ1(Bf) ≤

∫
C

[
∇φ0 · (A(x)∇φ0)−Bfu(x, 0)φ2

0

]
dx∫

C
φ2

0

. (5.8)
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Clearly, this shows that λ1(Bf) < 0 for B large enough. The concavity of B 7→
λ1(Bf) and the fact that λ1(0) = 0 then imply that B 7→ λ1(Bf) is decreasing at
least when λ1(Bf) is negative, and thus for B > 0 large enough. �

5.2 Influence of the “shape” of fu(x, 0)

This section is concerned with the study of the dependence of the first eigenvalue
λ1 of (2.6) on the shape of the function fu(x, 0). One denotes µ(x) = fu(x, 0) and
λ1 = λ1[µ]. The following proposition compares the effect of µ and of its average.

Proposition 5.3 Let µ0 be a real number. Then

λ1[µ] ≤ λ1[µ0], (5.9)

whenever
∫
C
µ = µ0|C| (where |C| is the Lebesgue measure of the set C).

Proof. From (2.6), replacing fu(x, 0) by µ(x), one obtains

−∇ · (A(x)∇φ)− µ(x)φ = λ1φ = λ1[µ]φ, x ∈ RN , (5.10)

where φ > 0 is the principal periodic eigenfunction associated to λ1, with the
normalization condition ‖φ‖∞ = 1. Dividing (5.10) by φ and integrating by parts
over C yields

−
∫
C

∇φ · (A(x)∇φ)
φ2

−
∫
C
µ = λ1|C| = λ1[µ]|C|. (5.11)

Clearly, clearly, φµ0 ≡ 1 and λ1[µ0] = −µ0. Therefore, it follows from equation
(5.11) that

λ1[µ] ≤ −

∫
C
µ

|C|
= −µ0 = λ1[µ0].

This completes the proof of Proposition 5.3. �

Proposition 5.4 Let µ0 ∈ R and let f be such that fu(x, 0) = µ(x) = µ0+Bν(x),
where ν has zero average and ν 6≡ 0. Let λ1,B = λ1[µ] be the first eigenvalue of
(5.10). Then the function B 7→ λ1,B is decreasing in R+. Furthermore, λ1,B is
negative for all B > 0 if µ0 ≥ 0, and λ1,B is negative for B > 0 large enough if
µ0 < 0.
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Proof. As in Proposition 5.3, it can be shown that the function B 7→ λ1,B is

concave, and dλ1,B

dB

∣∣∣
B=0

= 0, λ1,0 = −µ0. The conclusion follows as in the proofs
of Propositions 5.2 and 5.3. �

Let us now turn out to the effect of rearranging the level sets of µ. We denote
by µ∗ the function obtained by performing a succession of Steiner periodic rear-
rangement of µ with respect to the ordered variables x1, ..., xN (see Section 2.3.1
above for the definition) .

Proposition 5.5 Under the above notations, and assuming furthermore that A is
the identity matrix, the following inequality holds

λ1[µ∗] ≤ λ1[µ]. (5.12)

Proof. The proof rests on rearrangement inequalities. Let k be a nonnegative
real number such that µ + k ≥ 0 in RN , and let φ be the principal eigenfunction
associated to λ1[µ], with the normalization condition ‖φ‖∞ = 1.

A classical inequality for rearrangement (Compare e.g. [37]) asserts that:∫
C
(µ+ k)∗(φ∗)2 ≥

∫
C
(µ+ k)φ2. (5.13)

Since (µ + k)∗ = µ∗ + k, one infers from (5.13) that
∫
C
µ∗(φ∗)2 ≥

∫
C
µφ2 +

k

∫
C
[φ2 − (φ∗)2]. On the other hand,

∫
C
[φ2 − (φ∗)2] = 0, whence∫

C
µ∗(φ∗)2 ≥

∫
C
µφ2. (5.14)

Next, it follows from Theorem 2.1 and Remark 2.6 in [37] 3 that∫
C
|∇φ|2 ≥

∫
C
|∇φ∗|2. (5.15)

As already emphasized, λ1[µ∗] and λ1[µ] are given by the following variational
formulæ

λ1[µ] = min
ψ∈H1

per, ψ 6≡0

∫
C

(
|∇ψ|2 − µψ2

)
∫
C
ψ2

, (5.16)

3see also Berestycki and Brock, Periodic Steiner symmetrization and applications to
some variational problems in cylinders, paper in preparation, and [9]
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and

λ1[µ∗] = min
ψ∈H1

per, ψ 6≡0

∫
C

(
|∇ψ|2 − µ∗ψ2

)
∫
C
ψ2

. (5.17)

Furthermore, the minimum in (5.16) is reached for ψ = φ. It follows from (5.17)
that

λ1[µ∗] ≤

∫
C

(
|∇φ∗|2 − µ∗(φ∗)2

)
∫
C
(φ∗)2

. (5.18)

From (5.14), one has
∫
C
µ∗(φ∗)2 ≥

∫
C
µφ2, and, from (5.15),

∫
C
|∇φ|2 ≥

∫
C
|∇φ∗|2.

One also knows that
∫
C
(φ)2 =

∫
C
(φ∗)2. Finally, it follows from (5.18) that

λ1[µ∗] ≤

∫
C

(
|∇φ|2 − µφ2

)
∫
C
φ2

= λ1[µ], (5.19)

and Proposition 5.5 is proved. �

As a conclusion, one can say that from the biological conservation standpoint,
among all periodic µ having a given distribution function, the optimal one is
necessarily Steiner symmetric, that is, symmetric with respect to xi = 0 and
decreasing in xi, for xi ∈ [0, Li/2] (for each i = 1, · · · , N). Note, however, that
the actual optimal shape (among all Steiner symmetric functions in all variables)
is not known, even when µ takes only two values.

6 The effect of fragmentation in bounded do-

main models

The problem of the effects of environment fragmentation on the populations in
bounded domains is the main theme of the papers [13, 14, 15] of Cantrell and
Cosner. Its biological interest is widely described in this series of papers. In
this section, we summarize some properties concerned with the case of bounded
domains, and, using a symmetrization argument, we state some general results
extending previous works.
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Consider the equation

ut −∇ · (A(x)∇u) = f(x, u), x ∈ Ω, (6.1)

set in a bounded smooth domain Ω ⊂ RN . Assume, say, that the nonlinearity f
is smooth and satisfies (2.4-2.5), and that A is a smooth uniformly elliptic matrix
field.

For Dirichlet boundary conditions

u = 0 on ∂Ω,

there exists a solution p of
−∇ · (A(x)∇p) = f(x, p), x ∈ Ω
p(x) > 0, x ∈ Ω
p(x) = 0, x ∈ ∂Ω,

(6.2)

if and only if the first eigenvalue λ1 of the operator Lφ = −∇·(A(x)∇φ)−fu(x, 0)φ
in Ω (with Dirichlet boundary conditions on ∂Ω) is negative. Furthermore, if it
exists, p is unique.

In the one-dimensional case with constant diffusion duxx and f of the type
f(u) = u− αu2 − βu2/(1 + u2), this result is due to Ludwig, Aronson and Wein-
berger [40] (see also Murray and Sperb [41] for the two-dimensional case with
additional drift terms). It was generalized to any dimension, with a space and
density dependent diffusion rate and with a drift term, by Cantrell and Cosner
[13, 14], in the case of a nonlinearity f of the type f(x, u) = m(x)u− c(x)u2 (with
c(x) > 0) .

For the equation (6.2), which has a more general reaction term, the results
mentioned above can be proved with the same methods as the ones used in the
present paper. Notice that the case of bounded domains is actually much simpler
than the periodic case in RN . In particular, uniqueness of the positive solutions
was proved in [4].

Furthermore, using the same arguments as those of section 2.2, the solutions
u(t, x) of (6.1) with initial condition u0 ≥ 0, u0 6≡ 0 converge uniformly in x ∈ Ω
as t → +∞ to the unique positive solution p(x) if λ1 < 0 ; otherwise, that is if
λ1 ≥ 0, then u(t, x) → 0 uniformly in x ∈ Ω as t → +∞ (see also [13, 14, 15, 40]
for earlier results in some particular cases).

Some of the above results have been extended by Cantrell and Cosner [16] to
some special cases of systems of two equations.

For problem (6.1) in a bounded interval (0, L), the influence of the location
of the favourable and unfavourable regions has been studied in [15], on the basis
of explicit analytic calculations. This work is restricted to the case of the patch

37



model, that is when the birth rate fu(x, 0) is piecewise constant and only takes
two possible values. For Dirichlet boundary conditions, it is better for species
conservation to have the most favourable region concentrated around the middle
of the interval, away from the boundary. This kind of problem has also been
studied by Harrell, Kröger and Kurata [30], in the case of a two-values patch
model. One of the problems analyzed in [30] was the case where the favourable
zone, say U , is fixed a priori. For a certain class of bounded domains Ω, with
Dirichlet boundary conditions, they proved that the position of U that minimized
λ1, was at the “center” (in a certain sense) of Ω. On the contrary, in the case
of Neumann boundary conditions, it is better for species conservation to have the
favourable and unfavourable regions concentrated near each of the two boundary
points of the interval.

Using symmetrization techniques as we did above for the periodic case allows
us to extend and much simplify these results. For a general µ(x), we prove the
following:

Theorem 6.1 Let Ω be a smooth bounded domain of RN and assume that Ω is
convex in some direction say x1, and symmetric with respect to x1 = 0. Let µ be
continuous in Ω and let λ1[µ] be the first eigenvalue of{

−∆ϕ− µ(x)ϕ = λ1[µ]ϕ in Ω
ϕ = 0 on ∂Ω.

Then, λ1[µ∗] ≤ λ1[µ], where µ∗ is the Steiner symmetrization of µ in the variable
x1, with respect to {x1 = 0} and nonincreasing away from {x1 = 0}.

Furthermore, equality λ1[µ] = λ1[µ∗] holds if and only if µ is symmetric with
respect to x1 and nonincreasing away from {x1 = 0}.

In an interval, this theorem provides the optimal rearrangement of a function
µ in the sense of finding, among all µ having a given distribution function that
function, namely µ∗, that minimizes λ1[µ]. In higher dimensions, this is not known.
In dimension N = 2 consider the simple patch model when µ is allowed to take
two values. When Ω is say a rectangle, then the shape of the optimal µ is not
known. From the theorem, we know that it is doubly symmetric in the Steiner
sense, hence the favourable zone is connected. However, it is not known that this
region is convex, a property which we conjecture holds.

Remark 6.2 When the mean
∫
Ω µ = µ0, over a bounded set Ω ⊂ RN , and the

upper and lower bounds µ1 and −µ2 (µ1, µ2 > 0) of µ are fixed but when the
distribution function is not, Cantrell and Cosner [13] have derived the existence of
an optimal function µ (that minimizes λ1(µ)), which only takes the two values µ1

and −µ2.
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If the volume |Ω| is fixed instead of the shape Ω, under the same assumptions
on µ as above, they noted that the optimal function µ was attained when Ω was
a ball, and µ = µ1χE − µ2χΩ\E , where E ⊆ Ω is also a ball concentric with Ω.
When the distribution function of µ is also imposed, (e.g. when the favourable
and unfavourable areas are fixed), we can derive a similar result, using Steiner
symmetrizations in any direction. Namely, we obtain that the optimal shape
is given by the symmetric and radial decreasing function µ∗ having the same
distribution function as µ.

Biological interpretation : The result stated in Theorem 6.1 is similar to
those of Proposition 2.10 and Theorem 2.11. However, it cannot be connected to
spreading phenomena like in infinite domains. The Dirichlet boundary conditions
mean that the region outside the domain is immediately lethal. The biological
insight of such results is further discussed in [13] and [14].

For Neumann boundary conditions, the situation is more delicate. One has to
use monotone rearrangement. Consider now the eigenvalue problem :{

−∆ϕ− µ(x)ϕ = Λ1[µ]ϕ in Ω
∂ϕ
∂ν = 0 on ∂Ω.

Like for the periodic case or for the bounded domain case with Dirichlet condition,
the sign of Λ1[µ] determines the existence of stationary solutions and asymptotic
behaviour of the solution of the nonlinear problem (6.1) with Neumann condition.

The monotone rearrangement of a function v(x) of one variable, on an interval
(a, b), is defined as the unique monotone (say) nondecreasing function v] on (a, b)
which has the same distribution function as v. Then, define the Steiner monotone
rearrangement of a function v(x1, . . . , xN ) on a set {x ;xi ∈ (ai, bi), ∀i = 1, . . . , N},
as the function v] which is obtained from v by performing successive monotone
Steiner rearrangements in each of the directions x1, . . . , xN .

Theorem 6.3 Assume that Ω is a cube {x ;xi ∈ (ai, bi), ∀i = 1, . . . , N}. Under
Steiner monotone rearrangement, the Neumann eigenvalue satisfies the following
inequality : Λ1[µ]] ≤ Λ1[µ].

This theorem rests on the following rearrangement inequality :∫
Ω
|∇ϕ|2 ≥

∫
Ω
|∇ϕ]|2. (6.3)

This is well known in dimension 1 (see [37]) but somewhat delicate in dimension
N . 4

4This inequality is proved in Berestycki and Brock, Periodic Steiner symmetrization
and applications to some variational problems in cylinders, paper in preparation.
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As a consequence of this result, we see that, in the simplified case of the patch
model on a rectangle, the rearranged configuration, where all the favourable patch
is concentrated in one of the corners of the domain, leaves better chances of survival
than an originally fragmented configuration. An example is given in the figure 4.

Figure 4: (a) Initial patch, and (b) after monotone Steiner rearrangement

Remark 6.4 As a consequence of this theorem, in the patch case, the optimal
rearrangement, under the constraint of a given area of the unfavourable zone, is
a µ such that µ] = µ. However, like for the other cases, in higher dimension, the
question of the optimal shape of the environment (in the patch model) is still open.
This appears to be an interesting mathematical question.

Biological interpretation : Neumann conditions mean that the individuals
that try to cross the boundary of the domain are immediately rejected inside. In
such a case, emigration does not occur. Here, survival is better if the favourable
patch is in a corner of the domain. This result sheds light in the context of refuge
theory, where a boundary like a fence could have an effect close to that of Neumann
boundary conditions.

7 Conclusions

To have a good overview of the mathematical results that we have obtained in this
paper, we refer the reader to Section 2. We will summarize here some consequences
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from the biological modelling point of view that can be derived from these new
results.

As we had mentioned in the introduction, our first aim was to give a com-
plete and rigorous analysis of the periodic heterogeneous model of Shigesada and
Kawasaki [47] for population dynamics, in any dimension, and with a general reac-
tion term. We established some existence, uniqueness and stability results, which
lead to a criterion for the species persistence. It is based on the sign of the first
eigenvalue λ1. Actually, we have shown that, in this model, the condition λ1 < 0
is necessary and sufficient for the species to survive. In the case of bounded do-
mains, with various boundary conditions, a similar criterion for “persistence” is
discussed in several papers of Cantrell and Cosner [13, 14, 15] (see Section 6). In
the case of unbounded domains, with f(x, s) = µ(x)s− ν(x)s2, the sufficient part
of the condition for existence of a positive steady state also follows from results of
Pinsky [44] and Engländer and Kyprianou [20]. These authors actually consider
more general operators, not necessarily in the periodic framework.

The quantity λ1 can be computed empirically, and therefore be used to estimate
the suitability of a given environment for some invading species. It carries many
informations on the environment and its complex interactions with the species.
Thus, in this model, we have succeeded in expressing in a single condition the var-
ious complex interactions between diffusion, environment shape and effects leading
to persistence or to extinction.

Moreover, we have used this criterion to compare some periodic environments.
In particular, we have obtained some results on the effects of fragmentation on
species survival. We gave a rigorous proof of the result of Shigesada and Kawasaki
[47] for the patch model, which asserts that for a given area of favourable and
unfavourable zones, the best environment in terms of species survival is obtained
when the unfavourable habitat is regrouped at the center of the periodicity interval
(remember that this result, which as been obtained with the help of numerical
computations by Shigesada and Kawasaki, concerns the one-dimensional case).

Further, we derived a much more general result. For instance, a consequence of
our finding is that assuming a patch model with k types of habitat (including the
case k = 2 as before), we derive an arrangement of these zones in order to allow
better chances for species survival (and that is optimal in the one-dimensional
case). The same result holds with an habitat which varies continuously with the
space variables. We actually found a symmetric connected rearrangement which
is more favourable than the initial disconnected zones.

The optimal shape(s), however, is (are) not known (aside from the one-dimen-
sional case) and this leads to interesting open problems. Nevertheless, owing to
our result, one can assert that there exist an optimal rearrangement in which the
unfavourable habitat is concentrated in a connected area, at the center of the
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periodicity cell. Actually, by changing the periodicity cell, shifting it by half a
period in each direction, we prove likewise that chances of survival are increased
if it is rather the favourable habitat which is concentrated as before. These two
formulations are in fact equivalent and the result says really about the effect of
fragmentation of the environment.

Further, with Theorem 2.12, we analyzed the effects of high amplitude. One of
the results we established here is that, increasing the effective birth rate and the
effective death rate in both parts of the environment simultaneously, it suffices to
have a very favourable (even quite narrow) zone to allow for species survival, no
matter how bad the environment may be elsewhere.

In the course of this paper, four types of “heterogeneity” have been encoun-
tered and analyzed. Actually, this term can be misleading since, in each case,
an increase of “heterogeneity” does not lead to the same conclusions. First, it
has been considered as an uneven way of distributing a given amount of resources
on a periodicity cell. Proposition 2.9 asserts that it is better for species survival
than an equal repartition of the resource. The idea of “heterogeneity” can also be
expressed in terms of “fragmentation”, which has been shown, with Proposition
2.10 and Theorem 2.11 to have a negative effect on species survival. Finally, in
the biological discussion following Theorem 2.12, we emphasized that increasing
the amplitude of the heterogeneity was beneficial whereas increasing the frequency
could be detrimental.

All these properties bear consequences for species survival and also shed light
on conditions needed to eradicate invading biological species.

The methods which we introduce in this paper using various rearrangements
also allow us to extend some results of Cantrell and Cosner [13, 14, 15], and Harrell,
Kröger and Kurata [30] in the framework of bounded domains to more general
nonlinearities and higher dimensions. Precise results are discussed in Section 6.

The mathematical results of Theorems 2.1, 2.4 and Proposition 3.9, obtained
in the case of unbounded domains, will enable us to study spreading phenomena.
In a forthcoming paper [7], we analyze the question of invasion for problems of the
type (1.3). More precisely, we connect the necessary and sufficient condition for
species survival to that for propagation of pulsating fronts invading the uniform
state 0 (see [47, 51] for the definition and [5, 6, 33, 50, 51] for some related math-
ematical results). We further obtain a variational formula for the minimal speed
of propagation of such fronts, and we study the influence of the heterogeneity on
this speed.
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[18] S. Cano-Casanova, J. López-Gómez, Permanence under strong aggressions is pos-
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