N

N

Connection between the Burgers equation with an
elastic forcing term and a stochastic process

Eric Moreau, Olivier Vallée

» To cite this version:

Eric Moreau, Olivier Vallée. Connection between the Burgers equation with an elastic forcing term
and a stochastic process. 2005. hal-00003650v4

HAL Id: hal-00003650
https://hal.science/hal-00003650v4

Preprint submitted on 28 Feb 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00003650v4
https://hal.archives-ouvertes.fr

ccsd-00003650, version 4 - 28 Feb 2005

Connection between the Burgers equation with an elastic faing term and a

stochastic process

E. Moreau and O. Vallée
Laboratoire d’Analyse Spectroscopique et d’Energétiqae Blasmas
Faculté des Sciences, rue Gaston Berger BP 4043
18028 Bourges Cedex France
(Dated: February 28, 2005)

Abstract
We present a complete analytical resolution of the one déioeal Burgers equation with the elastic
forcing term—«2z + f(t), » € R. Two methods existing for the cage= 0 are adapted and generalized
using variable and function transformations, valid for\alues of space an time. The emergence of a
Fokker-Planck equation in the method allows to connect d fiubdel, depicted by the Burgers equation,

with an Ornstein-Uhlenbeck process.

PACS numbers: 02.50.Ey, 05.90.+m, 05.45.-a



I. INTRODUCTION

Burgers equation is known to have a lot in common with the Blagtokes equation. In par-
ticular it presents the same kind of advective nonlineaaityl a Reynolds number may be defined
from the diffusion term [1]. In addition, this nonlinear egion is much used as model for statis-
tical theories of turbulence from which asymptotical bebaxs may be determined. But, from an
analytical point of view, the inhomogeneous form is poodstd, the complete analytic solution
being closely dependent of the form of the forcing term. Banaple, the solution of the one

dimensional Burgers equation with a time-dependent fgrtanm

Ou + udpu — v Opu = f(1)
u(z,0) = ¢(z),

may be obtained by two methods. The first method lies on thew3iky-Sobczyk transforma-

1)

tions (OS) [2], where the inhomogeneous Burgers equatipis (fansformed into a homogeneous
Burgers equation. Nevertheless, there exists an othevadqut method to solve analytically this
problem. By the way of the well-known Hopf-Cole transformat[3], an inhomogeneous Burgers
equation may be transformed into a linear equation: the dmpation with a source term, which
is nothing but a Schrodinger equation with an imaginary tiared a space and time dependent
potential. Then, several methods have been developed asedecades to treat this kind of equa-
tions. One of them, the “Time-Space Transformation met{@&T), has been used in order to
solve the Schrodinger equation with a time dependent massngin a time dependent linear
potential (M. Feng [4]). Itis thus shown, ref.[5], the ecalence between the TST method and the
Orlowsky-Sobczyk method, that is to say, the possibilitgddve analytically by two equivalent
ways the Burgers equation with a forcing termfigt). The following diagram resumes this equiv-
alence, where Heat-S designs the heat equation with a stunoeBE the Burgers equation, and

HC the Hopf-Cole transformation.

Inhomogeneous BE : f(t) 93, Homogeneous BE

o] [

Heat — S (linear) 5T, Heat

This yields to present this paper as a continuation of theigus existing methods. The two
latest methods are adapted in order to solve the inhomogsriaargers equation with a forcing

term of the form—x2x + f(t), where the value:® represents the string constant of an elastic
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force. Let us note that Wospakrik and Zen [6] have treatesighoblem but only in the limiting
case where the diffusion coefficient tends to zero for thengpégtic mode, whereas the methods
presented here are valid in all cases. The outline of therpajtiebe thus as follows: the next
section is devoted to the treatment of an elastic term ¥fitstithe way of a TST method, and then
by using a generalized OS method. It is then shown that a Fdkkeck equation, associated
to the Ornstein-Uhlenbeck process, arises in the resolityothe TST method. Consequently,
an “adapted” Hopf-Cole transformation may be obtained Fis tase, which allows physical

interpretation in the asymptotic limit.

II. RESOLUTION FOR AN ELASTIC FORCING TERM

As underlined in the introduction, the TST method allowsdtve a Schrédinger equation for
some kinds of potentials. So the inhomogeneous Burgergieques first to be transformed into
such an equation. Starting from the following one dimenaiddurgers equation with a linear

forcing term

Opt + udpu — v Oppu = —K2x + f(1) )

u(z,0) = ¢(x),
we apply a Hopf-Cole transformation of the forn,t) = —ZVmax\If(x, t) to obtain a heat
equation with a source terst

OV (x,t) = v 0y, V(z,t) + S(z, 1)V, (3)

whereS(z,t) = g:ﬁ - %x + ¢(t), c(t) being an arbitrary time-dependent function. This kind

of equation permits to apply a TST method based on severaigehaf variables. In [5], and
following [4], a TST method has been used in order to solverad@bnger equation with a linear

potential. Here, a quadratic potential appears in Eq. (8he method will consist this time to put
V(a,t) = P, )", (4)

with h(z,t) = a12® + as(t)x + as(t) ; a1, ax(t) andas(t) being constant or time-dependent

functions to be determined. The transformation (4) intazalin Eq. (3) gives
OP = 18y P+ 20 0,h 8,P + (y Byl + (Duh)? + 5 — 6th> P. 5)
Then, in order to cancel the factor £f we put
V Opeh + v(0:h)* + S — Oh =0 ; (6)
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which gives a polynomial of second degreezin This polynomial becomes zero since all its
coefficients are. It comes respectively

2

K
4ra? + — =0 7a
vai + 1 , ( )
Fo
dvajay — — — ay = 0, (7b)
2v
2uay + vai + ¢ — asz = 0. (7c)

Since Eqgs. (7) are satisfied, Eg. (5) is simplified to
P =v0,,P+2v0,h0,P. (8)
We now apply to Eq. (8) the following change of variables

y=r(t)r +q(t),
=t

(9)
This induces a transformation of Eq. (8) into :
Oy P = vr?0,, P+ |(—7/r + 4vay)(y — q) + 2vray — 4|0, P. (10)

We have now to cancel the termap P, so we put

7 —4vayr = 0, (11a)
2vras — ¢ = 0. (11b)
Notice that the relation (7a) gives
. R
a] = IE s (12)

where i= y/—1, with the result that the solution of Eq. (11a) will be

r(t) = et (13)
Egs. (11) being satisfied, we obtain
Oy P = w2any ; (14)
and finally the transformation /
(') = /t r?(s)ds , (15)
0
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yields to the expected heat equation:
0, P(y,7) =v 0y, Py, 7). (16)

We show now that the Orlowsky-Sobczyk method is a partictéae of the method employed
here for an elastic term: the Generalized Orlowsky-Soboagihod (GOS).

Let us consider again Eq. (2), and let us introduce a new ifgloc= v(z, t) such as
u=wvr(t) +ax+ (), (17)

wherer(t), a, 1 (t) are time dependent functions or constant determined [Bbertransformation
(17) introduced in Eq. (2) yields to :

v(r+ ar)+:p</i2+oz2> + (2/1+m/1—f> + 70,0 +1200,v + arz0,v + 1100 —vryev = 0. (18)

In order to delete the terms tnandz, and those only depending on time, we put

r+ar=>0 (19a)
KE+a?=0 (19b)
v+ap— f=0 (19¢)

Since the system (19) is verified, then Eq. (18) is simplifred i
row + r*vd,n + arzdyv + ripdyv — vrdyv = 0. (20)
Then, the same time and space change of variables as Eqp{8djo Eq. (20) leads to
pOyv + (rq + r°¢) Oyv + (7 + ar)(y — ¢)0,v + r*vdyv — vr*dyw = 0. (21)

After what, putting

rg+r* =0 (22)
we obtain
%&/v + 00,V = VO,V . (23)
If we put nowt’ as /
7(t') = /t r?(s)ds , (24)
0

it comes a homogeneous Burgers equation governing the riegityey :
0:v 4+ voyv = v Oy . (25)
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From this, the HC transformatian= —QV%(?yP yields again to the expected heat equation
0Py, 7) =v0,Py,7) . (26)

Hence, both methods GOS and TST may be connected thanks tormautative diagram like the

one of the introduction, with a forcex?z + f(t).

lll. DERIVATION OF AN ORNSTEIN-UHLENBECK PROCESS

Let z(¢) be a stochastic variable satisfying the following Langeaguation and describing an

Ornstein-Uhlenbeck process [7, 8]

% = —kx + V20b(1); (27)

whereb(t) stands for a Gaussian white noise verifying the standarditons

b(#) =0 and (b)) = 5(t —¢). (28)

Then, using a Kramers-Moyal expansion, a Fokker-Plancktgumay be obtained for the tran-
sition probability P(x, ) [9]:

Oy P(x,t) = kO, (xP(x,t)) + 10y P(x,1). (29)

This equation is usually solved by Fourier transform, areldblutionP = P(z,2/,t) for the

initial condition P(z, t|2’,0) = §(x — 2’) reads

p_ K H(:C — e""t:c’)2
- \/ 2 (1= e 2) TP | 7 gy (1 = e2nt)

It is shown in appendix that this solution may also be foundheyTST method.

(30)

The interesting point lies in a connexion existing betwden ®rnstein-Uhlenbeck process (Eg.
(29)) and the Burgers equation (2) wittit) = 0. In order to see this fact, we apply the transfor-
mation

P(z,t) = U(z, e 5, (31)

to the Fokker-Planck equation (29), which leads to the hgaagon

2.2
O = 19, + (f _Ee ) . (32)
2 4v
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So, the Hopf-Cole transformation

1

u(zx, t) = —QVW

transforms Eq. (32) into the inhomogeneous Burgers equatio
Ot + u0yu = VO u — K. (34)

This interesting result implies two remarks. Firstly, tbasnection gives rise to a physical mean-
ing of the TST method. Indeed, the functidhintroduced in the transformation (4) is no more
an unspecified variable, but takes the sense of a transitaiapility for the variable:(¢). Then,
considering both Egs. (31) and (33), we obtain a relatioween the velocity: and the transition
probability P: 1

u(z,t) = —QVM(%P(L t) — kx, (35)

which is composed of a Hopf-Cole part and of a linear part.tids relation may be considered as
a Hopf-Cole transformation adapted to the Ornstein-Uldekliprocess. Moreover, the asymptotic

limit of P(z,’,t) is given by (30):

2
lim P(z, 2/, 1) = 4] —— _nr 36
tiglo (2, 2,1) 2T oXP < v )’ (36)

and thus, from the relation (35), we can see that the asymitoit of the velocity will read

lim u(x,t) = Kz, (37)

t—o0

which is a stationary solution. The initial conditidi(z, t|2’,0) = §(z — z’) expressing the fact
that a particle cannot be at several positions at the sanme tirmay be considered as the more
acceptable condition faP. Then, the asymptotic solution (37) have a real physicaeseWe can
conclude on the fact that an elastic forcing term appliecheodystem gives rise to a stationary
transition probability in the asymptotic mode. Conseqglyenie effects of the oscillations will
decrease, up to disappear in the long time limit, and stabihie system with a velocity propor-
tional to the displacement. The evanescence of the effébedbrce is due to the initial condition
sensitivity of the Burgers equation. We can see thereby ersyistem, a phenomenon closely

connected to the turbulence effect: the lost of memory idhg-time limit.



IV. CONCLUSION

We have presented the complete analytical solution of thegd3a equation with an elastic
forcing term. The methods presented here have been usee liefoonly in the case of a time-
dependent forcing term. As a perspective, we can say thgetheralisation of the methods to any
order of power ofr seems actually be a difficult task. Indeed, a transformaifdhe formy —
r(t)x+q(t), has been introduced in order to delete terms proportional $o this transformation
seems without effect when higher powerszofippear. Moreover, the more the degree will be
high, the more the resolution will be difficult, due to the neasing number of variables to be
introduced. The second main result of the paper lies in th&tence of links between a fluid
model (Burgers) and the statistical physics (Ornsteinedbéck). By a set of transformations,
we have connected the Burgers equation for the velacitydz/dt to a Fokker-Planck equation
for the transition probability of the variabke From the Burgers equation (34), the transformation
(35) allows to get directly the Fokker-Planck equation @®a specific Hopf-Cole transformation.
It appears that the linear force, describing the Ornstailenbeck process, stabilize the system in
the asymptotic mode with a velocity proportional to the &epplied initially, since we consider
the initial conditionP(z, t|2’,0) = 6(x — 2’) as the more acceptable condition. This result shows
a characteristic property of turbulence the unpredictability in the long time limit of a velocity
field governed by the Burgers equation. An application ofriiethods presented here will be

described in a forthcoming paper with the case of an elef#tlit in a plasma.



APPENDIX: SOLUTION OF THE ORNSTEIN-UHLENBECK PROCESS

We show that we can recover the solution (30) by the way of &IF method.
Rewriting Eq. (29),
OyP = 10, P + kx0, P + kP, (A.1)

we apply the change of variable

pum t 5
y=r(t)z (A2)
t'=t.
This yields to
Ou P = v1*0,, P + (m — ;) yO, P + KkP. (A.3)
To cancel the term i®, P we put obviously
ket =0 o r(t') = e, (A.4)
T
This leads to
Op P = vr*d,,P + kP. (A.5)
Then, putting
P(y,t') = ©(y, t)e", (A.6)
followed by the transformation
t/
() = / r2(s)ds, (A7)
0
we obtain the heat equation
0,0 =10,,0. (A.8)

Notice that the conditio®(y,3’,0) = d(y — ¥/) implies thatO(y, v',0) = 6(y — v’). The funda-
mental solution of (A.8) is thus

1

AT

O(y,7) = exp {—M} ; (A.9)

dvT

after what, putting; andr in place of their expression, it is to say

y=xer,
, (A.10)
ek (),
we obtain ,
K H(:C — e_"‘t:c’)
P = — A.11
\/27w(1 — 2wty P [ (1 — e ) ] ! (A1D)



which is the same result as Eq. (30).
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