Abstract : Let M be a connected sum of finitely many lens spaces, and let N be a connected sum of finitely many copies of S^1xS^2. We show that there is a uniruled algebraic variety X such that the connected sum M#N of M and N is diffeomorphic to a connected component of the set of real points X(R) of X. In particular, any finite connected sum of lens spaces is diffeomorphic to a real component of a uniruled algebraic variety.
https://hal.archives-ouvertes.fr/hal-00003485
Contributeur : Frédéric Mangolte
<>
Soumis le : vendredi 18 mars 2005 - 18:24:54
Dernière modification le : jeudi 11 janvier 2018 - 06:12:26
Document(s) archivé(s) le : vendredi 17 septembre 2010 - 17:38:03
Johannes Huisman, Frédéric Mangolte. Every connected sum of lens spaces is a real component of a uniruled algebraic variety. Annales de l'Institut Fourier, Association des Annales de l'Institut Fourier, 2005, 55, pp.2475-2487. 〈hal-00003485v2〉