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On the Euler–Poincaré Characteristic

of the Random Cluster Model

Ph. Blanchard1, D. Gandolfo2, J. Ruiz3, and S. Shlosman4

Dedicated to Leonid A. Pastur on the occasion of his 65th birthday

Abstract: Recent results concerning the topological properties of random

geometrical sets have been successfully applied to the study of the morphol-

ogy of clusters in percolation theory.

We present here new results about the behaviour of the Euler characteristic

of the clusters of the (Fortuin–Kasteleyn) random cluster measure.

Key words: Euler-Poincaré characteristic, Fortuin–Kasteleyn representa-

tion, Alexander duality, Phase transitions.

1 Introduction

Recently, new insights in the study of the critical properties of clusters in
percolation theory have emerged based on ideas coming from mathematical
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morphology [Se] and integral geometry [Ha, S]. These mathematical theories
provide a set of geometrical and topological measures allowing to quantify the
morphological properties of random systems. In particular these tools have
been applied to the study of random cluster configurations in percolation
theory and statistical physics [MW, O, Wa1, M1].

One of these measures is the Euler-Poincaré characteristic which is a well
known descriptor of the topological features of geometric patterns.

The application of these description tools for the study of random systems
in statistical mechanics has already provided interesting results. In [MW, O],
the computation of the Euler-Poincaré characteristic χ for a system of pene-
trable disks in several models of continuum percolation has led to conjectured
new bounds for the critical value of the continuum percolation density. In
[MW], an exact calculation shows that a close relation exists between the
value where Euler-Poincaré characteristic vanishes and the critical threshold
for continuum percolation in dimensions 2 and 3.

Of similar interest in the same domain, we recall that for the problem of
bond percolation on regular lattices, Sykes and Essam [SyEs] were able to
show, using standard planar duality arguments, that for the case of self-dual
matching lattices (e.g. Z

2), the mean value of the Euler-Poincaré character-
istic changes sign at the critical point, see also [Gri].

More recently, H. Wagner [Wa1] has computed the Euler-Poincaré char-
acteristic of random clusters on all plane regular mosaics (the 11 Archime-
dean lattices) as a function of the site occupancy probability p ∈ [0, 1] and
showed that a close connection exists between the threshold for site percola-
tion on these lattices and the point where the Euler-Poincaré characteristic
(expressed as a function of p) changes sign.

The aim of this work, motivated by discussions with H. Wagner about
his recent results, is to present new ones about the behaviour of the Euler
characteristic in statistical mechanics in the case of the Fortuin–Kasteleyn
representation of the q–state Potts model on Z

d. This representation includes
the well known Ising model (q = 2) and the lattice bond percolation problem
(q = 1), see [FK].

Our first result relies on existence properties of the mean Euler charac-
teristic with respect to the Fortuin–Kasteleyn measure. We introduce a local
Euler characteristic and show that its mean coincides with the mean Euler
characteristic per site. Denote this limiting quantity by χbc(β, q) where β
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is the (inverse) temperature and the superscript bc refers to the boundary
conditions. We then show that, in dimension 2, χbc(β, q) satisfies the duality
property χf(β, q) = −χw(β∗, q), where β∗ is the dual (inverse) temperature
and f and w refer respectively to the free and wired boundary conditions.
This implies that the mean local Euler characteristic is either zero or ex-
hibits a jump at the self dual temperature. It vanishes when q = 1, and we
prove that a jump actually occurs for q large enough. This jump turns out
to be of order q−1/2.

Similar results hold in higher dimensions d. Namely, for q large, the mean
local Euler characteristic exhibits a jump, with change of sign, of order q−

1
d

when d is even, while when d is odd it exhibits a jump, without change of
sign, of order q−

d−1
d .

Let us mention that this work relates on the large q analysis of the FK
representation of the q–states Potts model given in [LMMRS].

The paper will be organized as follows. Section 2 is devoted to the 2–
dimensional case. In Section 3, we present the results in higher dimensions.
Concluding remarks are given in Section 4.

2 Euler Characteristic on Z
2

2.1 Definitions

Let us consider the square lattice

Z
2 = {x = (x1, x2) : xi ∈ Z, i = 1, 2}

whose elements are called sites. Two sites x and y are nearest neighbors if
|x1 − y1| + |x2 − y2| = 1. We call bonds b = 〈xy〉 the subsets of R

2 which
are the straight line segments with the nearest neighbors sites x and y as
endpoints. We call plaquettes p = [x, y, z, t] the subsets of R

2 which are unit
squares whose corners are the sites x, y, z, t. The boundary ∂b of the bond
b = 〈xy〉 is the set {x, y} and the boundary ∂p of the plaquette p = [x, y, z, t]
is the set of bonds {〈xy〉, 〈yz〉, 〈zt〉, 〈tx〉}.

With this structure the lattice becomes a cell-complex L = {L0, L1, L2},
where L0 = Z

2 is the set of sites, L1 is the set of bonds and L2 is the set of
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plaquettes (see e.g. [DW]). More generally, the elements of Lp will be called
p–cells. We also introduce the co–boundary δx = {〈xy〉 ∈ L1 : y ∈ L0}.

To a set of bonds X ⊂ L1 we associate the subcomplex Λ(X) ⊂ L defined
as the maximal closed subcomplex that contains X : this subcomplex is the
union Λ(X) = Λ0(X) ∪ Λ1(X) ∪ Λ2(X) where

Λ1(X) = X

is the set of bonds itself,

Λ0(X) = {x ∈ L0 : x ∩X 6= ∅}

is the set of sites which are endpoints of bonds of X, and

Λ2(X) = {p = [x, y, z, t] ∈ L2 : 〈xy〉, 〈yz〉, 〈zt〉, 〈tx〉 ∈ X}

is the set of plaquettes whose all four bounds in their boundary belongs to
X. Figure 1 shows a cell complex Λ(X) associated to a given set of bonds
X.

Figure 1: A set of bonds X and its associated cell complex Λ(X).

For a set of bonds X, we define the boundary B(X)of X as the set of
bonds of X that belong to a plaquette of L2 \ Λ2(X). We also associate to
the set of bonds X the occupation number

nb =

{
1 if b ∈ X
0 otherwise

(1)
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and denote by n ≡ {nb}b∈L1
the associated configuration. We then use

N0(n) ≡ |Λ0(X)| to denote the number of sites of Λ0(X), N1(n) ≡ |Λ1(X)|
to denote the number of bonds of Λ1(X), and N2(n) ≡ |Λ2(X)| to denote
the number of plaquettes of Λ2(X). Hereafter we will use |E| to denote the
cardinality of the set E.

The Euler characteristic of Λ(X) is defined by

χχχχ(n) = N0(n)−N1(n) + N2(n) (2)

It satisfies the Euler–Poincaré formula

χχχχ(n) = π0(n)− π1(n) + π2(n) (3)

where π0(n) and π1(n) are respectively the number of connected components
and the maximal number of independent 1-cycles of Λ(X). Here π2(n) = 0
because Λ(X) has no 2-cycles.

Our aim is to study the mean value of the Euler characteristic with respect
to the Fortuin–Kasteleyn measure. To introduce this measure we define, for
a “volume” V ⊂ L1, the partition functions with boundary conditions

Zbc(V, β, q) =
∑

n∈{0,1}V

(eβ − 1)N1(n)q|Λ0(V )|−N0(n)+π0(n) κbc(n) (4)

and the corresponding finite volume expectations of local functions f of the
bonds variable {nb} by

〈f〉bc(V, β, q) =
1

Zbc(V, β, q)

∑

n∈{0,1}V

f(eβ − 1)N1(n)q|Λ0(V )|−N0(n)+π0(n) κbc(n)

(5)
where κbc(n) refers to the boundary condition bc. In particular, we will be
interested to the free boundary condition κf(n) = 1 and to the ordered or
wired boundary condition κw(n) =

∏
b∈B(V ) nb.

Notice that for a configuration n ∈ {0, 1}|V |, one has

N0(n) = Λ0(V )−
∑

x∈Λ0(V )

∏

b∈δx∩V

(1− nb)

N1(n) =
∑

x∈Λ0(V )

1

2

∑

b∈δx∩V

nb

N2(n) =
∑

x∈Λ0(V )

1

4

∑

p∈P (x)

∏

b∈∂p∩V

nb
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where P (x) is the set of the four plaquettes that intersect x. This represen-
tation motivates the following definition of the local Euler characteristic.

χx(n) ≡ 1−
∏

b∈δx

(1− nb)−
1

2

∑

b∈δx

nb +
1

4

∑

p∈P (x)

∏

b∈∂p

nb (6)

2.2 Results

We first prove existence.

Theorem 1 a) The following limits exist and coincide

lim
V →L1

〈
χχχχ

|Λ0(V )|

〉f

(V, β, q) = lim
V →L1

〈χ0〉f (V, β, q) ≡ χf(β, q) (7)

and define the mean local Euler characteristic with free boundary con-
dition χf(β, q).

b) Analogously, the following limits exist and coincide

lim
V →L1

〈
χχχχ

|Λ0(V )|

〉w

(V, β, q) = lim
V →L1

〈χ0〉w (V, β, q) ≡ χw(β, q) (8)

and define the mean local Euler characteristic with wired boundary con-
dition χw(β, q).

Proof. The proof of these results are standard consequences of FKG
inequalities [FKG]. Let us first recall basic definitions and properties.

A configuration n dominates n′, n � n′, if nb ≥ n′
b for all bonds b.

A function f is said to be increasing if n � n′ ⇒ f(n) ≥ f(n′). It is said
decreasing if −f is increasing.

A measure 〈 〉 is said to have the FKG property if :

〈fg〉 ≥ 〈f〉〈g〉

for all increasing functions f and g.
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The measures (5) with free and wired boundary conditions are FKG,
see e.g. Theorem 2.2 in [ACCN]. This implies the following monotonicity
properties:

〈f〉f (V ′, β, q) ≥ 〈f〉f (V, β, q), 〈f〉w (V ′, β, q) ≤ 〈f〉w (V, β, q)

for any increasing function and any pair of subsets V ′ ⊂ V .

These properties give, by standard arguments, the existence of the infi-
nite volume limits with the corresponding boundary conditions, through se-
quence of increasing volumes, see e.g. Theorem 2.3 in [ACCN]. They imply
also, following [G], that both limiting states are translation invariant. The
translation invariance allows finally to show that the two limits in (7) (resp.
(8)) coincide provided the first one is taken in such a way that |B(V )/V | → 0
as V → L1.

Theorem 2 a) The mean local Euler characteristics satisfies the duality
relation

χf(β, q) = −χw(β∗, q) (9)

where the dual inverse temperature β∗is given by

(eβ − 1)(eβ∗ − 1) = q (10)

b) At the self-dual point βt = log(1 +
√

q) solution of (10) with β = β∗ we
have

χf(βt, q) = −χw(βt, q) (11)

Proof. Duality properties between FK measures with free and wired b.c.
have been already derived in more general situation, (see [PV]), and we will
use some notations inspired from Section 3.3 of that reference. First, we
recall some basic geometrical results about Poincaré duality and Alexander
duality. Namely, we introduce the dual lattice

(Z2)∗ = {x = (x1, x2) : xi + 1/2 ∈ Z, i = 1, 2}

and use L
∗ to denote the corresponding cell complex. L

∗ is the dual complex
of L and the following geometrical relations hold:

1. each site x ∈ L is the center of a unique plaquette p∗ ∈ L
∗,
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2. each bond b ∈ L is crossed by a unique bond b∗ ∈ L
∗,

3. each plaquette p ∈ L has a unique site x∗ ∈ L
∗ at its center.

This correspondence between the p–cells of L and the (2− p)–cells of L
∗

is one–to–one
sp ←→ s∗2−p (12)

For a subcomplex Λ ⊂ L, the dual Λ∗ of Λ is the set of elements of L
∗ which

are in one to one correspondence (12) with the elements of Λ.

Consider the set of bonds V ⊂ L1 such that

Λ0(V ) =
{
(x1, x2) ∈ Z

2 : |xi| ≤ m, i = 1, 2
}

The dual set [Λ(V )]∗ is the union [Λ(V )]∗ = ∪2
p=0Λ

∗
p(V ) where each p–cells

s∗p ∈ Λ∗
p(V ) is in one -to-one correspondence with a 2−p cell s2−p ∈ Λ2−p(V ).

In particular ∣∣Λ∗
p(V )

∣∣ = |Λ2−p(V )| (13)

We let Ω = Λ(V ) ∪ f be the complex obtained from Λ(V ) by adding
an extra face f whose boundary is the set of bonds of B(V ). Then Ω is
homeomorphic to the sphere S2. We let x∗ be some point inside the face f .

We define the dual Ω∗ of Ω as the set [Λ(V )]∗ ∪ x∗ except that now all
the bonds of Λ∗

1(V ) that crosses B(V ) meet at the point x∗. We call faces
of Ω∗ the new 2–cells. Again the correspondence is one-to-one provided one
replaces 2–cells by faces.

We now turn to Alexander’s duality. Let n ∈ {0, 1}V and

V ∗ = {b∗ ∈ Ω∗ : b∗ crosses b}
We define the A-dual configuration n̂ ∈ {0, 1}V ∗

of n by

n̂b∗ = 1− nb (14)

where b∗ is the bond of V ∗ intersecting b. In other words, if we let X ⊂ V
be the set of bonds b such that nb = 1, Λ(X) its associated cell-complex and

Λ̂(X) = [Ω \ Λ(X)]∗, then the bonds of Λ̂(X) are those of Ω∗ that do not
intersect the bonds of Λ(X). Obviously one has

N1(n) + N1(n̂) = |Λ1(V )| = |Λ∗
1(V )| (15)

N2(n) + N0(n̂) = |Λ2(V )|+ 1 = |Λ∗
0(V )|+ 1 (16)
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where Np(n̂) denote the number of p–cells of Λ̂(X). Moreover by Alexander’s
duality theorem, see [A] (Theorem 4.10 p. 24), [Le] (p. 205), or [PV]:

π0(n) = π1(n̂) + 1 (17)

π0(n̂) = π1(n) + 1 (18)

where πp(n̂) denotes the p–Betti number of the complex Λ̂(X). Then, by
using successively (15), (10) and Euler’s formula (2) (3) we can write

(
eβ − 1

)N1(n)
q|Λ0(V )|−N0(n)+π0(n) =

(
eβ − 1

q

)N1(n)

q|Λ0(V )|−N0(n)+π0(n)+N1(n)

=

(
eβ − 1

q

)|Λ1(V )| (
eβ − 1

q

)−N1(bn)

q|Λ0(V )|−N0(n)+π0(n)+N1(n)

=

(
eβ − 1

q

)|Λ1(V )|

q|Λ0(V )|(eβ∗ − 1)N1(bn)q−N0(n)+π0(n)+N1(n)

=

(
eβ − 1

q

)|Λ1(V )|

q|Λ0(V )|(eβ∗ − 1)N1(bn)qN2(n)+π1(n)

Setting R =
(

eβ−1
q

)|Λ1(V )|

q|Λ0(V )|, we get from (16)(18)

R−1
(
eβ − 1

)N1(n)
q|Λ0(V )|−N0(n)+π0(n) = (eβ∗ − 1)N1(bn)q|Λ∗

0(V )|−N0(bn)+π0(bn)

(19)
This formula establishes the one-to-one correspondence between the FK mea-
sures with free and wired b.c.: indeed, the right-hand-side of (19) coincide
up to a boundary term independent of n̂ with the Boltzman weight entering
in the definition of the partition function (4) with wired boundary condition.
From this formula, we get by (17 )(18):

〈χχχχ〉f (V, β, q) = 〈2− χχχχ〉w (V ∗, β∗, q)

It then suffices to divide both terms of this equation by |Λ0(V )| and to take
the thermodynamic limit (m→∞) to get the result.

Remark 3 Let us mention that for every β 6= βt

χf(β, q) = χw(β, q) (20)

when q = 2 and q ≥ 4
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This is a consequence of the differentiability of the free energy with respect
to β for the corresponding values of q combined with FKG inequality, (see
[LM]).

Actually by FKG inequality, one has that




〈nb〉f(V, β, q) ≤ 〈nb〉bc(V, β, q) ≤ 〈nb〉w(V, β, q)

0 ≤ 〈
∏

b∈A

nb〉w − 〈
∏

b∈A

nb〉 ≤
∑

b∈A

(
〈nb〉w − 〈nb〉

)

since obviously nb is an increasing function and the same is also true for the
function fA =

∑
b∈A nb −

∏
b∈A nb, (see again [LM]).

Therefore the state is unique as soon as, in the thermodynamic limit,
〈nb〉f(β, q) = 〈nb〉w(β, q). This property holds whenever the free energy is
differentiable with respect to β.

Indeed, again by FKG, 〈nb〉f(β, q) and 〈nb〉w(β, q) are the respective left
and right derivatives of the free energy f(β, q) = lim

V →L1

1
|Λ0(V )|

ln Zbc(V, β, q)

with respect to β.

The proof of differentiability of f(β, q) for q = 2 and q ≥ 4 may be found,
e.g. in [B, MM, HKW].

Let us also mention that for the percolation model (q = 1) the free energy
is obviously differentiable for any (inverse) temperature β. Therefore in that
case χf(β, q = 1) = χw(β, q = 1) = χbc(β, q = 1). This implies, by Theorem
2, that at the transition point βt = ln 2, one has χbc(βt, q = 1) = 0 (for any
bc).

Theorem 4 Assume q is large enough, then the mean local Euler character-
istic is discontinuous at βt

χf(βt, q) = −χw(βt, q) = 2q−1/2 + O(q−7/12) (21)

Proof. The proof is mainly based on a contour representation of the
model derived in [LMMRS]. To define these contours, we first introduce the
co–boundary C(X) of a set of bonds X as the set of bonds of L1 \ X that
contain 1 or two vertices in Λ(X): C(X) = C1(X) ∪ C2(X) where

C1(X) = {b ∈ L1 \X : b has 1 endpoint in Λ(X)}
C2(X) = {b ∈ L1 \X : b has 2 endpoints in Λ(X)}
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A subset γ ⊂ L1 is called contour if it is the co–boundary of a set of
bonds X and if its dual is a connected set of bonds. The connectedness of
the dual of γ means that it is the union of the bonds of a sequence b1, ..., bn

such that for any i ≤ n − 1, bi and bi+1 belongs to the boundary of a same
plaquette. When X is finite, γ is called contour of the free class and X will
be denoted by Int γ. The length of γ is defined as

‖γ‖ = |C1(X)|+ |C2(X)| = |C1(Int γ)|+ |C2(Int γ)|

As a result of [LMMRS], one has

Z f(V, βt, q) = q|Λ0(V )|+|λ(V )|Z(V |ϕ)

Z(V |ϕ) =
∑

{γ1,...,γn}⊂V ∪C(V )

n∏

i=1

ϕ(γi) (22)

where the last sum runs over compatible families of contours, i.e. γi∩γj = ∅,
and λ(V ) is a boundary term such that |λ(V )| ≤ cte |B(V )|. The activities
ϕ(γ) of contours are given by

ϕ(γ) = q−
‖γ‖
4

+π0(Int γ)e∆(γ) (23)

where ∆(γ) satisfies the bound :

|∆(γ)| ≤ 6q−
1
12 ‖γ‖ (24)

This implies that for large q the free energy f(ϕ) = limV →L1

1
|Λ0(V )|

lnZ(V |ϕ)

of the contour model behaves like 2q−
1
2 + O(q−1). We will show that the

dominant contribution to the local Euler characteristic χf(β, q) shares the
same behaviour. This fact might be seen as follows. In the limit q → ∞,
there are only two ground state configurations where the bonds are either
all empty or all occupied. The Euler characteristic of such configurations is
0. The first excitations of the empty ground state configuration consist of
occupied bonds in the “sea” of empty ones. Each excitation gives a contribu-
tion to π0 and the number of excitations scales like the volume, giving that
the Euler characteristic behaves like 0(q−

1
2 ). However, in order to compute

the coefficient it is more convenient to consider the expression of the Euler
characteristic in terms of the coefficient Np and more precisely the expression
(6) of the local Euler characteristic χx(n).
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Notice that χx obviously depends only on the values of the bonds of
the 4 plaquettes intersecting x. Define the distance between 2 vertices x =
(x1, x2) and y = (y1, y2) associated to the sup norm by d((x1, x2), (y1, y2)) =
maxi=1,2{|xi − yi|}. Let d(x, S) = minz∈S d(x, z) the distance between a set
S and a vertex x /∈ S.

To compute 〈χ0〉 we will consider the following events

Ef =
{
n ∈ {0, 1}V : all the bonds of the co–boundary δ0 of the origin 0

are empty
}

(25)

E =
{
n ∈ {0, 1}V : there is exactly one occupied bond in δ0 and all the

bonds of the co–boundary of sites at distance 1 from

the end points of the occupied bond are empty
}

(26)

and the complementary event

E ′ =
{
n ∈ {0, 1}V \ (E ∪ Ef)

}
(27)

Since for any configuration n ∈ Ef , χ0(n) = 0 and any configuration n ∈ E,
χ0(n) = 1

2
, one gets

〈χ0〉f (V, β, q) =
1

2
Pr(E) +

∑

n:n∈E′

[χ0(n)] Pr(n) (28)

It is easy to check that all configuration n ∈ E ′ satisfy |χx(n)| ≤ 1
2
. Therefore

2

∣∣∣∣∣
∑

n:n∈E′

[χ0(n)] Pr(n)

∣∣∣∣∣ ≤ Pr(E ′) (29)

which is bounded by

Pr(E ′) ≤ Pr(∃γ : γ 3 0; | Int γ| ≥ 2) (30)

Actually, for every configuration n ∈ E ′, there exists a contour γ 3 0 such
that | Int γ| ≥ 2. Taking into account that the minimal length of contours
with | Int γ| ≥ 2 is 8 and that π0(Int γ) ≤ 1

6
‖γ‖, this probability can be

estimated by Peierls type arguments as follows

Pr(E ′) ≤
∑

γ:γ30;| Int γ|≥2

Pr(γ) ≤
∑

γ:γ30;‖γ‖≥8

ϕ(γ)

≤
∑

m≥8

m24m
(
q−

1
4 e6q−

1
12

)m ≤ 2 · 82 · 48 q−
3
4 e48q−

1
12

(1− 4q−
1
4 e6q−

1
12 )3

(31)
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provided q−
1
4 e6q−

1
12 < 1

4
. Here we used the equality (23) and the fact that

the number of contours of length m that contain a given point is less than
m24m.

On the other hand, in order to estimate the probability Pr(E) we let γ̄
to be the set constituted by the six bonds containing one endpoint of the
occupied bond as endpoint but not both of them. Then

Pr(E) = 4

∑

{γ1,...,γn}⊃γ̄

n∏

i=1

ϕ(γi)

Z(V |ϕ)
= 4ϕ(γ̄)

∑

{γ1,...,γn},γi∩γ̄=∅

n∏

i=1

ϕ(γi)

Z(V |ϕ)
(32)

The factor 4 stems from the fact that there are 4 bonds in the co–boundary
of 0: we take V to be a box centered at the origin.

The last ratio can be estimated by cluster expansion [D, M]. For that
purpose we introduce clusters X as multi-indexes defined on the sets of con-
tours with integer values. The support Supp X of a cluster X is the set of
contours γ for which X(γ) ≥ 1. We also introduce the truncated functionals:

φT (X) =
a(X)∏

γ

X(γ)!

∏

γ

ϕ(X)X(γ) (33)

The coefficient a(X) is a combinatoric factor defined in terms of the con-
nectivity properties of the graph G(X) with vertices corresponding to γ ∈
Supp X (there are X(γ) vertices for each γ ∈ Supp X) being connected by
an edge whenever the corresponding contours are not compatible.

As a result we have

∑

X:Supp X∩b6=∅

|φT (X)| ≤ (q−
1
4 e6q−

1
12

)6
(34)

for 4gq−
1
4 e6q−

1
12 < 1, where g ≈ e1.58 [KP, M]. This is actually a consequence

of the theorem given in [M] using that ϕ(γ) = (q−
1
4 e6q−

1
12

)‖γ‖
and that the

minimal length of contours is 6.
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Moreover both terms in the ratio of the r.h.s. of (32) can be exponentiated
in terms of the truncated functionals leading to

Pr(E) = 4ϕ(γ̄) exp





∑

X:Supp X∩γ̄=∅

φT (X)−
∑

X

φT (X)





= 4ϕ(γ̄) exp



−

∑

X:Supp X∩γ̄ 6=∅

φT (X)





= 4q−
‖γ̄‖
4

+π0(Int γ̄) exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT (X)





= 4q−
1
2 exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT (X)



 (35)

For the last two equalities, we have taken into account the expression (23)
and the fact that ‖γ̄‖ = 6 and π0(Int γ̄) = 1. According to (34) the sum in
the exponential satisfies

∣∣∣∣∣∣

∑

X:Supp X∩γ̄ 6=∅

φT (X)

∣∣∣∣∣∣
≤

∑

b∈γ̄

∑

X:Supp X∩b6=∅

|φT (X)|

≤ ‖γ̄‖ (4g)6q−
3
2 e36q−

1
12 (36)

This implies from (28), (29), (31) and (36)

χf(βt, q) = 2q−1/2 + O(q−7/12) (37)

giving the statement of the Theorem by taking into account the duality
relation(11).

3 Euler Characteristic on Z
d, d ≥ 3

3.1 Definitions

In this section, we consider the hypercubic lattice

Z
d = {x = (x1, . . . , xd) : xi ∈ Z, i = 1, . . . , d}

14



We let L, be the associated cell complex. Recall that L = {L0, . . . , Ld}
where L0 = Z

d is the set of sites, L1 is the set of bonds and L2 is the set of
plaquettes, etc... . The elements sp of Lp are called p–cells and a p-cell may be
represented as (x; σ1ei1 , ..., σpeip) where x ∈ Z

d, (e1, ..., ed) is an orthonormal
basis of R

d and σα = ±1, α = 1, ..., p. We shall use Sp(x) to denote the set
of all such p-cells containing x. The boundary of a p-cell is denoted by ∂sp

and the co–boundary of a p-cell is denoted δsp (see [DW]).

As in the previous section, to a set of bonds X ⊂ L1 we associate the sub-
complex Λ(X) ⊂ L defined as the maximal closed subcomplex that contains
X : this subcomplex is the union Λ(X) = Λ0(X) ∪ . . . ∪ Λd(X) where

Λ1(X) = X

is the set of bonds itself,

Λ0(X) = {x ∈ L0 : x ∩X 6= ∅}

is the set of sites which are endpoints of bonds of X, and for p = 2, . . . , d

Λp(X) = {sp ∈ Lp : every cell in ∂sp belongs to Λp−1(X)}

For a set of bonds X, we define the boundary B(X) of X as the set of bonds
of X that belong to a plaquette of L2 \ Λ2(X).

We also associate to the set of bonds X the occupation number

nb =

{
1 if b ∈ X
0 otherwise

(1)

and let n ≡ {nb}b∈L1
be the associated configuration. We then use N p(n) ≡

|Λp(X)| to denote the number of p–cells of Λp(X).

The Euler characteristic of Λ(X) is defined by

χχχχ(n) =
d∑

p=1

(−1)pNp(n) (2)

It satisfies the Euler–Poincaré formula

χχχχ(n) =
d∑

p=1

(−1)pπp(n) (3)

15



where πp(n) are the Betti numbers of the cell complex Λ(X).

We then define, for a “volume” V ⊂ L1, the Fortuin–Kasteleyn partition
functions

Zbc(V, β, q) =
∑

n∈{0,1}V

(eβ − 1)N1(n)q|Λ0(V )|−N0(n)+π0(n) κbc(n) (4)

and the corresponding finite volume expectations of local functions f of the
bonds variable {nb} by

〈f〉bc(V, β, q) =
1

Zbc(V, β, q)

∑

n∈{0,1}V

f(eβ − 1)N1(n)q|Λ0(V )|−N0(n)+π0(n) κbc(n)

(5)
Here κbc(n) refers to the boundary condition bc. In particular, we will be
interested in the free boundary condition κf(n) = 1 and in the ordered or
wired boundary condition κw(n) =

∏
b∈B(V ) nb.

Notice that for a configuration n ∈ {0, 1}|V |, one has

N0(n) = Λ0(V )−
∑

x∈Λ0(V )

∏

b∈S1(x)∩V

(1− nb)

N1(n) =
∑

x∈Λ0(V )

1

2

∑

b∈S1(x)∩V

nb

Np(n) =
∑

x∈Λ0(V )

1

2p

∑

sp∈Sp(x)

∏

b∈sp∩V

nb, p = 2, . . . , d

where, with a slight abuse of notations, the last product is over the bonds of
V that belong to the cells sp. Accordingly we define the Euler characteristic
per site as follows

χx(n) ≡ 1−
∏

b∈S1(x)

(1− nb)−
1

2

∑

b∈S1(x)

nb +

d∑

p=2

(−1)p

2p

∑

sp∈Sp(x)

∏

b∈sp

nb (6)

where the last product runs over the bonds that belong to the cells sp.

3.2 Results

The following theorem shows existence results that can be proved in the same
way as in the previous Section.

16



Theorem 5 a) The following limits exist and coincide

lim
V →L1

〈
χχχχ

|Λ0(V )|

〉f

(V, β, q) = lim
V →L1

〈χ0〉f (V, β, q) ≡ χf(β, q) (7)

and define the mean local Euler characteristic with free boundary con-
dition χf(β, q).

b) Analogously, the following limits exist and coincide

lim
V →L1

〈
χχχχ

|Λ0(V )|

〉w

(V, β, q) = lim
V →L1

〈χ0〉w (V, β, q) ≡ χw(β, q) (8)

and define the mean local Euler characteristic with wired boundary con-
dition χw(β, q).

It is known that, for large q and d ≥ 2, the model exhibits a (temperature
driven) first order phase transition at some inverse temperature βt (≈ 1

d
ln q)

where the mean energy d
dβ

f(β, q) is discontinuous [KS]. The following theo-
rem shows that it is also the case for the mean local Euler characteristic.

Theorem 6 Assume that q is large enough, then there exists a unique in-
verse temperature βt where the mean local Euler characteristic is discontinu-
ous.

χf(βt, q) = d q−
d−1

d + O(q−
d−1

d
[1+ 1

4d−2
]) (9)

χw(βt, q) = (−1)d−1d q−
1
d + O(q−

1
d
− 1

2 ) (10)

and for every β 6= βt

χf(β, q) = χw(β, q) (11)

Note that while the jump of the mean energy is ∆E = 1 − O(q−
1
d ) the

jump ∆χ = |χf(βt, q) − χw(βt, q)| = O(q−
1
d ) for even space dimensions and

∆χ = O(q−
d−1

d ) for odd space dimensions.

Proof of Theorem 6. We begin with the proof of (9) which is based,
as in Section 2, on a contour representation of the model [LMMRS]. We first
introduce some geometrical definitions. Two bonds are said co–adjacent if
there exists a d–cell containing these two bonds. A set of bonds, X, is said

17



co–connected if for any b and b′ in X, there exists a sequence of bonds in X
b = b1, . . . , bn = b′, such that bi and bi+1 are co–adjacent. We note that to
any p–cell in L we can associate the orthogonal (d− p)–cell of the dual cell
complex L

∗ corresponding to the dual lattice (Z + 1/2)d which intersects it.
The co–connectedness of a set of bonds means that its dual is a connected
set of R

d (with the usual topology). Consider the co–boundary C(X) of a
set of bonds X : C(X) = C1(X) ∪ C2(X) where

C1(X) = {b ∈ L1 \X : b has 1 endpoint in Λ(X)}
C2(X) = {b ∈ L1 \X : b has 2 endpoints in Λ(X)}

A subset γ ⊂ L1 is called contour if it is the co–boundary of a set of bonds
X and if it is co–connected. When X is finite, γ is called contour of the
free class (or f–contour) and X will be denoted by Int γ. The length of γ is
defined as

‖γ‖ = |C1(Int γ)|+ |C2(Int γ)| if γ is a f–contour

With these definitions, one has ([LMMRS]):

Z f(V, βt, q) = q|Λ0(V )|+|λ(V )|Z(V |ϕf)

Z(V |ϕf) =
∑

{γ1,...,γn}⊂V ∪C(V )

n∏

i=1

ϕf (γi) (12)

where the last sum runs over compatibles families, i.e. γi ∩ γj = ∅, and λ(V )
is a boundary term such that |λ(V )| ≤ cte |B(V )|. The activities ϕf(γ) of
contours are given by

ϕf(γ) = q−
1
2d

‖γ‖+π0(Int γ)e∆(γ) (13)

where ∆(γ) satisfies the bound:

|∆(γ)| ≤ 6q−
d−1

2d(2d−1) ‖γ‖ (14)

This implies that for large q the free energy f(ϕf) = lim
V →L1

1
|Λ0(V )|

lnZ(V |ϕf)

of contour model behaves like d q−
d−1

d + O(q−
2(d−1)

d ). We will show that the
dominant contribution to the local Euler characteristic χf(β, q) shares the
same behaviour.
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For that purpose, we will follow the same strategy as in as in the proof of
Theorem 4. Namely we consider the events Ef , E and E ′ defined in (25–27),
again one has χ0(n) = 0 for n ∈ Ef , χ0(n) = 1/2 for n ∈ E and |χ0(n)| ≤ 1/2
for n ∈ E ′. The rest of the proof is analogous to that of Theorem 4. Only
some estimates have to be changed, namely (30) now reads

Pr(E ′) ≤
∑

γ:γ30;| Int γ|≥2

Pr(γ) ≤
∑

γ:γ30;‖γ‖≥6d−4

ϕ(γ)

≤
∑

m≥6d−4

νm
d

(
q−

d−1
(4d−2)d e6q

− d−1
(4d−2)d )m

≤ ν6d−4
d

q−( d−1
d

+ d−1
2d−1

)e6(6d−4)q
− d−1

(4d−2)d

1− νdq
− d−1

(4d−2)d e6q
− d−1

(4d−2)d

(15)

Here we have used π0(Int γ) ≤ 1
4d−2
‖γ‖ and that νm

d bounds the number
of contours of length m that contain a given point: νd can be bounded
by νd ≤ d224(d−1). To see it, we first observe that the number of p–cells
(x; σ1ei1 , ..., σpeip) that share a same vertex x equals 2p

(
d
p

)
: 2p stands for the

choice for the signs of the σ’s and the binomial coefficient
(

d
p

)
stands for

the choice of p vectors among (e1, ..., ed). This implies (by duality) that a
(d− 1)–cell contains 2d−1 vertices and hence that the number of (d− 1)–cells
connected (i.e. sharing at least a vertex) with a given (d−1)–cell is less than
2(d−1)(d2(d−1)− 1). Finally, one uses the fact that for any contour there exist
a path going through the center of every (d−1)–cell of its dual at most twice
[Or].

The cluster expansion now gives

∑

X:Supp X∩b6=∅

|φT (X)| ≤
(
νdgq−

d−1
(4d−2)d e6q

− d−1
(4d−2)d )4d−2

(16)

for νdgq−
d−1

(4d−2)d e6q
− d−1

(4d−2)d
< 1, leading to

Pr(E) = 2dq−
‖γ̄‖
2d

+π0(Int γ̄) exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT (X)





= 2dq−
d−1

d exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT (X)



 (17)

19



and
∣∣∣∣∣∣

∑

X:Supp X∩γ̄ 6=∅

φT (X)

∣∣∣∣∣∣
≤

∑

b∈γ̄

∑

X:Supp X∩b6=∅

|φT (X)|

≤ (4d− 2)(νdg)4d−2q−
d−1

d e6(4d−2)q
− d−1

(4d−2)d
(18)

using ‖γ̄‖ = 4d− 2 and π0(Int γ̄) = 1. This implies

χf(βt, q) = d q−
d−1

d + O(q−
d−1

d
[1+ 1

4d−2
]) (19)

giving the first statement of the theorem.

We now turn to the proof of the second statement of the theorem. We
first define the contours of the wired class. A subset γ ⊂ L1 is called contour
if it is the co–boundary of a set of bonds X and if it is co–connected. When X
is infinite, γ is called contour of the wired class (or w–contour). The unique
infinite component of L1 \ γ is denoted by Ext γ. The length of γ is defined
by

‖γ‖ = |C1(Ext γ)|+ |C2(Ext γ)| if γ is a w–contour

With these definitions, one has ([LMMRS]):

Zw(V, βt, q) = q(eβ−1)|V |Z(V |ϕw)

Z(V |ϕw) =
∑

{γ1,...,γn}⊂V

n∏

i=1

ϕw(γi) (20)

where the last sum runs over compatibles families, i.e. γi ∩ γj = ∅ and the
activities ϕw(γ) of contours are given by

ϕw(γ) = q−
1
2d

‖γ‖e∆(γ) (21)

where ∆(γ) satisfies the bound:

|∆(γ)| ≤ 9q−
1
2 ‖γ‖ (22)

This implies that for large q the free energy f(ϕw) = lim
V →L1

1
|Λ0(V )|

lnZ(V |ϕw)

of the contour model behaves like d q−
1
d + O(q−

2
d ). We will show that (up to

the sign) the local Euler characteristic χw(β, q) shares the same behaviour.
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This fact might be seen as follows. The first excitations of the occupied
ground state configuration consist of empty bonds in the “sea” of occupied
ones. Each excitation gives a contribution to πd−1 and the number of excita-
tions scales like the volume, giving that the Euler characteristic behaves like
(−1)d−1O(q−

1
d ). To compute the coefficient we will consider the expression

(6) of the local Euler characteristic χx(n).

Let us introduce the p–neighborhood of a site x = (x1, . . . , xd), p =
1, . . . , d, as Np(x) = {y = (y1, . . . , yd) :

∑d
i=1 |xi − yi| = p} and recall that

Sd(x) is the set of the 2d–cells that contain the site x.

To compute 〈χ0〉 we will consider the following events

Ew =
{
n ∈ {0, 1}V : all the bonds of the d–cells belonging to Sd(0)

are occupied
}

(23)

E ′
w =

{
n ∈ {0, 1}V : there is exactly one empty bond in the d–cells

belonging to Sd(0) and this bond has no endpoint inNd(0);

in addition, all other bonds of the d–cells that contain this

bond are occupied
}

(24)

E =
{
n ∈ {0, 1}V : there is exactly one empty bond in the d–cells

belonging to Sd(0) and this bond has one endpoint inNd(0);

in addition, all other bonds of the d–cells that contain this

bond are occupied
}

(25)

and the complementary event

E ′ =
{
n ∈ {0, 1}V \ (E ∪ Ew ∪ E ′

w)
}

(26)

We have

χ0(n) = 0 if n ∈ Ew or if n ∈ E ′
w (27)

χ0(n) =
(−1)d−1

2d
if n ∈ E (28)

|χ0(n)| ≤ 1 if n ∈ E ′ (29)

Then,

〈χ0〉w (V, β, q) =
(−1)d−1

2d
Pr(E) +

∑

n:n∈E′

[χ0(n)] Pr(n) (30)
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with ∣∣∣∣∣
∑

n:n∈E′

[χ0(n)] Pr(n)

∣∣∣∣∣ ≤ Pr(E ′) (31)

Taking into account that for any configuration n ∈ E ′ there is at least a
contour γ with length ‖γ‖ ≥ 4, we estimate this probability by Peierls type
arguments as follows

Pr(E ′) ≤
∑

γ:γ30;‖γ‖≥4

Pr(γ) ≤
∑

γ:γ30;‖γ‖≥4

ϕw(γ)

≤
∑

m≥4

νd
m

(
q−

1
2d e9q−

1
2
)m ≤ νd

4 q−
2
d e36q−

1
12

1− νdq
− 1

2d e9q−
1
2

(32)

provided νdq
− 1

2d e9q−
1
2 < 1.

On the other hand, in order to estimate the probability Pr(E) we let γ̃
to be the dual of the occupied bond. Then

Pr(E) =
[(−1)d−1

2d
(2dd)

]

∑

{γ1,...,γn}⊃γ̃

n∏

i=1

ϕw(γi)

Z(V |ϕw)

=
[
(−1)d−1d

]
ϕw(γ̃)

∑

{γ1,...,γn},γi∩γ̃=∅

n∏

i=1

ϕw(γi)

Z(V |ϕw)
(33)

The factor 2dd stems from the fact that there are 2dd bonds in the d–cells of
Sd(0) that contain one endpoint in the d –neighbourhood Nd(0) of the origin.

We will compute this last ratio with cluster expansion by introducing
clusters X as multi-indexes defined on the sets of wired contours and the
corresponding truncated functionals:

φT
w(X) =

a(X)∏

γ

X(γ)!

∏

γ

ϕw(X)X(γ) (34)
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By taking into account the expression (21) and that ‖γ̄‖ = 2, we get as
a result of cluster expansion

Pr(E) =
[
(−1)d−1d

]
q−

‖γ̄‖
2d exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT
w(X)





=
[
(−1)d−1d

]
q−

1
d exp



∆(γ̄)−

∑

X:Supp X∩γ̄ 6=∅

φT
w(X)



 (35)

and
∣∣∣∣∣∣

∑

X:Supp X∪γ̄ 6=∅

φT
w(X)

∣∣∣∣∣∣
≤

∑

b∈γ̄

∑

X:Supp X∩b6=∅

|φT
w(X)|

≤ 2(µdgq−
1
2d e9q−

1
2 )2 (36)

provided µdgq−
1
2d e9q−

1
2 < 1. This implies

χw(βt, q) =
[
(−1)d−1d

]
q−

1
d + O(q−

1
d
− 1

2 ) (37)

giving the second statement of the theorem. The last statement follows again
from the differentiability properties given in [LMMRS].

Let us give some consequences of Theorem 6. Consider a generalized
Fortuin–Kasteleyn measure (GFK) where the occupation variables are de-
fined on the (d− 1)–cells of the lattice:

〈 · 〉(V, β, q) =
1

Ξ(V, β, q)

∑

n∈{0,1}V

· (eβ − 1)Nd−1(n)qπd−1(n) κbc(n) (38)

where V ⊂ Ld−1 and κbc(n) refers to the boundary conditions. In dimension
d = 3, the partition function Ξ(V, β, q) is actually the Fortuin–Kasteleyn
representation of the gauge Potts model. In dimension d ≥ 4, it is the one
of the so–called hypergauge model. Potts and hypergauge Potts model are
related by the natural extension (D) of the Kramers-Wannier duality, i.e.
Fourier expansion together with Poincaré duality [LMeR, KLMR]

Potts
D←→ Hypergauge Potts

23



Denoting by FK and GFK their Fortuin–Kasteleyn representations, the com-
plete commutativity of the following diagram

Potts
D←→ Hypergauge Pottsy

y
FK

A←→ GFK

actually holds. The correspondence FK
A←→ GFK is the Alexander duality

(used in Section 2 for d = 2) and defined as follows

n̂b∗ = 1− nb, b ∈ V

where b∗ is the (d− 1)–cell that crosses b.

Under this transformation, the FK measure (5) at (inverse) temperature
β is transformed in the GFK measure (38) at (inverse) temperature β∗, while
free boundary conditions are transformed into the wired ones. Note that this
duality actually holds at the level of measures. It implies, as a consequence
of Theorem 6, that the (suitably defined) mean local Euler characteristic
with respect to the generalized measures (38) is discontinuous at the dual
temperature β∗

t given by (eβ∗
t − 1)(eβt − 1) = q.

4 Conclusion and outlooks

This work clearly shows that the mean Euler-Poincaré characteristic per
site of the FK measure exhibits a non-trivial behaviour at the transition
point. More precisely, we have proved that it satisfies, in dimension two, a
duality property implying that at the transition point it is either zero or it
is discontinuous.

For the percolation model (q = 1) it actually takes the value zero at the
transition point.

Moreover, for large q, using an analysis of the order–disorder transition,
we have shown that a jump of order q−

1
2 occurs. This is illustrated in Figure

2 for q = 5000.

In higher dimensions, the magnitude of the jump is of order q−
1
d for even

space dimensions and of order q−
d−1

d for odd space dimensions.
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Figure 2: Mean Euler characteristic per site and mean bond occupation
number as functions of β, for q = 5000 in dimension d = 2.

For small values of q (to which the above mentioned analysis does not
apply) it would be, in particular, interesting to see if the mean local Euler-
Poincaré characteristic is continuous and takes the value 0 when the transi-
tion is second order, as it is the case for the percolation model. Numerical
simulations performed in [BFG] indicate that this is actually the case. We
illustrate in Figure 3 when d = 2 and q = 2 the behaviour of the mean local
Euler-Poincaré characteristic as a function of the temperature that confirms
this prediction.

In the numerics we have directly sampled the FK distribution through
the heat bath Monte Carlo method (Glauber dynamics). As we needed the
number of connected components to compute the weights of this distribution,
the Hoshen–Kopelman [HK] cluster algorithm has been used.

We think that the fact that the mean local Euler-Poincaré characteristic
vanishes at the transition gives new non trivial informations on the topology
of typical configurations at this point.
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Figure 3: Mean Euler characteristic per site as function of β, for q = 2 in
dimension d = 2.
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Bielefeld and Centre de Physique Théorique, CNRS Marseille are gratefully
acknowledged.

References

[ACCN] M. Aizenman, J.T. Chayes, L. Chayes, C.M. Newman, Discon-
tinuity of the magnetization in one–dimensional 1/|x − y|2 Ising
and Potts models, J. Stat. Phys. 50, 1–40 (1988).

[A] P.S. Aleksandrov, Combinatorial Topology, vol 3, Graylock Press,
Albany, 1960.

[B] R.J. Baxter, Exactly solved models in statistical mechanics, New-
York, Academic Press, 1982.

[Be] C. Berge, Graphes, Paris: Gauthier-Villars, 1983.

26



[BFG] Ph. Blanchard, S. Fortunato, and D. Gandolfo, Euler-Poincaré
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[LMMRS] L. Laanait, S. Miracle-Solé, A. Messager, J. Ruiz, and S. Shlos-
man, Interfaces in the Potts model I: Pirogov-Sinai theory of
the Fortuin-Kasteleyn representation, Commun. Math. Phys. 140,
81–91 (1991).

[LMeR] L. Laanait, A. Messager, J. Ruiz, Discontinuity of the Wilson
string tension in the 4-dimensional lattice pure gauge Potts model,
Commun. Math. Phys. 126, 103–131 (1989).

[Le] S. Lefschetz, Introduction to Topology, Princeton University Press,
Princeton, 1942.
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