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A duality between q-multiplicities in tensor products and

q-multiplicities of weights for the root systems B, C or D

Cédric Lecouvey
lecouvey@math.unicaen.fr

Abstract

Starting from Jacobi-Trudi’s type determinental expressions for the Schur functions of types
B, C and D, we define a natural q-analogue of the multiplicity [V (λ) : M(µ)] when M(µ) is a
tensor product of row or column shaped modules defined by µ. We prove that these q-multiplicities
are equal to certain Kostka-Foulkes polynomials related to the root systems C or D. Finally we
express the corresponding multiplicities in terms of Kostka numbers

1 Introduction

Given two partitions λ and µ of length n, the Kostka number KAn

λ,µ is equal to the dimension of
the weight space µ in the finite dimensional irreducible sln+1-module V (λ) of highest weight λ. The
Schur duality is a classical result in representation theory establishing that KAn

λ,µ is also equal to the
multiplicity of V (λ) in the tensor products

V (µ1Λ1) ⊗ · · · ⊗ V (µnΛ1) and V (Λµ′
1
) ⊗ · · · ⊗ V (Λµ′

m
)

where µ′ = (µ′
1, ..., µ

′
m) is the conjugate partition of µ and the Λi’s i = 1, ..., n−1 are the fundamental

weights of sln+1. Another way to define KAn

λ,µ is to use the Jacobi-Trudi identity which gives a determi-
nantal expression of the Schur function sµ = char(V (µ)) in terms of the characters hk = char(V (kΛ1))
of the k-th symmetric power representation. This formula can be rewritten

sµ =
∏

1≤i<j≤n

(1 − Ri,j)hµ (1)

where hµ = hµ1 · · · ·hµn and the Ri,j are the raising operators (see 3.2). Then one can prove that it
makes sense to write

hµ =
∏

1≤i<j≤n

(1 − Ri,j)
−1sµ (2)

which gives the decomposition of hµ on the basis of Schur functions. From this decomposition we
derive the following expression for KAn

λ,µ:

KAn

λ,µ =
∑

σ∈Sn

(−1)l(σ)PAn(σ(λ + ρ) − (µ + ρ)) (3)

where Sn is the symmetric group of order n and PAn the ordinary Kostant’s partition function defined
from the equality: ∏

α positive root

1

(1 − xα)
=
∑

β

PAn(β)xβ
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with β running on the set of nonnegative integral combinations of positive roots of sln.
There exists a q-analogue KAn

λ,µ(q) of KAn

λ,µ obtained by replacing the ordinary Kostant’s partition

function PAn by its q-analogue PAn
q satisfying

∏

α positive root

1

(1 − qxα)
=
∑

β

PAn
q (β)xβ .

So we have
KAn

λ,µ(q) =
∑

σ∈Sn

(−1)l(σ)PAn
q (σ(λ + ρ) − (µ + ρ)) (4)

which is a polynomial in q with nonnegative integer coefficients [8], [9]. In [11], Nakayashiki and
Yamada have shown that KAn

λ,µ(q) can also be computed from the combinatorial R matrix corresponding

to Kashiwara’s crystals associated to some Uq(ŝln)-modules.
For g = so2n+1, sp2n or so2n there also exist expressions similar to (3) for the multiplicities Kg

λ,µ
of the weight µ in the finite dimensional irreducible module V (λ) but a so simple duality as for sln
does not exist although it is possible to obtain certain duality results between multiplicities of weights
and tensor product multiplicities of representations by using duals pairs of algebraic groups ([5]).
This implies that the quantifications of weight multiplicities and tensor product multiplicities can
not coincide for the root systems Bn, Cn and Dn. The Kostka-Foulkes polynomials Kg

λ,µ(q) are the

q-analogues of Kg
λ,µ defined as in (4) by quantifying the partition function corresponding to the root

system associated to g (see 2.2). In [13], Hatayama, Kuniba, Okado and Takagi have introduced for
type Cn a quantification XCn

λ,µ(q) of the multiplicity of V (λ) in the tensor product

W (µ1Λ1) ⊗ · · · ⊗ W (µnΛ1)

where for any i = 1, ..., n,

W (µiΛ1) = V (µiΛ1) ⊕ V ((µi − 2)Λ1) ⊕ · · · ⊕ V ((µimod2)Λ1).

This quantification is based on the determination of the combinatorial R matrix of some U ′
q(ĝ)-crystals

in the spirit of [11]. Note that there also exist q-multiplicities for the sp2-module V (λ) in a tensor
product

V (Λ1)
⊗k ⊗ V (Λ2)

⊗l

where k, l are positive integers obtained by Yamada [17].
In this paper we first use Jacobi-Trudi’s type determinantal expressions for the Schur functions

associated to g to introduce q-analogues of the multiplicity of V (λ) in the tensor products

(i) : h(µ) = V (µ1Λ1) ⊗ · · · ⊗ V (µnΛ1),H(µ) = W (µ1Λ1) ⊗ · · · ⊗ W (µnΛ1)

(ii) : e(µ) = V (Λµ′
1
) ⊗ · · · ⊗ V (Λµ′

m
),E(µ) = W (Λµ′

1
) ⊗ · · · ⊗ W (Λµ′

m
) with n ≥ |µ|

where {
W (µiΛ1) = V (µiΛ1) ⊕ V ((µi − 2)Λ1) ⊕ · · · ⊕ V ((µimod2)Λ1)

W (Λk) = V (Λk) ⊕ V (Λk−2) ⊕ · · · ⊕ V (Λk mod 2)
.

With the condition n ≥ |µ| for (ii), these multiplicities are independent of the Lie algebra g of type
Bn, Cn or Dn considered. When q = 1, we recover a remarkable property already used by Koike
and Terada in [6]. Next we prove that these q-multiplicities are in fact equal to Kostka-Foulkes
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polynomials associated to the root systems of types C and D. It is possible to extend the definition
(4) of the Kostka-Foulkes polynomials associated to the root system An by replacing µ by γ ∈ N

n

where γ is not a partition. In this case KAn

λ,γ(q) may have nonnegative coefficients but KAn

λ,γ(1) is equal
to the dimension of the weight space γ in V (λ). Now if we extend (4) by replacing λ by ξ ∈ N

n,
the polynomial KAn

ξ,µ(q) is equal up to a sign to a Kostka-Foulkes polynomial KAn
ν,µ(q) where ν is a

partition. We obtained two expressions of the q-multiplicities defined above respectively in terms of the
polynomials KAn

λ,γ(q) and KAn

ξ,µ(q). By specializing at q = 1, this yields expressions of the corresponding
multiplicities in terms of Kostka numbers.

In section 1 we recall the background on the root systems Bn, Cn and Dn and the corresponding
Kostka-Foulkes polynomials. We review in section 2 the determinantal identities for Schur functions
that we need in the sequel and we introduce the formalism suggested in [1] to prove the expressions
of Schur functions in terms of raising and lowering operators implicitly contain in [15]. Thank to
this formalism we are able to obtain expressions for multiplicities similar to (3). We quantify these
multiplicities to obtain the desired q-analogues in section 3. We prove in Section 4 two duality theo-
rems between our q-analogues and certain Kostka-Foulkes polynomials of types C and D. Finally we
establish formulas expressing the associated multiplicities in terms of Kostka numbers.

Notation: In the sequel we frequently define similar objects for the root systems Bn Cn and Dn.
When they are related to type Bn (resp. Cn,Dn), we implicitly attach to them the label B (resp. the
labels C,D). To avoid cumbersome repetitions, we sometimes omit the labels B,C and D when our
definitions or statements are identical for the three root systems.

Note: While writing this work, I have been informed that Shimozono and Zabrocki [16] have introduced
independently and by using creating operators essentially the same tensor power multiplicities. Thanks
to this formalism they recover in particular Jacobi-Trudi’s type determinantal expressions of the Schur
functions associated to the root systems B,C and D which constitute the starting point of this article.

2 Background on the root systems Bn, Cn and Dn

2.1 Convention for the positive roots

Consider an integer n ≥ 1. The weight lattice for the root system Cn (resp. Bn and Dn) can be

identified with PCn = Z
n (resp. PBn = PDn

(
Z

2

)n

) equipped with the orthonormal basis εi, i =

1, ..., n. We take for the simple roots





αBn
n = εn and αBn

i = εi − εi+1, i = 1, ..., n − 1 for the root system Bn

αCn
n = 2εn and αCn

i = εi − εi+1, i = 1, ..., n − 1 for the root system Cn

αDn
n = εn + εn−1 and αDn

i = εi − εi+1, i = 1, ..., n − 1 for the root system Dn

. (5)

Then the set of positive roots are





R+
Bn

= {εi − εj , εi + εj with 1 ≤ i < j ≤ n} ∪ {εi with 1 ≤ i ≤ n} for the root system Bn

R+
Cn

= {εi − εj , εi + εj with 1 ≤ i < j ≤ n} ∪ {2εi with 1 ≤ i ≤ n} for the root system Cn

R+
Dn

= {εi − εj , εi + εj with 1 ≤ i < j ≤ n} for the root system Dn

.

Denote respectively by P+
Bn

, P+
Cn

and P+
Dn

the sets of dominant weights of so2n+1, sp2n and so2n.
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Let λ = (λ1, ..., λn) be a partition with n parts. We will classically identify λ with the dominant weight∑n
i=1 λiεi. Note that there exists dominant weights associated to the orthogonal root systems whose

coordinates on the basis εi, i = 1, ..., n are not positive integers (hence which can not be regarded as a
partition). For each root system of type Bn, Cn or Dn, the set of weights having nonnegative integer
coordinates on the basis ε1, ..., εn can be identify with the set π+

n of partitions of length n. For any
partition λ, the weights of the finite dimensional so2n+1, sp2n or so2n-module of highest weight λ are
all in πn = Z

n. For any α ∈ πn we write |α| = α1 + · · · + αn.
The conjugate partition of the partition λ is denoted λ′ as usual. Consider λ, µ two partitions of length
n and set m = max(λ1, µ1). Then by adding to λ′ and µ′ the required numbers of parts 0 we will
consider them as partitions of length m.

The Weyl group WBn = WCn of so2n+1 and sp2n is identified to the sub-group of the permutation
group of the set {n, ..., 2, 1, 1, 2, ..., n} generated by si = (i, i+1)(i, i + 1), i = 1, ..., n−1 and sn = (n, n)
where for a 6= b (a, b) is the simple transposition which switches a and b. We denote by lB the length
function corresponding to the set of generators si, i = 1, ...n.
The Weyl group WDn of so2n is identified to the sub group of WBn generated by si = (i, i+1)(i, i + 1),
i = 1, ..., n − 1 and s′n = (n, n − 1)(n − 1, n). We denote by lD the length function corresponding to
the set of generators s′n and si, i = 1, ...n − 1.
Note that WDn ⊂ WBn and any w ∈ WBn verifies w(i) = w(i) for i ∈ {1, ..., n}. The action of w on
β = (β1, ..., βn) ∈ Pn is given by

w · (β1, ..., βn) = (βw
1 , ..., βw

n )

where βw
i = βw(i) if σ(i) ∈ {1, ..., n} and βw

i = −βw(i) otherwise.
The half sums ρBn , ρCn and ρDn of the positive roots associated to each root system Bn, Cn and Dn

verify:

ρBn = (n −
1

2
, n −

3

2
, ...,

1

2
), ρCn = (n, n − 1, ..., 1) and ρBn = (n − 1, n − 2, ..., 0).

In the sequel we identify the symmetric group Sn with the sub group of WBn or WDn generated by
the si’s, i = 1, ..., n − 1.

2.2 Schur functions and Kostka-Foulkes polynomials

We now briefly review the notions of Schur functions and Kostka-Foulkes polynomials associated
to the roots systems Bn, Cn and Dn and refer the reader to [12] for more details. For any weight

β = (β1, ..., βn) ∈ πn we set xβ = xβ1
1 · · · xβn

n where x1, ..., xn are fixed indeterminates. We set

aBn

β =
∑

w∈WBn

(−1)l(σ)(w · xβ)

where w · xµ = xw(µ). The Schur function sBn

β is defined as in [12] by

sBn

β =
aBn

β+ρBn

aB
ρBn

.

4



When ν ∈ π+
n , sBn

ν is the Weyl character of V (ν) the finite dimensional irreducible module with highest
weight ν. For any w ∈ WBn , the dot action of w on β ∈ πn is defined by

w ◦ β = w · (β + ρBn) − ρBn .

We have the following straightening law for the Schur functions. For any β ∈ πn, sBn

β = 0 or there

exists a unique ν ∈ π+
n such that sBn

β = (−1)l(w)sBn
ν with w ∈ WBn and ν = w ◦ β. Set K = Z[q, q−1]

and write K[πn] for the K-module generated by the xβ, β ∈ πn. Set CBn = K[πn]WBn = {f ∈ K[πn],
w · f = f for any w ∈ WBn}. Then {sBn

ν }, ν ∈ π+
n is a basis of K[πn]WBn .

We define sCn

β and sDn

β belonging to CCn = CBn and CDn in the same way and we obtain similarly that

{sCn
ν , ν ∈ π+

n } and {sDn
ν , ν ∈ π+

n } are respectively bases of CCn and CDn .

The q-analogue PBn
q of Kostant’s partition function corresponding to the root system Bn is defined

by the equality ∏

α∈R+
Bn

1

1 − qxα
=
∑

β∈πn

PBn
q (β)xβ .

Note that PBn
q (β) = 0 if β is not a linear combination of positive roots of R+

Bn
with nonnegative

coefficients. We write similarly PCn
q and PDn

q for the q-partition functions associated respectively to
the root systems Cn and Dn. Given λ and µ two partitions of length n, the Kostka-Foulkes polynomials
of types Bn, Cn and Dn are then respectively defined by

KBn

λ,µ(q) =
∑

σ∈WBn

(−1)l(σ)PBn
q (σ(λ + ρBn) − (µ + ρBn)),

KCn

λ,µ(q) =
∑

σ∈WCn

(−1)l(σ)PCn
q (σ(λ + ρCn) − (µ + ρCn)),

KDn

λ,µ(q) =
∑

σ∈WDn

(−1)l(σ)PDn
q (σ(λ + ρDn) − (µ + ρDn)).

Remarks:

(i) : We have Kλ,µ(q) = 0 when |λ| < |µ| .

(ii) : When |λ| = |µ| , KBn

λ,µ(q) = KCn

λ,µ(q) = KDn

λ,µ(q) = K
An−1

λ,µ (q) that is, the Kostka-Foulkes polyno-
mials associated to the root systems Bn, Cn and Dn are Kostka-Foulkes polynomials associated to the
root system An−1.

3 Determinantal identities and multiplicities of representations

3.1 Determinantal identities for Schur functions

Consider k ∈ Z. When k is a nonnegative integer, write (k)n = (k, 0, ..., 0) for the partition of length
n with a unique non-zero part equal to k. Then set

hBn

k = sBn

(k)n
, hCn

k = sCn

(k)n
, hDn

k = sDn

(k)n

and

HBn

k = hBn

k + hBn

k−2 + · · · + hBn

k mod 2,H
Cn

k = hCn

k + hCn

k−2 + · · · + hBn

k mod 2,

HDn

k = hDn

k + hDn

k−2 + · · · + hDn

k mod 2.
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When k is a negative integer we set hBn

k = hCn

k = hDn

k = 0 and HBn

k = HCn

k = HDn

k = 0.
For any α = (α1, ..., αn) ∈ Z

n define

uBn
α = det




hBn
α1

hBn

α1+1 + hBn

α1−1 · · · · · · · · ·· hBn

α1+n−1 + hBn

α1−n+1

hBn

α2−1 hBn
α2

+ hBn

α2−2 · · · · · · · · ·· hBn

α2+n−2 + hBn
α2−n

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

hBn

αn−n+1 hBn

αn−n+2 + hBn
αn−n · · · · · · · · ·· hBn

αn
+ hBn

αn−2n+2




. (6)

By using the equalities hBn

k = HBn

k − HBn

k−2 and simple computations on determinants we have also

uBn
α = det




HBn
α1

− HBn

α1−2 HBn

α1+1 − HBn

α1−1 · · · · · · · · ·· HBn

α1+n−1 − HBn

α1−n−1

HBn

α2−1 − HBn

α2−3 HBn
α2

− HBn

α2−4 · · · · · · · · ·· HBn

α2+n−2 − HBn

α2−n−2

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

HBn

αn−n+1 − HBn

αn−n−1 HBn

αn−n+2 − HBn

αn−n−2 · · · · · · · · ·· HBn
αn

− HBn

αn−2n−2




.

(7)
We define uCn

α and uDn
α similarly by replacing hBn

k respectively by hCn

k and hDn

k .
Consider p and n two integers such that n ≥ 1. When p is nonnegative and n ≥ p, write (1p)n =

(1, ..., 1, 0, ..., 0) for the partition of length n having p non zero parts equal to 1. We set




eBn
p = sBn

(1p)n
, eCn

p = sCn

(1p)n
, eDn

p = sDn

(1p)n
if 0 ≤ p ≤ n

eBn
p = eBn

2p−n, eCn
p = eCn

2p−n, eDn

k = eDn

2p−n if n + 1 ≤ p ≤ 2n

eBn
p = eCn

p = eDn
p = 0 otherwise

and

EBn

k = eBn

k + eBn

k−2 + · · · + eBn

k mod 2, E
Cn

k = eCn

k + eCn

k−2 + · · · + eBn

k mod 2,

EDn

k = eDn

k + eDn

k−2 + · · · + eDn

k mod 2.

For any β = (β1, ..., βn) ∈ Z
n define

vBn

β = det




eBn

β1
eBn

β1+1 + eBn

β1−1 · · · · · · · · ·· eBn

β1+n−1 + eBn

β1−n+1

eBn

β2−1 eBn

β2
+ eBn

β2−2 · · · · · · · · ·· eBn

β2+n−2 + eBn

β2−n

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

eBn

βn−n+1 eBn

βn−n+2 + eBn

βn−n · · · · · · · · ·· eBn

βn
+ eBn

βn−2n+2




.

By using the equalities eBn

k = EBn

k − EBn

k−2 and simple computations on determinants we have also

vBn

β = det




EBn

β1
− EBn

β1−2 EBn

β1+1 − EBn

β1−1 · · · · · · · · ·· EBn

β1+n−1 − EBn

β1−n−1

EBn

β2−1 − EBn

β2−3 EBn

β2
− EBn

β2−4 · · · · · · · · ·· EBn

β2+n−2 − EBn

β2−n−2

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

EBn

βn−n+1 − EBn

βn−n−1 EBn

βn−n+2 − EBn

βn−n−2 · · · · · · · · ·· EBn

βn
− EBn

βn−2n−2




The determinants vCn

β , vDn

β are defined similarly.
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Proposition 3.1.1 (see[3]) Consider λ a partition of length n and suppose that λ′ = (λ′
1, ..., λ

′
m) is a

partition of length m. Then uλ = sλ and vλ′ = sλ.

Lemma 3.1.2 (straightening law for uα and vβ)
Consider α ∈ πn then

uα =

{
(−1)l(σ)uλ if there exists σ ∈ Sn and λ ∈ π+

n such that σ ◦ α = λ
0 otherwise

.

Consider β ∈ πm then

vβ =

{
(−1)l(σ)vν if there exists σ ∈ Sm and ν ∈ π+

m such that σ ◦ α = ν
0 otherwise

.

Proof. By commuting the rows i and i + 1 in the determinant (7) we see that usi◦α = −uα. This
implies that uσ◦α = (−1)l(σ)uα for any σ ∈ Sn. Then it follows from the definition of the dot action
that uα = 0 or there exists γ ∈ πn and σ ∈ Sn such that γ1 ≥ · · · ≥ γn and γ = σ ◦α. In this last case
we have uα = (−1)l(σ)uγ . Now if there exists a negative γi, uγ = 0 since all the Hk which appear in
the lowest row of (7) are equal to 0. Thus γ is a partition. The proof is similar for vβ.

3.2 Determinantal identities in terms of raising and lowering operators

Let Ln = K[[x1, x
−1
1 , ..., xn, x−1

n ]] be the ring of formal series in the indeterminates x1, x
−1
1 , ..., xn, x−1

n . We
consider the two following determinants

δn(α) = det




xα1
1 xα1+1

1 + xα1−1
1 · · · · · · · · ·· xα1+n−1

1 + xα1−n+1
1

xα2
2 xα2

2 + xα2−2
2 · · · · · · · · ·· xα2+n−2

2 + xα2−n
2

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

xαn−n+1
n xαn−n+2

n + xαn−n
n · · · · · · · · ·· xαn

n + xαn−2n+2
n




and

∆n(α) = det




xα1
1 − xα1−2

1 xα1+1
1 − xα1−1

1 · · · · · · · · ·· xα1+n−1
1 − xα1−n−1

1

xα2−1
2 − xα2−3

2 xα2
2 − xα2−4

2 · · · · · · · · ·· xα2+n−2
2 − xα2−n−2

2

· · · · · · · · · · ·· ·
· · · · · · · · · · ·· ·

xαn−n+1
n + xαn−n−1

n x
αn−n+2
n − xαn−n

n · · · · · · · · ·· xαn
n − xαn−2n−2

n




From a simple computation we derive the equalities:

δn(α) =
∏

1≤i<j≤n

(1−
xi

xj
)

∏

1≤r<s≤n

(1−
1

xixj
)xα and ∆n(α) =

∏

1≤i<j≤n

(1−
xi

xj
)

∏

1≤r≤s≤n

(1−
1

xixj
)xα. (8)

We set hα = hα1 · · · hαn ,Hα = Hα1 · · · Hαn , eα = eα1 · · · eαn and Eα = Eα1 · · · Eαn .
Remarks

(i) : For any partition µ of length n, hµ is the character of h(µ) = V (µ1Λ1)⊗ · · ·⊗V (µnΛ1) and Hµ is
the character of H(µ) = W (µ1Λ1) ⊗ · · · ⊗ W (µnΛ1) where for any k ∈ N, W (k1) = V (kΛ1) ⊕ V ((k −
2)Λ1) ⊕ · · · ⊕ V ((k mod 2)Λ1).
(ii) : For any partition µ of length n such that µ′ is of length m, eµ′ is the character of e(µ) =
V (Λµ′

1
) ⊗ · · · ⊗ V (Λµ′

m
) and Eµ′ is the character of E(µ) = W (Λµ′

1
) ⊗ · · · ⊗ W (Λµ′

m
) where for any

k ∈ N with k ≤ n, W (Λk) = V (Λk) ⊕ V (Λk−2) ⊕ · · · ⊕ V (Λk mod 2).
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For the root system Bn we introduce six linear maps hBn ,HBn ,uBn and eBn ,EBn ,vBn as follows:
{

hBn : Ln → CBn

xα 7→ hBn
α

,

{
HBn : Ln → CBn

xα 7→ HBn
α

,

{
uBn : Ln → CBn

xα 7→ uBn
α

and

{
eBn : Ln → CBn

xα 7→ eBn
α

,

{
EBn : Ln → CBn

xα 7→ EBn
α

,

{
vBn : Ln → CBn

xα 7→ vBn
α

.

Note that these maps are not ring homomorphisms. For the roots systems Cn and Dn we define
respectively the maps hCn ,HCn ,uCn , eCn ,ECn , vCn and hDn ,HDn ,uDn , eDn ,EDn , vDn similarly.
Let ωn and Ωn be the endomorphisms of Ln corresponding respectively to the multiplication by

φn =
∏

1≤i<j≤n

(1 −
xi

xj
)

∏

1≤r<s≤n

(1 −
1

xixj
) and Φn =

∏

1≤i<j≤n

(1 −
xi

xj
)

∏

1≤r≤s≤n

(1 −
1

xixj
).

Since φ−1
n and Φ−1

n belong to Ln, ωn and Ωn are the automorphisms of Ln corresponding to the
multiplication by φ−1

n and Φ−1
n .

Proposition 3.2.1 We have

1. un = hn · ωn and un = Hn · Ωn,

2. vn = en · ωn and vn = En · Ωn.

Proof. 1 : We have seen that hn is not a ring-homomorphism. Nevertheless we have by definition
of the hα

hn(xα) = hn(xα1
1 ) · · · hn(xαn

n ) = hα1 · · · hαn .

More generally if P1, ..., Pn are polynomials respectively in the indeterminates x1, ..., xn, we have

hn(P1(x1) · · · Pn(xn)) = hn(P1(x1)) · · · hn(Pn(xn))

by linearity of hn. We can write

δn(α) =
∑

σ∈Sn

(−1)l(σ)x
α1−σ(1)+1
σ(1) (x

α2−σ(2)+2
σ(2) + x

α2−σ(2)
σ(2) ) · · · (x

αn−σ(n)+n
σ(n) + x

αn−σ(n)−n+2
σ(n) )

and by the previous argument

hn(δn(α)) =
∑

σ∈Sn

(−1)l(σ)hα1−σ(1)+1(hα2−σ(2)+2 + hα2−σ(2)) · · · (hαn−σ(n)+n + hαn−σ(n)−n+2) = uα

where the last equality follows from (6). By (8) we have δn(α) = ωn(xα). Thus by applying hn to this
equality we obtain hn(ωn(xα)) = uα = un(xα). Hence un = hn ·ωn. We derive the equality un = Hn ·Ωn

in a similar way starting from

∆n(α) =
∑

σ∈Sn

(−1)l(σ)(x
α1−σ(1)+1
σ(1) + x

α2−σ(1)−1
σ(1) ) · · · (x

αn−σ(n)+n
σ(n) + x

αn−σ(n)−n
σ(n) ).

2 : The arguments are the same than in 1 once replacing the characters h and H respectively by
the characters e and E.

Consider α = (α1, ..., αn) ∈ πn and two integers i, j such that 1 ≤ i ≤ j ≤ n. The raising operator
Ri,j and the lowering operator Li,j are respectively defined on πn by Ri,j(α) = α + εi − εj and
Li,j(α) = α − εi − εj . From the previous lemma we obtain:
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Corollary 3.2.2 For any partition µ = (µ1, ..., µn) we have

sµ =




∏

1≤i<j≤n

(1 − Ri,j)
∏

1≤r<s≤n

(1 − Lr,s)


hµ, sµ =




∏

1≤i<j≤n

(1 − Ri,j)
∏

1≤r≤s≤n

(1 − Lr,s)


Hµ,

sµ =




∏

1≤i<j≤m

(1 − Ri,j)
∏

1≤r<s≤m

(1 − Lr,s)


 eµ′ , sµ =




∏

1≤i<j≤m

(1 − Ri,j)
∏

1≤r≤s≤m

(1 − Lr,s)


Eµ′

where µ′ = (µ′
1, ..., µ

′
m) is the conjugate partition of µ.

Proof. Let us write

φn =
∏

1≤i<j≤n

(1 −
xi

xj
)

∏

1≤r<s≤n

(1 −
1

xixj
) =

∑

α∈πn

a(α)xα.

Then by 1 of Proposition 3.2.1, we have for any µ ∈ π+
n ,

un(xµ) = hn

(
∑

α∈πn

a(α)xα+µ

)
=
∑

α∈πn

a(α)hα+µ = uµ = sµ

where the last equality follows from Proposition 3.1.1. This is exactly equivalent to

sµ =




∏

1≤i<j≤n

(1 − Ri,j)
∏

1≤r<s≤n

(1 − Lr,s)


 hµ.

The arguments are essentially the same for the other equalities.

3.3 Expressions for the multiplicities of representations

Write
φ−1

n =
∑

α∈πn

f(α)xα and Φ−1
n =

∑

α∈πn

F (α)xα.

From Lemma 3.2.1 we deduce that hn = un ◦ ω−1
n and Hn = un ◦ Ω−1

n . By applying these identities to
xµ where µ is a partition of length n with µ′ of length m we obtain as in Corollary 3.2.2

hµ =




∏

1≤i<j≤n

1

1 − Ri,j

∏

1≤r<s≤n

1

1 − Lr,s


 sµ, Hµ =




∏

1≤i<j≤n

1

1 − Ri,j

∏

1≤r≤s≤n

1

1 − Lr,s


 sµ,

eµ′ =




∏

1≤i<j≤m

1

1 − Ri,j

∏

1≤r<s≤m

1

1 − Lr,s


 sµ and Eµ′ =




∏

1≤i<j≤m

1

1 − Ri,j

∏

1≤r≤s≤m

1

1 − Lr,s


 sµ.

These relations must be understood as a short way to write

hµ =
∑

α∈πn

f(α)uµ+α, Hµ =
∑

α∈πn

F (α)uµ+α,

eµ′ =
∑

β∈πm

f(α)vµ′+β and Eµ′ =
∑

β∈πm

F (α)vµ′+β.

For any positive integer n write ρl = (n, n − 1, ..., 1).
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Proposition 3.3.1 Consider a partition µ of length n such that µ′ has length m. Then for the three
roots systems Bn, Cn and Dn we have:

(i) :

{
hµ =

∑
λ∈π+

n

∑
σ∈Sn

(−1)l(σ)f(σ(λ + ρn) − µ − ρn)uλ

Hµ =
∑

λ∈π+
n

∑
σ∈Sn

(−1)l(σ)F (σ(λ + ρn) − µ − ρn)uλ
,

(ii) :

{
eµ′ =

∑
ν∈π+

m

∑
σ∈Sm

(−1)l(σ)f(σ(ν + ρm) − µ′ − ρm)vν

Eµ′ =
∑

ν∈π+
m

∑
σ∈Sm

(−1)l(σ)F (σ(ν + ρm) − µ′ − ρm)vν
.

Proof. (i) : Note first that the above relations do not depend on the root system considered. Indeed
for any nonnegative integer n, we have ρBm = ρn− (1

2 , ...., 1
2 ), ρCn = ρn and ρDm = ρn− (1, ..., 1). Thus

σ(λ + ρBn)− µ− ρBn = σ(λ + ρCn)− µ− ρCn = σ(λ + ρDn)− µ− ρDn = σ(λ + ρn)− µ− ρn. We have

hµ =
∑

α∈πn

f(α)uµ+α.

From Lemma 3.1.2 we deduce that for any α ∈ πn we have uµ+α = 0 or there exits a partition λ such
that µ + α = σ(λ + ρn) − ρn and uµ+α = (−1)l(σ)uλ. By setting α = σ(λ + ρn) − µ − ρn in the above
sum we obtain hµ =

∑
λ∈πn

∑
σ∈Sn

(−1)l(σ)f(σ(λ+ ρn)−µ− ρn)uλ. The arguments are similar for the
other assertions.
From relations (i) and by using the fact that uλ = sλ for any partition λ of length n, we derive the
equalities

hµ =
∑

λ∈πn

uλ,µsλ and Hµ =
∑

λ∈πn

Uλ,µsλ

where

uλ,µ =
∑

σ∈Sn

(−1)l(σ)f(σ(λ + ρn) − µ − ρn) and Uλ,µ =
∑

σ∈Sn

(−1)l(σ)F (σ(λ + ρn) − µ − ρn) (9)

are respectively the multiplicities of V (λ) in h(µ) and H(µ). Note that uλ,µ = 0 and Uλ,µ = 0 unless
|µ| ≥ |λ| .
For the relations (ii) the situation is more complicated since the partitions ν obtained by applying
straightening laws to the vµ′+β yields polynomials vν where ν ∈ π+

m is a partition of length m so can
not be necessarily regarded as the conjugate partition of a partition λ ∈ π+

n . The straightening law of
Lemma 3.1.2 implies that |ν| = |µ′| . Since |µ| = |µ′| , this problem disappear if we suppose n ≥ |µ| for
we will have ν1 ≤ |ν| ≤ n and thus ν ′ ∈ π+

n . We can then set ν = λ′ with λ ∈ πn and obtain

eµ′ =
∑

λ∈πn

vλ,µsλ and Eµ′ =
∑

λ∈πn

Vλ,µsλ.

We deduce that

vλ,µ = uλ′,µ′ =
∑

σ∈Sm

(−1)l(σ)f(σ(λ′ + ρm) − µ′ − ρm) (10)

Vλ,µ = Uλ′,µ′ =
∑

σ∈Sm

(−1)l(σ)F (σ(λ′ + ρm) − µ′ − ρm) (11)

are respectively the multiplicities of V (λ) in the tensor products e(µ) and E(µ) when n ≥ |µ| .
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4 Quantification of the multiplicities

4.1 The functions fq and Fq

Set

φn(q) =
∏

1≤i<j≤n

(1 − q
xi

xj
)

∏

1≤r<s≤n

(1 −
q

xixj
) and Φn(q) =

∏

1≤i<j≤n

(1 − q
xi

xj
)

∏

1≤r≤s≤n

(1 −
q

xixj
).

The functions fq and Fq are obtained by considering the formal series expansions of φ−1
n (q) and

Φ−1
n (q). Namely we have

φ−1
n (q) =

∑

α∈πn

fq(α)xα and Φ−1
n (q) =

∑

α∈πn

Fq(α)xα. (12)

4.2 Some q-analogues of multiplicities of V (λ) in h(µ), H(µ), e(µ) or E(µ)

Given λ and µ two partitions of length n, let cλ,µ(q) and Cλ,µ(q) be the two polynomials defined by

uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)fq(σ(λ + ρn) − µ − ρn) and Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)Fq(σ(λ + ρn) − µ − ρn).

Then from the equalities (9), (10) and (11) we obtain:

Proposition 4.2.1 Let λ and µ be two partitions of length n. Then

1. uλ,µ(q) and Uλ,µ(q) are q-analogues of the multiplicity of the representation V (λ) in h(µ) and
H(µ),

2. vλ,µ(q) = uλ,′µ′(q) and Vλ,µ(q) = Uλ′,µ′(q) are q-analogues of the multiplicity of the representation
V (λ) in e(µ) and E(µ) when the condition n ≥ |µ| is satisfied.

The following example is obtained from the explicit computation of the function fq when n = 2.

Example 4.2.2 Consider µ a partition of length 2 and set Eµ = {λ ∈ π+
2 , λ = (µ1 + r− s, µ2 − r− s),

s ∈ {0, ..., µ2}, r ∈ {0, ..., µ2 − s}}. Then for any partition λ of length 2 we have:

uλ,µ(q) =

{
qµ1−λ1 if λ ∈ Eµ

0 otherwise
.

Remarks

(i) : It follows from the definition of the q-functions fq and Fq that uλ,µ(q) = Uλ,µ(q) = 0 if |λ| > |µ| .
(ii) : It is not trivial from the very definitions that uλ,µ(q) and Uλ,µ(q) are polynomials in q with
nonnegative integer coefficients. This property will be proved in Section 5 as a corollary of Theorem
5.1.5.
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5 The duality theorems

5.1 A duality theorem for the q-multiplicities in h(µ) and H(µ)

For any nonnegative integer n, set κn = (1, ..., 1) ∈ πn.

Lemma 5.1.1 Consider λ, µ two partitions of length n such that |λ| ≥ |µ| . Let k be any integer such

that k ≥ |λ|−|µ|
2 . Then we have

Kλ+kκn,µ+kκn(q) =
∑

σ∈Sn

(−1)l(σ)Pq(σ(λ + ρn) − (µ + ρn)) (13)

where the sum is indexed by the elements of the symmetric group Sn.

Proof. Since Pq(α) = 0 if α is not a linear combination of positive roots with nonnegative
coefficients, we have Pq(α) = 0 for any α ∈ πn such that |α| < 0. Consider δ = (δ1, ..., δn) ∈ πn and
w ∈ Wn. Write w(δ) = (δw

1 , ..., δw
n ) and denote by Ew,δ = {i1, ..., ip} the set of the indices ik such

that δik and δw
ik

have opposite signs. Define the sum Sw,δ =
∑

ik∈Ew,δ
δik . Then |w(δ)| = |δ| − 2Sw,δ.

Now consider k a nonnegative integer and set δ = (λ + ρn + kκn). We have |w(λ + ρn + kκn)| =
|(λ + ρn + kκn)| − 2Sw,δ. But Sw,δ = Sw,λ+ρn + kp. Thus we obtain

|w(λ + ρn + kκn) − (µ + ρn + kκn)| = |(λ + ρn + kκn)| − 2Sw,λ+ρn − |(µ + ρn + kκn)| − 2kp =

|λ| − |µ| − 2Sw,λ+ρn − 2kp.

When w /∈ Sn, we have p ≥ 1 and Sw,λ+ρn ≥ 1 since the coordinates of λ + ρn are all positive. Hence

|w(λ + ρn + kκn) − (µ + ρn + kκn)| < |λ| − |µ| − 2k and is negative as soon as k ≥ |λ|−|µ|
2 . For such

an integer k the sum defining Kλ+kκn,µ+kκn(q) normally running on Wn can be restricted to (13) and
we obtain

Kλ+kκn,µ+kκn(q) =
∑

σ∈Sn

(−1)l(σ)Pq(σ(λ + ρn + kκn) − (µ + ρn + kκn)).

Since σ ∈ Sn, we have σ(kκn) = kκn. Thus

Kλ+kκn,µ+kκn(q) =
∑

σ∈Sn

(−1)l(σ)Pq(σ(λ + ρn) − (µ + ρn)).

We define the involution I on πn by I(α1, ..., αn) = (−αn, ...,−α1) for any α = (α1, ..., αn) ∈ πn.

Lemma 5.1.2 For any α = (α1, ..., αn) ∈ πn we have

fq(α) = PDn
q (I(α)) and Fq(α) = PCn

q (I(α))

where PBn
q and PDn

q are the q-partition functions associated respectively to the root systems Bn and
Dn.
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Proof. By abuse of notation we also denote by I the ring automorphism of Ln defined by I(xα) =
xI(α). The image of the root systems Cn and Dn by I are respectively
{

{εi − εj ,−εi − εj with 1 ≤ i < j ≤ n} ∪ {−2εi with 1 ≤ i ≤ n} for the root system Cn

{εi − εj ,−εi − εj with 1 ≤ i < j ≤ n} for the root system Dn
. (14)

By applying I to the equality ∏

α∈R+
Cn

1

1 − qxα
=
∑

β∈πn

PCn
q (β)xβ

we obtain ∏

1≤i<j≤n

1

(1 − q xi

xj
)

∏

1≤r≤s≤n

1

(1 − q
xrxs

)
=
∑

β∈πn

PCn
q (β)xI(β).

Set α = I(β). The equality becomes

Φ−1
n (q) =

∑

α∈πn

PCn
q (I(α))xα

and from the definition (see 12) of the function Fq, we obtain PCn
q (I(α)) = Fq(α). The assertion with

fq is proved in the same way by considering the root system Dn.

Given σ ∈ Sn, denote by σ∗ the permutation defined by

σ∗(k) = σ(n − k + 1).

For any i ∈ {1, ..., n − 1}, we have s∗i = sn−i. The following Lemma is straightforward:

Lemma 5.1.3 The map σ → σ∗ is an involution of the group Sn. Moreover we have σ(I(β)) =
I(σ∗(β)) and l(σ) = l(σ∗) for any β ∈ πn, σ ∈ Sn.

Lemma 5.1.4 Let λ, µ two partitions of length n and σ ∈ Sn. Then

(−1)l(σ)fq(σ(λ + ρn) − (µ + ρn)) = (−1)l(σ
∗)PDn

q (σ∗(I(λ) + ρn) − (I(µ) + ρn)) and

(−1)l(σ)Fq(σ(λ + ρn) − (µ + ρ)) = (−1)l(σ
∗)PCn

q (σ∗(I(λ) + ρn) − (I(µ) + ρn)).

Proof. Since l(σ) = l(σ∗), it suffices to prove the equalities

fq(σ(λ + ρn) − (µ + ρn)) = PDn
q (σ∗(I(λ) + ρn) − (I(µ) + ρn)) and

Fq(σ(λ + ρn) − (µ + ρn)) = PCn
q (σ∗(I(λ) + ρn) − (I(µ) + ρn)).

Set P = PCn
q (σ∗(I(λ) + ρn) − (I(µ) + ρn)). From the above Lemma we deduce

P = PCn
q (I(σ(λ) + σ∗(ρn) − I(µ) − ρn).

Now an immediate computation shows that σ∗(ρn) − ρn = I(σ(ρn) − ρn). Thus we derive

P = PCn
q (I(σ(λ + ρn) − µ − ρn)) = Fq(σ(λ + ρn) − µ − ρn)

where the last equality follows from Lemma 5.1.2.
We obtain the equality fq(σ(λ + ρn) − (µ + ρn)) = PDn

q (σ(I(λ) + ρn)− (I(µ) + ρn)) in a similar way.
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Theorem 5.1.5 Consider λ, µ two partitions of length n and set m = max(λ1, µ1). Let k be any

integer such that k ≥ |µ|−|λ|
2 . Then λ̂ = (m−λn, ...,m−λ1) and µ̂ = (m−µn, ...,m−µ1) are partitions

of length n and {
uλ,µ(q) = KDn

λ̂+kκn,µ̂+kκn
(q)

Uλ,µ(q) = KCn

λ̂+kκn,µ̂+kκn
(q)

Proof. First λ̂ and µ̂ are clearly partitions of length n since m = max(λ1, µ1). It follows from the
definition of Uλ,µ(q) and the above lemma that

Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)Fq(σ(λ + ρn) − µ − ρn) =
∑

σ∗∈Sn

(−1)l(σ
∗)PCn

q (σ∗(I(λ) + ρn)) − (I(µ) + ρn)).

Then by Lemma 5.1.3 we obtain

Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)PCn
q (σ(I(λ) + ρn)) − (I(µ) + ρn)).

We have σ(I(λ) + ρn + mκn) = σ(I(λ) + ρn) + mκn since σ ∈ Sn. So we can write

Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)PCn
q (σ(I(λ) + mκn + ρn)) − (I(µ) + mκn + ρn)).

Since λ̂ = I(λ) + mκn and µ̂ = I(µ) + mκn we derive

Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)PCn
q (σ(λ̂ + ρn) − (µ̂ + ρn)) = KCn

λ̂+kκn,µ̂+kκn
(q)

by Lemma 5.1.1.
We obtain similarly the equality uλ,µ(q) = KDn

λ̂+kκn,µ̂+kκn
(q) by replacing PCn

q by PDn
q .

Example 5.1.6 Consider µ = (4, 2, 1) and λ = (2, 1, 0). We have m = 4, µ̂ = (3, 2, 0) and λ̂ =
(4, 3, 2). We choose k = 2. Then we obtain the equalities

{
uλ,µ(q) = KDn

(6,5,4),(5,4,2)(q) = q3 + q2

Uλ,µ(q) = KCn

(6,5,4),(5,4,2))(q) = q5 + 2q4 + 3q3 + 2q2 .

By using the fact that the Kostka-Foulkes polynomials have nonnegative integer coefficients [9] we
obtain the following corollary.

Corollary 5.1.7 The polynomials uλ,µ(q) and Uλ,µ(q) have nonnegative integers coefficients.

We also recover a property of the Kostka-Foulkes polynomials associated to the root system An−1

proved in [8].

Corollary 5.1.8 Consider λ, µ two partitions of length n such that |λ| = |µ| and set m = max(λ1, µ1).
Then the Kostka-Foulkes polynomials associated to the root system An−1 verifies

K
An−1

λ,µ (q) = K
An−1

λ̂,µ̂
(q)

where λ̂ = (m − λn, ...,m − λ1) and µ̂ = (m − µn, ...,m − µ1).
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Proof. Suppose that β is a linear combination of I(R+
Cn

) with nonnegative coefficients such that
|β| = 0. Then β is necessarily a linear combination of the roots εi −εj , 1 ≤ i < j ≤ n with nonnegative
coefficients (see (14)) that is, a linear combination with nonnegative coefficients of the positive roots
associated to the root system An−1. This implies that

fq(β) = Fq(β) = PAn−1
q (β)

where P
An−1
q is the q-partition function associated to the root system An−1. For any σ ∈ Sn, we have

|σ(λ + ρn) − (µ + ρn)| = 0 since |λ| = |µ| . Thus

fq(σ(λ + ρn) − (µ + ρn)) = Fq(σ(λ + ρn) − (µ + ρn)) = PAn−1
q (σ(λ + ρn) − (µ + ρn))

and the multiplicities uλ,µ(q) and Uλ,µ(q) coincide with the Kostka-Foulkes polynomial K
An−1

λ,µ (q)
when |λ| = |µ| . Moreover by applying Theorem 5.1.5 with |λ| = |µ| and k = 0, we obtain Uλ,µ(q) =

KCn

λ̂,µ̂
(q) = K

An−1

λ̂,µ̂
(q) where the last equality is due to the fact that the Kostka-Foulkes polynomials

of types Bn, Cn or Dn are Kostka-Foulkes polynomials associated to the root system An−1 when

|λ| = |µ| . So we derive the equality K
An−1

λ,µ (q) = K
An−1

λ̂,µ̂
(q).

We have seen that Uλ,µ(q) can be regarded as a q-analogue of the multiplicity of the representation
V (λ) in HCn(µ). In [13], Hatayama, Kuniba, Okado and Takagi have introduced another quantification

Xλ,µ(q) of this multiplicity based on the determination of the combinatorial R matrix of the U ′
q(C

(1)
n )-

crystals Bk. Considered as the crystal graph of the Uq(Cn)-module Mk, Bk can be identify with

B(kΛ1) ⊕ B((k − 2)Λ1) ⊕ · · · · ⊕B(k mod 2Λ1)

where for any i ∈ {k, k−2, ..., k mod2}, B( kΛ1) is the crystal graph of the irreducible finite dimensional
Uq(Cn)-module of highest weight kΛ1. Note that the character of Mk is equal to HCn

k .
Recall that the combinatorial R-matrix associated to crystals Bk is equivalent to the description of
the crystal graph isomorphisms {

Bl ⊗ Bk
≃
→ Bk ⊗ Bl

b1 ⊗ b2 7−→ b′2 ⊗ b′1

together with the energy function H on Bl ⊗ Bk. The multiplicity of V (λ) in HCn(µ) is then equal to
the number of highest weight vertices of weight λ in the crystal Bµ = Bµ1 ⊗ · · · ⊗ Bµn . Then Xλ,µ(q)
is defined by

Xλ,µ(q) =
∑

b∈Eλ

q
∑

0≤i<j≤n H(bi⊗b
(i+1)
j )

where Eλ is the set of highest weight vertices b = b1 ⊗ · · · ⊗ bn in Bµ of highest weight λ, b
(i)
j is

determined by the crystal isomorphism

Bµi
⊗ Bµi+1 ⊗ Bµi+2 ⊗ · · · ⊗ Bµj

→ Bµi
⊗ Bµj

⊗ Bµi+1 · · · ⊗Bµj−1

bi ⊗ bi+1 ⊗ · · · ⊗ bj → b
(i)
j ⊗ b′i ⊗ · · · ⊗ b′j−1

and for any j = 1, ..., n, H(b0 ⊗ b
(1)
j ) depends only on b

(1)
j .

Many computations suggest the following conjecture

Conjecture 5.1.9 For any partition λ and µ of length n with |µ| ≥ |λ|

Uλ,µ(q) = q|µ|−|λ|Xλ,µ(q).

Note that the conjecture is in particular true for all the examples given in the tables of [13].
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5.2 A duality theorem for the q-multiplicities in e(µ) and E(µ)

Consider λ, µ two partitions of length l such that l ≥ |µ| ≥ |λ| . Write n = max(λ1, µ1). Then by
adding to λ′ and µ′ the required numbers of parts 0 we can consider them as partitions of length
n. Set m = max(λ′

1, µ
′
1). We define the partitions λ̃ and µ̃ belonging to πn by λ̃ = (m−λ′

n, ...,m−λ′
1)

and µ̃ = (m − µ′
n, ...,m − µ′

1).

Theorem 5.2.1 With the above notations, we have for any integer k ≥ |µ|−|λ|
2

{
(i) : vλ,µ(q) = KDn

λ̃+kκn,µ̃+kκn
(q)

(ii) : Vλ,µ(q) = KCn

λ̃+kκn,µ̃+kκn
(q)

.

Proof. Since l ≥ |µ| , we have by Proposition 4.2.1 the equality vλ,µ(q) = uλ′,µ′(q). Moreover we

have m ≥ max(λ′
1, µ

′
1) and k ≥ |µ′|−|λ′|

2 for |λ′| = |λ| and |µ′| = |µ| . Hence by applying Theorem 5.1.5

we obtain vλ,µ(q) = KDn

λ̂′+kκn,µ̂′+kκn
(q) where λ̂′ = (m − λ′

n, ...,m − λ′
1) = λ̃ and µ̂′ = (m − µ′

n, ...,m −

µ′
1) = µ̃. So (i) is proved. We obtain (ii) similarly.

Example 5.2.2 For λ = (2, 1, 0, 0, 0) and µ = (2, 2, 1, 0, 0) we have l = 5, n = 2. Moreover λ′ = (2, 1),
µ′ = (3, 2) and m = 3. So λ̃ = (2, 1) and µ̃ = (1, 0). Hence for k = 1

{
(i) : vλ,µ(q) = KDn

(3,2),(2,1)(q) = q

(ii) : Vλ,µ(q) = KCn

(3,2),(2,1)(q) = q2 + q

Remark When λ, µ are considered as weights associated to the root system Cl, the above theorem is
essentially the quantification of a duality result explicited by Foulle [2] from results of [5] for the dual
pair (Sp(2l), Sp(2n)).

6 Identities for the q-multiplicities Uλ,µ(q) and uλ,µ(q)

6.1 A relations between q-partition functions

Consider a nonnegative integer k and define the finite sets
{

Cn
k = {β ∈ πn, β =

∑
1≤r≤s≤n er,s(εr + εs) with er,s ≥ 0 and |β| = 2k}

Dn
k = {β ∈ πn, β =

∑
1≤r<s≤n er,s(εr + εs) with er,s ≥ 0 and |β| = 2k}

.

Note that each β ∈ Cn
k (resp. β ∈ Dn

k ) verifies |β| = 2
∑

1≤r≤s≤n er,s (resp. |β| = 2
∑

1≤r<s≤n er,s). This
implies that

∏

1≤r≤s≤n

1

(1 −
q

xrxs
)

=
∑

k≥0

∑

β∈Cn
k

cCn

β qkxβ and
∏

1≤r<s≤n

1

(1 −
q

xrxs
)

=
∑

k≥0

∑

β∈Cn
k

cDn

β qkxβ

where cCn

β (resp. cDn

β ) is the number of ways to decompose β as β =
∑

1≤r≤s≤n er,s(εr + εs) (resp.
β =

∑
1≤r<s≤n er,s(εr + εs)) with er,s ≥ 0.

Lemma 6.1.1 For any β ∈ πn with |β| = 2k ≥ 0, we have

Fq(β) =
∑

δ∈Cn
k

cCn

δ qkPAn
q (β + δ) and fq(β) =

∑

δ∈Dn
k

cDn

δ qkPAn
q (β + δ).
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Proof. We have:

∏

1≤i<j≤n

1

(1 − q xi

xj
)

∏

1≤r≤s≤n

1

(1 − q
xrxs

)
=
∑

η∈πn

∑

δ∈πn

cCn

δ q|δ|/2PAn
q (η)xη−δ

which implies the equality Fq(β) =
∑

η−δ=β cCn

δ q|δ|/2PAn
q (η). Since PAn

q (η) = 0 when |η| 6= 0, we can
suppose |η| = 0 and |δ| = |β| in the previous sum. Then δ ∈ Cn

k and the result follows immediately.
The proof for fq(β) is similar.

6.2 Expressions of the multiplicities uλ,µ and Uλ,µ in terms of Kostka numbers

Suppose that ξ and γ belong to πn. Then we can define the polynomial

K
An−1

ξ,γ (q) =
∑

σ∈Sn

(−1)l(σ)PAn−1
q (σ(ξ + ρn) − (γ + ρn)).

Note that the coefficients of K
An−1

ξ,γ (q) may be negative. When ξ = λ is a partition, K
An−1

λ,γ = K
An−1

λ,γ (1)
is equal to the dimension of the weight space of weight γ in V (λ). When γ = µ is a partition, we have

{
K

An−1

ξ,µ (q) = (−1)l(τ)K
An−1
ν,µ (q) if ξ = τ ◦ (ν) with τ ∈ Sn and ν a partition

0 otherwise

Proposition 6.2.1 Consider λ, µ two partitions of length n such that k = |µ| − |λ| ≥ 0. Then

uλ,µ(q) =
∑

δ∈Dn
k

cDn

δ q
|µ|−|λ|

2 K
An−1

λ,µ−δ(q) =
∑

δ∈Dn
k

cDn

δ q
|µ|−|λ|

2 K
An−1

λ+δ,µ(q) and

Uλ,µ(q) =
∑

δ∈Cn
k

cCn

δ q
|µ|−|λ|

2 K
An−1

λ,µ−δ(q) =
∑

δ∈Cn
k

cCn

δ q
|µ|−|λ|

2 K
An−1

λ+δ,µ(q).

Proof. By definition we have

Uλ,µ(q) =
∑

σ∈Sn

(−1)l(σ)Fq(σ(λ + ρn) − (µ + ρn)).

Hence from the above lemma we derive

Uλ,µ(q) =
∑

δ∈Cn
k

cCn

δ q|δ|/2
∑

σ∈Sn

(−1)l(σ)PAn−1
q (σ(λ + ρn) − (µ − δ + ρn)) (15)

which yields the first desired equality since K
An−1

λ,µ−δ(q) =
∑

σ∈Sn
(−1)l(σ)P

An−1
q (σ(λ+ρn)−(µ−δ+ρn)).

For any σ ∈ Sn, we have σ(Cn
k ) = Cn

k and cCn

σ(δ) = cCn

δ . Thus (15) can also be rewritten

Uλ,µ(q) = q|δ|/2
∑

σ∈Sn

(−1)l(σ)
∑

δ∈Cn
k

cCn

δ PAn−1
q (σ(λ + ρn + δ) − (µ + ρn)) =

∑

δ∈Cn
k

cCn

δ q
|µ|−|λ|

2 K
An−1

λ+δ,µ(q).

The proof is similar for uλ,µ(q).
By setting q = 1 in the above relations we obtain the following expressions of the multiplicities Uλ,µ

and uλ,µ in terms of Kostka numbers.
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Corollary 6.2.2 {
Uλ,µ =

∑
δ∈Cn

k
cCn

δ K
An−1

λ,µ−δ =
∑

δ∈Cn
k

cCn

δ K
An−1

λ+δ,µ

vλ,µ =
∑

δ∈Dn
k

cDn

δ K
An−1

λ,µ−δ =
∑

δ∈Dn
k

cDn

δ K
An−1

λ+δ,µ

.
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