N

N

The Korteweg de Vries Kawahara equation in a
boundary domain and numerical results.

Juan Carlos Ceballos, Mauricio Sepulveda, Octavio Vera

» To cite this version:

Juan Carlos Ceballos, Mauricio Sepulveda, Octavio Vera. The Korteweg de Vries Kawahara equation
in a boundary domain and numerical results.. Applied Mathematics and Computation, 2007, 190 (2),
pp.912-936. 10.1016/j.amc.2007.01.107 . hal-00003002v2

HAL Id: hal-00003002
https://hal.science /hal-00003002v2
Submitted on 5 Apr 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00003002v2
https://hal.archives-ouvertes.fr

The Korteweg de Vries Kawahara equation in
a boundary domain and numerical results
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Abstract

We are concerned with the initial-boundary problem associated to the Korteweg
de Vries Kawahara perturbed by a dispersive term which appears in several fluids
dynamics problems. We obtain local smoothing effects that are uniform with respect
to the size of the interval. We also propose a simple finite different scheme for
the problem and prove its unconditional stability. Finally we give some numerical
examples.
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1 Introduction

We consider the non linear problem for the Korteweg de Vries - Kawahara(KdV-
K) equation
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U + N Ugzzzz + Ugee +Uuz +u, =0, x€[0, L[, te]0,T], (1.1)
U(O, t) = gl(t)> u:c(o> t) = 92(t)> te [O> T[> (1'2)
w(L,t) =0, wuy(L,t)=0, wuu(L, t)=0, te]l0,T] (1.3)
u(x, 0) = up(x) (1.4)

where u = u(z, t) is a real-valued function, n € R. Equation (1.1)-(1.4) is a
version of the Benney-Lin equation

Uy + N Ugzzzr + B (Uppas + Ups) + Upge + utty = 0 (1.5)

with —oo < o < 400, t € [0, T], T is an arbitrary positive time, > 0 and
neR.

The above equation is a particular case from a benney-Lin equation derived
by Benney [1] and later by Lin [2] (see also [3-5] and references therein). It
describes one dimensional evolutions of small but finite amplitude long waves
in various problems in fluid dynamics. This also can be seen as an hybrid
of the well known fifth order Korteweg-de Vries(KdV) equation or Kawahara
equation. In 1997, H. Biagioni and F. Linares [6] motivated by the results
obtained by J. L. Bona et al. [7] showed that the initial value problem (1.5) is
globally well-posed in H*(R), s > 0. The initial value problem (1.5) has been
studied in the last few years, see for instance for comprehensive descriptions
of results pertaining to the KAVK equation [6,8] and references therein.
Guided by experimental studied on water waves in channels [9-11], J. L. Bona
and R. Winter [12,13] considered the Korteweg de Vries equation

Up + Ugpe + U U, +u, =0 for z,t>0 (1.6)
u(z, 0) = f(x) for >0 (1.7
u(0,t) =g(t) for t=0 (1.8)

and proved that such that a quarter plane problem is well posed. See [14-16]
for theory involving nonlinearities having more general form. J. L. Bona and P.
L. Bryant [9] had studied the same quarter plane problem for the regularized
long-wave equation

Up + Uy + U Uy — Uggr = 0 (1.9)
and proved it to be well posed. In [17,18], J. L. Bona and L. Luo studied an
initial and boundary-value problem fr the nonlinear wave equation

in the quarter plane {(z,¢) : = > 0 and ¢ > 0} with the initial data and
boundary data specified at t = 0 and on x = 0, respectively. With suitable



restrictions on P and with conditions imposed on the initial data and bound-
ary data which are quite reasonable with regard to potential applications, the
aforementioned initial-boundary-value problem for (1.10) is show to be well
posed.

In this work, motivated by the results obtained by T. Colin and M. Gisclon
[19] we show that the Korteweg de Vries Kawahara equation has smoothing
effects that are uniform with respect to the size of the interval and we also to
propose a simple finite different scheme for the problem and prove its stability
This paper is organized as follows: In section 2 outlines briefly the notation and
terminology to be used subsequently and presents a statement of the principal
result. In section 3 we consider the linear problem and we will find a priori
estimates. In section 4 we obtain estimates that are independent of L for the
nonhomogeneous linear system. In section 5 we prove the existence of a time
Tnin depending only on ||g|| g0, 7) and |[uo||r2((1442)dz) Put not on L such that
ul exists on [0, T},;,] thanks to uniform (with respect to L) smoothing effects.
In section 6 we present a finite different scheme for the initial-boundary-value
problem (KdVK); we prove its stability and present some numerical experi-
ments. The paper concludes with some commentary concerning aspects not
covered in the present study. Our main result reads as follows

Theorem (Existence and Uniqueness). Let n < 0, wy € L*((1 + 2?)dz),
g € HL (RT) and 0 < L < 4o0o. Then there erists a unique weak mazimal
solution defined over [0, TL] to (R). Moreover, there exists Tp, > 0 indepen-
dent of L, depending only on ||wo||r20, 1y and ||g||m1 o, 1) such that Ty = T
The solution w depends continuously on wy and g in the following sense: Let
a sequence wiy — wo in L*((1+2?)dx), let a sequence g" — g in H.(RT) and
denote by w" the solution with data (w, g") and T} its existence time. Then

lim inf 77 > 17,

n—-+00

and for all t < T, w™ exists on the interval [0, T| if n is large enough and
u"™ — u in Hr.

2 Preliminaries

Let © a bounded domain in R. For any real p in the interval [1, oco], LP(£2)
denotes the collection of real-valued Lebesgue measurable p*™-power abso-
lutely integrable functions defined on €. As usual, L>°(Q2) denotes the essen-
tially bounded real-valued functions defined on 2. These spaces get their usual
norms,



1/p
||| Lr) = {/Q |u(a:)|pdzz} for 1<p<+o0

and

||| o) = sup ess |u(x)|
zeN

For an arbitrary Banach space X, the associated norm will be denoted || - || x.
The following spaces will intervene in the subsequent analysis. For any real p in
the interval [1, oo] and —oo < a < b < 400 the notation LP(a, b: X) denotes
the Banach space of measurable functions u : (a, b) — X whose norms are
p'P-power integrable(essentially bounded if p = +o0c). These spaces get their
norms,

b
el xy = [ Il )l dt - for 1< p < +oc.

and

[ull Loe(a, b: x) = SUPP re(q,p) [|u( -, B)|[x  for  p = +oo.

In this paper, we assume that for 0 < L < +oo the initial data uy € L?(0, L)
and that ruy € L?(0, L) and we introduce

L 1/2
l|uol|L2((1422) dz) = [/0 ud (14 z?) dx] )

We introduce the following spaces:
E:={fe LY 0, T: L}((1+ 2% dx)), VtfeL*0,T: L*((1+ 2% dx))}.
This space is endowed with the norm

1/2 1/2

||f||IE:/0T U)Lﬂ(x, t)(1+x2)dx]

T
:/0 1l 2(1a2) dey At + ||V Fll 120,72 L2((1442) o))

dt + l/OT/OLt[f(:):, O (1 + 22) de dt

= || fll210.7: L2((11a?) do)) + [VE Fll 2200, £2((1302) da))

Let T > 0.

Hy = {ue C([0, T): L*((1+ 2% dz)), u, € L*(0, T : L*((1 + z) dx))
Vtu, € L2([0, T]: L*((1 +z)dz)), Vtug, € L*([0, T]: L*(0, L))}.



This space is endowed with the norm

|| [ez = ||| Lo (0, 7: L2(1422) da)) T [[Wa|| 2200, 7 L2((142) dr))

+ ||\/Zu:c||L2(0,T: L2((14a) dz)) T+ ||\/Zu:c:c||L2(0,T: L%(0,L))-

Let 2 a bounded domain in R. If 1 < p < +o0, and m > 0 is an integer,
let W™P(2) be the Sobolev space of LP(2)-functions whose distributional
derivatives up to order m also lie in L”(£2). The norm on W™?(Q) is

el niey = D2 1105 ullLoq)-

as<m

The space C®(Q) = ;5o C?(Q) will be used, but its usual Fréchet-space
topology will not be needed. D(2) is the subspace of C*(Q2) of functions
with compact support in €. Its dual space, D'(2), is the space of Schwartz
distributions on Q. When p = 2, W ?(Q2) will be denoted by H™(£2). This is a
Hilbert space, and H°(Q) = L*(€2). The notation H>(Q2) = ;5o H’(£2) will be
used for the C*°-functions on €2, all of whose derivatives lie in L*(). Finally,
H" () is the set of real-valued functions u defined on 2 such that, for each
v € D(Q), pu € H™(Q). This space is equipped with the weakest topology
such that all of the mappings u — @u, for ¢ € D(Q), are continuous from
H".(Q) into H™()). With this topology, H/™ () is a Fréchet space. Let R
denote the positive real numbers (0, co). A simple but pertinent example of
the localized Sobolev space is H[”.(RT). Interpreting the foregoing definitions
in this special case, u € H{".(R") if and only if u € H™(0, T'), for all finite
T > 0. Moreover, u,, — w in H? (R") if and only if w,, — w in H™(0, T'), for
each 7' > 0.

We consider the inhomogeneous initial value problem

ou
E(t) = Au(t) + f(t), t >0,

u(0) =z,

where f : [0, T] — X and A is the infinitesimal generator of a Cj semigroup
S(t) so that the corresponding homogeneous equation, i. e., the equation with
f =0, has a unique solution for every initial value x € D(A).

By ¢, a generic constant, not necessarily the same at each occasion, which
depend in an increasing way on the indicated quantities.

The following result is going to be used several times in the rest of this paper.

Lemma 2.1 We have the following inequalities



ull72 (150 dmy < 3 1l T2((1502) ) (2.1)
ull oo, 7y < (¢ + VT ) ||ul| 10,7y (2.2)
HUHLl(o T: L2((1422) do)) S VT ||U||L2(0,T: L2((1+22)dz)) (2.3)

and, if u € H*(0, L), u(0) = 0 then

l[wllze(o, ) < 2 |[ullz2(0, £y ||tal|L2(0, 1) (2.4)

3 Uniform estimates on the solutions to the linear homogeneous
problem

We consider the linear problem for the Korteweg de Vries Kawahara equation

Ut + N Ugzzar + Ugzs + Uy = 0 xe[0, L], tel0,T], (3.1)
u(0,t) =0, wu,(0,t)=0, tel0, T, (3.2)
u(L,t) =0, wu,(L,t)=0, um( , 1) =0, telo, T, (3.3)
u(z, 0) = ug(x) (3.4)

where v = u(z, t) is a real-valued function, n € R.

Lemma 3.1 Let ug € L*(0, L) and n < 0. Then there exists a continuous
function t — c(t) such that

[[wllzeo(0,7: z2(0, £y) < (T') ||uol|L2(0, L) (3.5)
<

[tz (0, M| z200, 7y < (T) [Juol| 20, 1)- (3.6)

Proof. Multiplying (3.1) by u and integrating over x € (0, L) we have

L L L L
/ wug dr + 77/ U Upgpgy AT +/ U Uy AT +/ wu, dr = 0. (3.7)
0 0 0 0

Each term is treated separately integrating by parts

/L dr=1d "2 /L d Lz 0
uude = = — u®dz UlUgpppe AT = — = 1 U2 ,
0 ! 2 dt Jo ’ 770 277

L L
/ U Ugpe dx = 0, / uu, dr = 0.
0 0

Replacing in (3.7) we have



then

d

77 ellZz, 0y = n uz (0, 6) = 0. (3.8)

Integrating (3.8) in ¢t € (0, T') we have

t
s,y = [ 42,00, ) ds = [fuollF2(, 1) (3.9
Then, using n < 0, the Gronwall inequality and straightforward calculus we

have

lulZ20, 2y = 1 uaa(0, )72, 7y = e(T) [luol 720, 1) (3.10)
and (3.5)-(3.6) follows. m

Lemma 3.2 Let ug € L*(0, L) and n < 0. Then there exists a continuous
function t — ¢(t) such that

||tz 200, 7: 200, ) < (T) ||to|L2(0, ) (3.11)
||Um||L2(0,T; L2(0, L)) < C(T) ||U0||L2(0,L)- (3.12)
HUHLOO(O,T: L2((1+4z) dz)) < C(T) HUOHL2(0,L)- (3-13)

Remark 3.1 From (3.12) we obtain that if ug € L*(0, L) then u € H*(0, L).
This means that we have a gain of two derivatives in reqularity, while in the
Korteweg-de Vries equation only one derivative is gained.

Proof. Multiplying the equation (3.1) by z u and integrating over = € (0, L)
we have

L L L
/xuutdx+n/ :cuummmd:ch/ T U Upgy AT+
0 0 0
L
/:Euuxd:)s:O. (3.14)
0

Each term in (3.14) is treated separately

L 1d L, L 5 L,
/ TuU dr = - — ru-dr, 77/ TUUgppgs AT = — = 77/ u;, dz,
0 2 dt Jo 0 2 "Jo

L 3 L L 1 /L
/ xuumxdz:—/ uidz, / xuuxd:v:——/ u? dz.
0 2 Jo 0 2 Jo



Hence, replacing in (3.14) we have

d L L L L
—/ :cu2d:c—5n/ uixdx+3/ ufcdx—/ u*dr =0
dt Jo 0 0 0

then

d (L L L L
—/ ru®dr —5 17/ uixdx+3/ u? dx :/ u?dr = ||u||2L2(0 1)(3:15)
dt Jo 0 0 0 ’

where using (3.5) we obtain

d L L L
—/ x u? d:)s—n/ u?, dx—l—?)/ u? dz < (T) ||u0||2L2(0 L) (3.16)
dt Jo 0 0 ’

Integrating (3.16) in ¢ € (0, T') we have

L t L t L
/xuzdz—n// uixdxds—l—?)// u? dx ds
0 0 Jo 0 Jo

L
(0) ol 0y + | wufda

L
<elT) lfuoliEa py + L | uddo

=c(T) [JuollZ2(0, 1y + L lluollz20, 1y < e(T) [luoll72(0, 1)

N

then using that n < 0 and

||U||2Lo<>(o,T: L2(zdz)) — 7 ||Uxx||%2(0,T: L2(0, L))
+3 ||Um||%2(o,T: 20,0y < ¢(T) HU0H2L2(0,L) (3.17)

we have that (3.11) and (3.12) follows. Moreover, adding (3.5) with the first
term in (3.22), we obtain (3.13). m

Lemma 3.3 Let ug € L*(0, L) and n < 0. Then there exists a continuous
function t — c(t) such that

L
/0 w2 de < e(T) |[uo| 220, 1- (3.18)
A
//ufczcdxdtéc(T)||u0||%2(0L). (3.19)
0 Jo ’
T L
//uixxd:cdtgc(T)||u0||%2(0L). (3.20)
0 Jo :
[[wllzoo (0, 7: L2((14a2)dz)) < (T') [|uol|L2(0, L)- (3.21)
[wallL20,7: L2((142) day) < (T) ol L2(0, 1)- (3.22)



Proof. Multiplying the equation (3.1) by 22 u and integrating over x € (0, L)
we have

L L
/x2uutdx+n/ T2 U Ugpppe AT
0 0
L L
+/ xzuummdij/ 2 uu,dr = 0. (3.23)
0 0

Each term is treated separately, integrating by parts

2 dt

L L L
/Ox2uumxdx:3/0 xuidaj, /Oxzuuxdm:/o xu?de.

Hence, in (3.23) we have

Loy 1 d 2 Loy Loy
/ z“uudr = 2w dx, n/ T uuxmmdx:—f)n/ ru, dz,
0 0 0

d L L L L
—/ :)32u2d93—577/ xuixdz+3/ xuidz—/ rutdr =0
dt Jo 0 0 0

N —

then

d r* 5 , Lo Lo Lo Loy

—/ xudx—lOn/ xumd:ﬁ+6/ a:umd:)s:2/ Tu dx<2L/ u®dx

dt Jo 0 0 0 0
hence

d L L L L
—/ x2u2d:)3—1017/ xuixd:ﬁ+6/ a:uidxéQL/ u? dx
dt Jo 0 0 0

then, using (3.5) we obtain

d " o5 L
%/Oxudx—mn/o T U, dx

L
+6/ vu2de <2 L o(T) [ugl 32 1)- (3.24)
0 k)

Integrating (3.24) over t € (0, T') we have

/0 2u? do — 1077// :Eumd:)sds—l—(i// vuldzds

<2 Le(T) ol + [ 7w

L
<2 Le(T) ot 1y + L7 [ ufde < e(T) [fuollFag .



We obtain

/ u? do — 1077// rvu, drds
0
+6/0/0 vuldrds < c(T) ||u0||%2(07L) (3.25)

and (3.18)-(3.20) follows. From (3.5) and (3.18) we obtain (3.21) and from
(3.11) with (3.19) we have (3.22). The result follows. m

Lemma 3.4 Let ug € L*(0, L) and n < 0. Then there exists a continuous
function t — ¢(t) such that

|1V 1220, )l 220,17y < (T) [|uo] |20, 1) (3.26)
IVE uall 20,7 1200,y < (1) [[uto |20, 1)- (3.27)
/ / s u2, zdrds < c(T) |Juol| 20, . (3.28)
H\ﬁ U||L°°(0 T: L2(142) dx) <c(T) ||U0HL2(0 L) (3.29)
Proof. In (3.10) we have
d L 2 2
= e =2, (0.1) = 1) [luoll o (3.30)

Multiplying (3.30) by ¢ and integrating the resulting expression over t € [0, T|
we have

t L t
/ sli / um] ds—n [ 5 02,0, 8)ds < e(T) lfuoll 2.1
0 ds Jo 0 ’

then

L ¢
t/ u? do —n/ su2,(0, 5) ds < c(T) [Juol| 20, 1)
0 0
+|ullZ20,7: 220, 1) (3.31)
Using (3.5) we obtain

[t dr =0 IVE e 0, s < o) ol 01 (332)

and (3.26) follows. Multiplying (3.16) by t and integrating the resulting ex-
pression over t € [0, T we have

10



t [d (L t L t oL
/s[—/ xuzd:c] ds—n// suiwdmds+3// s uZ dx ds
o |dsJo 0 Jo 0 Jo

<co(T) [uol |20, 1) (3.33)

hence

L
t/o zu?dr —n ||Vt sz 200 7. 1200, 7))
+3 ||Vt uallZ20, 1. 120,19 < (T) |[uollZ2(0, 1) (3.34)
and (3.27) follows. Moreover, from (3.32) and (3.34) we obtain (3.29). m

Lemma 3.5 Let uy € L*(0, L) and n < 0. Then there exists a continuous
function t — c(t) such that

T L
/ / s u2 o do dt < o(T) |Juol |2, 1)- (3.35)
o Jo
T L
/ / sz, xdrdt <c(T) ||uol| 20, 1)- (3.36)
o Jo
Hﬂ um||L2(0, T: L2(14a) dz) S (T ||U0||L2(0, L) (3.37)

Proof. Multiplying (3.24) by ¢, and integrating by parts the first term we
obtain

L t (L
t/ x2u2dx—10n// sz ul, drvds
0 0 Jo
t L
+6// sz udrds < o(T) |[u| 220, 1) (3.38)
0 Jo ’

and (3.35), (3.36) follows. From (3.27) and (3.35) we obtain (3.37). =

4 Non-homogeneous linear estimates

We consider the non-homogeneous linear problem for the Korteweg de Vries
Kawahara equation

Ut + N Vszowe + Vpaw + Ve = f(x, ), x€][0, L[, tel0,T],
0(0, 1) =0, v,(0,t)=0, telo, Tl

(L, t) =0, v,(L,t)=0, wvg(L,t)=0, tel0, T,
v(z, 0)=0

11



where v = v(z, t), n € R.

Lemma 4.1 Let f € E. Then there exists a continuous function t — c(t)
such that

]| Loo o, 7: 22((1422) de)) < (D) || f]]L10, 7 £2(( 1402 ) da)) - (4.5)

Proof. Multiplying (4.1) by v, integrating over (0, L) and performing similar
calculus to (3.10) we have
d L L
—/ v? dx — 1 v44(0, t) < 2/ v fd. (4.6)
dt Jo 0
Multiplying (4.1) by x2 v, integrating over (0, L) and performing similar cal-
culus to (3.30) we have
d b 5 o Loy Loy
—/ x°v dx—lOn/ :L’vmdx—i-6/ x v, d
dt Jo 0 0
L L
<2/ I2de$+2L/ v? du. (4.7)
0 0

Adding (4.6) with (4.7) we have

d L L L
—/ 1)2(1+552)dx—1077/ :Bvixdzv+6/ zvldy
dt Jo 0 0
L L
gz/ vf(1+x2)dx+2L/ 0% da
0 0
L
<2 lollzeqreaty o [1Flleareanyan + 2L [ vPde. (48)

Integrating over ¢ € (0, 1) we obtain

L t L t (L
/ v2(1+x2)da:—1077/ / xvixdxds—l—ﬁ/ / zv2drds
0 0 Jo 0 Jo

t
<2/0 vl 21422y 2y |1 f1]L2((1402 ) do) A8

t L
+2L/ / 02 da ds
0 Jo

< 2||v||poe(o, 7 L2((1402 Y da)) [ 1|22 0, 7: £20(1422 ) d))

t L
+2L/ / v2dx ds.
o Jo

12



Hence

t oL t L
||U||Loo(o7T;LZ((sz)dI))—1077/0/0 :Bvixdatdsjtfi/()/o rv? dx ds
L2||v|zoc0,7: L2((14a2 )y dw)) [ F1|L1(0, 72 L2((1402 ) da))

+2 L [|v] |2L2(0, T: L2(0, L))

thus using estimates as in section 3; (3.5), (3.6), (3.12), (3.21) and straight-
forward calculus we obtain

t pL t rL
HU||L°°(0,T: L2((1+x2)dm))_1077/ / xvfmdxdstG/ / :L’Ui dr ds
0 JO 0 JO
<cAD) 0.7 2(( 1402 ) day) (4.9)
and (4.5) follows. m

Lemma 4.2 Let f € E. Then there exists a continuous function t — c(t)
such that

|V2|lL200, 7: L2(4a)dz)) <€ || Fl|L1 0, 7: L2((1422)de)) - (4.10)

IVt Ve 220, 7 22((1tw)de)) <€ | F1 L2107 L2((1102) ) (4.11)

Proof. From (4.1)-(4.4) we have(see [20] for the construction of this semi-
group).

vz, t) = /OtS(t—s) f(x, s)ds.

Differentiating in x-variable we have

ve(x, t) = /Ot 0.5t —s) f(z, s)ds, (4.12)

applying || - |[2((142)dx)

t
|va (2, D) 2((140)de) < /0 105t — 5) f(x, $)||L2((142)dz) dS

multiplying by ¥(t) € L*(0, T)

t
e, Dllza(raariny 00 < | [ 10:5( = 5) £, 9125 d

13



integrating over t € (0, T')
T T t
e Ollaamran w0 dt < [ [ 1050 = 8) f 9)lliarim an ds| 00) dt

applying | - |

/0 10,5t = 5) £, 9)laqisman ds} () | dt.

T
<‘/
0

Using Fubini’s Theorem and the Cauchy-Schwartz inequality we have

T
e Ol aran w(t)

T T
< [ [T 1901108~ ) £, )12 100 e ds

T
et Dl vl
1/2 1/2

/OT l /OT\w(t)Pdt] l /OTHamS(t—s) f(z, 5>||%2<<1+x>dx>dt1 ds

/N

T V2 rr1 .7 1/2
[ tewpal [ 009 e M @] as

T V2 rr .7 1/2
vl [Tk [ M an ] as

T /2 7 T 11/2
v[ [T wwra) [T o | [ ] a

- /2 p
M TV? [/o |w<t>|2dt] |15 )l ds

/N

N

N

N

(2.1) T 12 7
vy [ClpoPa] [l e

T 1/2
< & |:/0 |¢(t)|2dt] ||f||L1(O7T:LQ((1+I2)dm))-

Therefore

T
[ e Dllrasmas v @
. 1/2
<o | [T1r ] Il e (113
If @/)(t) = ||UI(ZL', t)||L2((1+m)dgc) then
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T
T —

T 1/2
<o | [ onte DB dt] sz rsanay

then

vz, D)[720, 7. 22((1 1))y < € Nve(@, B)]|220,7: L2((14)da)) ||| 220,72 L2((1502)d2))-

Moreover, multiplying by v/t and using similar calculus as in (4.10) we obtain
(4.11). m

Lemma 4.3 Let f € E. Then there exists a continuous function t — c(t)
such that

IVt Uzl 20,7 1200, 1) < (T) || F1l20,7: 22(1442) dy - (4.14)
T rL
/0 /0 t 02 drdt < c(T) || f||p 0.7 12(1502) o)) (4.15)

Proof. Multiplying (4.1) by z v and integrating over z € [0, L] we have

L L L
/ T UV dx+n/ TV Vyppppe AT + / Vg AL
0 0 0

L L
+/0 :Evvxd:)s:/o z v f(x, t)dr

performing similar calculus and straightforward estimates as in (3.16) and
using Lemma 2.1(2.1), we have

d L L L
—/ vadx—n/ vfmdx—i-?)/ v2 dx
dt Jo 0 0

< (D) If Zago, 7 £2(1402) o) (4.16)

Multiplying by t and using straightforward calculus we obtain

L
t/O zvtde—n ||Vt Va1 22(0, 7 12(0, 1)
t pL
#3 [ ["soldrds <eT) o armany  (417)

the result follows. =
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Lemma 4.4 Let f € E. Then there exists a continuous function t — c(t)
such that

VE ]| 0,7 p2((102) o)) < € [ F] 200, 22((1402)d)) - (4.18)
T (L
/0 /0 t o2 wdrdt < e(T) ||l 0.7 L2((1sot)n))- (4.19)
T L 9
/0 /0 t 02, wdedt <c(T) || f]]p 0.7 12((1ra2)an))- (4.20)
IVt vl 220, 7 12142y dey < ST || Fl 10,7 12((1402)d) - (4.21)
IVt Vel 220, 7 12y ey < (D) | F1|L20, 7 £2((1402)da)) - (4.22)

Proof. From (4.8) we have

dt/ (1+2%) da:—lOn/ xvxxdzv+6/ zvldy

<2 ||U“L2((1+x2)dm) ||fHL2((1+m2)dm) +2L/0 v dflf (423)

Multiplying by ¢, we perform similar calculus as in (4.9) and we integrate over
telo,T]

IVE 0| Foe 0,7 12((1422) o)) — 10 77/ / s vy, drds
6 [ [swutduds < e A1 r 120sarinn (4.24)

and we obtain (4.18), (4.19) and (4.20). From (4.15) and (4.19) we have (4.21)
and from (4.14) with (4.20) we have (4.22). m

5 Non linear case

We now prove in this section a local existence result for the nonlinear system

Up + N Upprer + Uppr + U Uy + Uy = 0 xe|0, L[, te]0,T], (5.1)
0.0 =) 0.0 =i, (€D TL (5.2)
w(L, 1) =0, wu,(L,t)=0, wum(L, t) = te o, TJ, (5.3)
u(z, 0) =up(x), =z €l0, L] (5.4)
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where u = u(x, t), n € R.
Let & be a smooth function defined over Rt such that

1,i=k

EL)=cV(L)=¢P(@L)=0 and €M(0) = {
0, # k.

Definition 5.1 A weak solution of (5.1)-(5.4) on [0, T is a function u(z, t) €
Hy such that

satisfy
w(z, t) = S(t)wo(x)
Lot
=3 [ (600406 g+ &0 i+ €0 g+ 0+ &g (w,+ 679 ] ds
=0

where wo(x) = up(x) — i &i(x) 9:(0).

We consider the change of function (5.5) in (5.1)-(5.4). Hence this change
of the function yields an equivalent problem, i.e., we transform the original
problem into a problem with a Dirichlet boundary condition g; = 0(i = 0, 1),

Wy + 1 Weggrr + Wagy + Wy = — F(w, wy, g;), x€[0,L], tel0,T],(56)

w(0,t) =0, w,(0,t)=0, tel0, T, (5.7)
w(L,t) =0, wy(L,t)=0, we (L t)=0, tel0,T], (5.8)
1
w(x, 0) = wo(x) = uo(z) — uo(z) — Zéz(x) 9:(0), x€l0, L] (5.9)
i=0
where
1
F(w, wg, g) = [& 059 + 7751'(5) gi + §i(3) gi + &m gi + (w +&; g) (wx + &m gi) }
i=0

We write (5.6) as

we, 1) = S(two(s) - [ "S(t— ) Fw, w,, gi) ds (5.10)

where S(t) is the linear semi group. We introduce the following functional I'
defined by

17



[(wo, gi, w) = S(t)we(x) — /Ot S(t —s) F(w, w,, g;)ds

Remark. We would like to construct a mapping I' : Hy — Hy with the follow-
ing property: Given & = I'(¢)) with ||¢||m, < R we have ||T'(¢)||m, = |[&]|m, <
R. In fact, this property tell us that I' : Bg(0) — Bg(0) where Bg(0) is a
ball in the space Hy. Then if we want to prove that there exists a unique
solution u defined on Hy, weak solution of (5.1)-(5.4), it is enough to apply
the Banach’s fixed point Theorem for v — I'(ug, g;, u) on Bg(0), (which is a
complete metric space) which yields local existence and uniqueness.

Lemma 5.1 There exist a constant ¢(T') depending on T. independent of L
such that for all ug € L*(0, L) andn <0

1S (@)uoller < (T) [|uol| 20, 1) (5.11)
and the map T — ¢(T) is continuous.

Proof. Is a consequence of inequalities (3.21) and (3.22). m

For the non-homogeneous problem and using that v(z, t) = [5 S(t—s) f(x, s) ds,
we have

Lemma 5.2 There exist a constant ¢(T') depending on T. independent of L
such that for all f € E andn <0

and the map T — c(T) is continuous.

<) |11l (5.12)

/Ot S(t — s)f(s) ds

Proof. Is a consequence of inequalities (4.5), (4.10), (4.11) and (4.14). =

Lemma 5.3 For all u € HY(0, L) such that u(0) = 0, we have

1/2 1/2
IVZ |0 <5 [l el + 2w | (5:13)

Theorem 5.1 Let n < 0. Suppose that wy, 2o € L*(0, T), and g; and h; are
in H. (RT). Then there exists a continuous function t — c(t) such that for
all T € [0, Ty] we have

|| F(wm 9i, w) - F(Zo, hi, Z) ||IHI

<e(T) |lwo = 2ol 220,y + e(T) VT [ 11 gi = hi oy + |[w = 2|z + |[2]]z |
+ (M) VT [ (1+VT) JJw = 2|l [[wll + |[w — 2[]s [[w]]a | (5.14)
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Proof. Let I'(wy, g;, w) = S(t)wo(z) — /Ot S(t —s) F(w, wg, g;)ds then
[(wo, gi, w) —T'(20, i, 2) = S(t)(wo — 20) ()
‘ZA S(t — 8) [F(w, we, gi) — F(z, 20, ha)] ds. (5.15)

Let

K(S) :F(w7 Wy, gl) - F(Z7 2z, h’z)
=6 (g2 = h) + e + P + V] (9 — h)
+ 609 = i) + &1 (wgi = 2 1) + & (wy 95— 2 hy)

+ww, — 22,
=K+ Ky + K;
where
Ki(s)=6&" (g = 1) + &7 + &7 + 6] (9 — ha) + 60u(90 — 1)

Ky (s) :&(1) (wgi — 2 h;) + & (we gi — 22 hy)
K3(s)=ww, — 2 z,.

Hence in (5.15), using Lemma 5.1 and Lemma 5.2 we have

[T (wo, gi, w) =20, his 2)|[m < e(T) [|wo = 20]|2(0, ) + ¢(T) || K|l

(5.16)

< C(T) ||w0 - Zo||L2(0,L) + C(T) {||K||L1(O,T: L2((1+a?)dz)) T ||\/EK||L2(O,T: L2((1+x2)dx))}

We estimate separately K, Ky, K3.

K| 22 ((1402)de)
<& fi(l) (97 —hi)+1n 52'(5) + 52'(3) + 52'(1)] (9 = Pi) |22 (1 4a2)de)
+ 1€ 0s(9i — hi) || L2((1-422)dw)
<I&ED (g + ha) + 0867 + 67 + 677 (95— hi)ll 2 ez
+ (1€ (0s9i — Oshi ) || L2((1442) dar)
Sc(L4+1gi@) |+ hi(@)]) [9i(t) = hi(t) | + ¢ | Orgi(t) — Ophi(t) |
=c(1+|gi(t) |+ hi(t)]) [ g:(t) = hi(t) | + | gi(t) — Ri(t) |. (5.17)

Integrating over t € [0, T'] we have
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HKluLl(o,T; L2((1+x2)dz))

t t
<C/0(1+|9i(5)|+|hz‘(5)\) \gi(s)—hi(s)\ds+c/0 | gi(s) — hi(s) | ds
< VT || gi = hillzzo,r) + | 9i ll2,7) 11 96 — i ll 20,7y
+ || hi llz20,7) 11 9i = i |l 220, 1) + € VT || g, — 1, 2200, 1)
< VT || gi = hillmo,r) + 1 9i 201 11 96 — hillmo, 1)

+ [ 2 [l e20, 7y 1| 956 = Pi || 0, 1) + € VT || gi — hi | 1.0, 7)-

Using that g; and h; are in H}.(R") we obtain

K| 10,7 22((1sa2)iey) < € VT | g5 — P || 0.7)- (5.18)

Similarly, elevating square (5.17) we have

1721402 )
G L1+ g |+ [hat) ) | gi(t) = ha(t) | + | gi(t) — hi(t) | |2
= (L4 ]gi() |+ hi(t))? [ gi(t) — ha(t) |* + ¢ | gi(t) — hi(t) |?
+2 (14 [gi(t) [+ | Ra(@) ) | gi(t) = hi(t) | | gi(t) — hi(t) |
= (14 ]g:(t) P+ [ a(t)]* +2 ] gi(t) |
+2 [hi(t) |+ 2 [ g:i@) [ Tha(t) |) | gi(t) — ha(t) |?
+ 1 gi(t) = R P+ 2 | ga(t) — ha(t) | | gi(t) — hi(t) |
+2 | gi(t) || gi(t) — ha(t) | | gi(t) — hi(t) |
+2. ¢ [ hi(t) ] | gi(t) — ha(t) | | gi(t) — Ri(2) |
=1 gi(t) = hi(t) P+ | g:() 1?1 9 (t) — hi(t) [2 + [ ha(8)]? | gi(£) — ha(t) |
+ 2 gi(t) | [ gi(t) — ha(t) >+ 2 [ ha(t) | | gs(t) — ha(t)
+ 2 gi(t) | [ ha(t) | 1 gst) — ha(t) |

+c gi(t) = hi(t) P + 2 ¢ [ gi(t) — ha(t) | | gi(t) — hi(1) |
+2¢ [ gi(t) || gi(t) — ha(t) | 1 gi(t) — hi(t) |
+2¢ [h(t) | 1gi(t) — ha(t) | | gi(t) — hi(2) . (5.19)

Multiplying (5.19) by ¢ and integrating over ¢ € [0, T'| we have
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T
/0 2 (12 At
T T
<& [ t1g) = h®)Pde+ [ 1000 P 0i(t) = hi(t) [ de
T T
[T O 1) b Fdt+2.¢ [t gi0)| g0 = balt) Pt
T T
£2 [t )] ) = k@ Pdt+2 [ 10,0 [h0)] () = hilt) [ dt
T T
+3AtMW%WWWﬁ+23Atmw—me%W—%th
T
+284twﬁHWﬁ%WNHMW%WWHﬁ
T
+23AtUMﬂHMﬂ—M®H%@—hWHﬁ
<AT || gi — b ||%2(0,T) + T | gz‘||%°o(o,T) || g — hi ||%2(0,T)
+ T [ hillzoeo, 1) 1190 = hill720,7) +2 ¢ T || gillLego, 1) 11 9 = i l|720, 1)
+ 2T || hill oo, 1) 1| 9i = hill72(0. 7
+2 T |1 gill oo, 1) 1| il oo o, 7y 11 93 = hi || 720, 7
+ T g =l Teo,r) +2 T (19— hillezo,) 11 95 — B ll20,1)

+2T || i ||L°°(0,T) Il i — hi ||L2(0,T) 1 g; — I ||L2(0,T)
+ 2 T ||,y |19 = hillz, 1) 1 95 = Pillz20.m) (5.20)

hence

G K [[7200, 7 12((1402)de)
<ET g = hillior) + T 11 gilliwmy 1190 = hi |20,y
+ T || hillpeo. 1y 11 98 = hillZ2o,m) +2 & T Ml gilleqo, 7y 1| 96 = i llZ20,m)
+ 2 T ([ hillpeo, ) |1 9i = hillZ20,7) + 2 T 1 gill o, 7y 1 Rl |0,y 1193 = P[220, 7)
+ T g = W |20 +2 T [ g = hillezo,m) 119 = R llz2,m)
+ 2 T gl 1) 1 9 = hill 20,1y 1 9 = i N 2200, 1)
+ 2T il e,y |19 = hillz, ) 1 95 = P llz20,m)-

Using that H'(0, T') < L>(0, T') and straightforward calculus we have

IV Kil|L20,7: 12((1 42y < € VT || g — hi||mo,1)- (5.21)

From (5.18) and (5.21) we obtain

1K1 |le < ¢ VT || gi — b ||, ). (5.22)
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By other hand

52| [ L2 ((1422) der)

1 1
<J1eM (w—2) 9illL2((1+22) do) + | eV 2 (g — hi)llL2((14+2) da)

1 1
+ || fi( ) (w:c - Z:c) gi||L2((l+x2)d:c) + || fi( )Zx (Qi - hi)||L2((1+x2)dx)
<clgi®)] lw = 2[|r2 a2y an) + € 19:(t) = ha(O)] |12l L2((1422) aa)

+ ¢ |gi(t)| [|we — 22|l 22(422) dz) + € |9i(t) — Ri(t)] || 22] [ L2(1422) da)

Integrating over t € [0, T'| and using the Holder inequality

T
/0 K| L2 ((1402) do) dE

T T
<C/0 l9:(t)] ||w — 2||22(1422) aw) At + C/O l9i(t) — hi(t)] |12]]L2(1422) da) AT

T T
+ C/O 19:(0)] [|we — 22| L2((1402) do) At + C/O 9:(t) — hi(t)] 22|l L2((1402) da) At

Sc ||9i||L2(o,T) |Jw — Z||L2(0,T: L2((14-22) dx))
+c [|lgi — hillz20, 1) 11212200, 7: £2((1422) da))
+ ¢ [|gil 220, 1) || We = 22|l 2200, 7 L2((1422) da))
+cllgi = hill 20,7y |2l 200, 7: £2((1422) do))
<clgillao,m) [lw = 2|| 1200, 7: £2((1422) do))
+c[lgi = hill o,y 12l 2200, 7 L2((1122) d)
+ ¢ ||gil a0, 7) l|we — 2ol 2200, 7: £2((1422) d))
+cllgi = hillm o, 1) |122] 2200, 7 L2((1422) da))

Using that g; and h; are in H} (R") we obtain

[ Ko | L10,7: 22((1422)) < € || Wa — Zal|L200, 7 £2((1422) da))
+c ||22] |20, 7 L2((1422) da))
<cllw = 2llu + ¢ ||z |m.

The similar form, we obtain

||Vt Ko||ovo,1: 2((1422)) <€ VT ([|w—z2[|s +c ||z |z) -

From (5.22) and (5.24) we obtain

1elle<e VT (Jlw — 2|l +  [[z]lu) -

(5.23)

(5.24)

(5.25)

We estimate the term K3 = ww, — 2z, = (w — 2) w, + z (w, — 2;), then
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ww, — 2 2 |[e=|(w — 2) wy + 2 (e — 22)|[& < |[(W = 2) wal | + [|2 (We — 22) &
hence
[ K[ |e < [|[(w — 2) we e + |2 (we — 22)|[e
= H(w - Z) ww”Ll(O,T: L2((1422)dz)) T ||\/7E (w - Z) wm||L2(0, T: L2((1422)dx))
+ |2 (e — 2o)|| L1 (0, 7: L2((422)da)) + ||\/1_52 (wa — 22)||22(0, 7 L2((1402)da))
= [[(w — 2) we||10,7: L2((1422)dw)) + |12 (We — 22)|| 10, 7 L2((1422)de))
+ IV (w = 2) well 20, 7: 2(14a2)de)) + ||[VE2 (We — 20)| 200,72 £2((1-422)d)
=Ks3 1+ Kj 9

where

K3 1= ||(w - Z) waLl(O,T: L2((1+a?)dz)) T ||Z (wx - Z:c)||L1(0,T: L2((1422)dx))

and

Kj 0= ||\/Z(w —z) wx||L2(o,T: L2((1+22)dz)) T ||\/1_52 (w, — Zx)||L2(O,T: L2((1+4a2)dz)) -

Using that: if @ > 0 and b > 0 then va+ b < /a + Vb we have

K3 1= ||(w - Z) wx||L1(0, T: L2((14+22)dz)) + ||Z (wx - Zx)||L1(0,T: L2((14-22)dx))

T T
_ /0 (w0 — 2) wal| 21020t + /O (s — 22) 2] z2((1ra2)an

N /OT \//OL<w — 2 w1+ a?)dw dt + /OT \//OL% = 2)? 22 (1 + a?)da dt

T L L
:/ / (w—z)2w§,d:ﬁ—|—/ (w—z)?2w?z?dz dt
0 0 0
T L L
+/ / (wy — 25)? 22 dx + / (wy — 24)? 22 22 dx dt
0 0 0

g/OT \//(]L(w—z)zwfcdx+\//(]L(w—z)2w§:c2dx]dt
+/0T \//OL(wx—zmzmx +\//OL(wm—zm)2z2x2dx ] dt  (5.26)

but, using Lemma 2.1(2.4) follows that
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L L
/0 (w — 2)? wydr < ||w — z||2Loo(07 L) /0 wdx (5.27)

L
<llw =2l py | w21 +2)da
<2|[w — 2| |L2((1+x)d:c) |Jws — Zx||L2((1+x)d:c) |[we| |%2((1+x)dm)

and
L L
/0(w—z)2wix2dx<\|x(w—z)2\|Lm(07L)/0 rw?dr
L
<IVE @ =2lEwr | w2 (1+2)de

L
then ||z (w—2) wx||2L2(O,L) < ||\/5(w—z)||%oo(ovL)/0 w? (14x) dz. Hence using

Lemma 5.3 we have

||95(7~U—Z)wx||L2(o,L)
L
<z (w = 2)|| (0, ) \//0 w2 (14 x)dx

< 5[ \/Hw o Z||L2((1+:v)dx) \/wa - ZwHL?((Hx)dx)

Hlw = 2llz2(saran) | el 22 (5.28)

This way, using (5.27) and (5.28) for the first term in (5.26) we obtain

' [\//OL(w—z)zwfcdij\//OL(w—z)2w§x2dx} dt
</T\//L(w-z)2wgda; dt+/0T\//L(w—z)2ng2da; dt

1/2 1/2
<V [ 10— 2l iy 110 = 2l gy T llseran

1/2 1/2
+5/ llw = 21115 1wy 102 = Zall o 1payany T 110 = 2| 2(@taran) | Wl 2(ayan) dE
1/2
< C/o ||w — ZHL2 ((1+z)dz) ||wz — Z90HL2 ((1+z)dz) |lwell22((142)d0) dt
T
5 [l = 2zt sarin) |llo2(aran dt
T 1/2
el =l [l = 2l o ol d

r 1/4
+5 IIw—ZIIH/0 lwal|22(1 4ayan) At < (VT +TY*) [Jw = 2|l [[w]]
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Therefore

\// 2)2wldy + \// 22w x%lx] dt

¢ (VT +TY) Jw— 2||u ||w]|. (5.29)

Using the similar technique for the second term we obtain

L L
\// (wy — 24)?2%2dx + \// (wy — 22)% 22 2% dx ] dt
0 0

<e (VT +TYY |Jw = 2||m ||w]|s. (5.30)

This way from (5.29) and (5.30) we have

Ky <c (VT +TYY) |lw— 2||a ||w||a (5.31)

Now we estimate the term K3 5. Using the Lemma 5.4, we estimate the fol-
lowing term

|[2(w — 2) we|L2(0, )
=||Vz (w — 2) Ve ws| 120, 1)
<V (w = 2)|[ 0, 1) ||VT Wz 20, 1)

<5 (ylle = Hlzenan Viwe =zl
Hlw = 2llza(aman ) IVE wsllz20,0

<5 /1w = 2llc2arin) y/I1we — 2ol 2ot [1VE Wall 220, 1)
+ 5w — 2||2(a42)d0) VT wallL200, 1)

<5 \/||w — 2||L2((140)da) \/||wx — Ze|| 24 2)de) |Wel|L2(0142)de)

+5 [lw — Z||L2((1+x)dm) waHL?((l—i-x)dm)u (5.32)

hence from (5.32)
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H\/gﬁ (w = 2) waL?(o,T; L2(0, L))
= ||\/E\/§(w —2) \/waHL?(o,T; L2(0, L))
<5 \/Hw - Z||Lo<>(0,T; L2((14z)dz)) ||\/1_5wx||Lo<>(o,T; L2((14z)dz)
><\/||7va - Zm||L2(0, T: L2((14x)dz)) VT
+ 5 ||w — 2|z (0, 7: L2((142)dx)) H\/gwaLQ(O,T: L2((14x)dx)
<cllw =2l wlla llws — zllzo7 20wy VT
+ e llw = 2llu VT |[w]]=
<eVT Jlw =2l |lwlls, ¥V 0<t<T (5.33)

This way from (5.33), the first term in K3 5 is estimated by

IVE (w = 2) wal | 20,72 22140210 < € VT |Jw = 2| ||w][z (5.34)

and the similar form we estimate the second term in Kj 5.

IVt (we = 22) 2] 120, 7 12((a2yany) < € VT [|w — 2|l [|w]]a. (5.35)

then

1Klle < e VT [Jw — 25 [[w] |- (5.36)

Therefore replacing in (5.17) the terms in (5.22), (5.25), (5.36) we have

P(w(b Gis 'LU) F(ZOa hz> ) ||]HI
o(T) |lwo = 2o0l|220, ) + c(T) [ [| K1l + [| K2l + [| K5|[e ]
(T)

T) |[wo — z0llz20,2) + ¢(T) VT [ Il gi = hillmo.) + 1w — 2l + ||| |

+oT) VT [ (14 VT) flw =zl llwlla + ko — 2l lwlla ] (5.37)

|
<
<

C

where we obtain

| T (wo, gi, w) = T'(20, hi; 2) [[u
<AT) |lwo = zoll 220,y + (T) VT [ 1195 = i Lo, my + llw = 2l + 121 |

+ (M) VT [ (1+VT) JJw = 2|l [[wlls + |[w — 2] ||l | (5.38)

The result follows. =

Theorem 5.2 Let n < 0. Let g; € H} .(RY). Then there exists a time T) €
10, Ty] such that the map T" : Bg(0) — Br(0) with u — I'(wq, gi, w) maps the
ball Bg(0) into itself.
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Proof. Using (5.14) with zy = 0, h; = 0, and z = 0 we have

| T (wo, gi, w) |l < e(T) llwol |20, 1) + (T) VT | 1] 6 |0y + [l |
+ oM VT [ (1+VT) [l +lwllk]. (5.39)

Let

R
5 = eAT) llwollzeo, o) + (7o) YT Il g: o (5.40)

then, if w € Bg(0) we have

DG, g w) e < 5 +e(T) VT [(14VT) B2 +2R]. (5.41)

We choose T such that

oT)VT [ (1+VT) R*+2R| <

R
5 (5.42)

hence ||I'u||g < R and the Theorem follows. m

Theorem 5.3 Let n < 0. Assume that g; € HL._(RT). Then, there exists a
time Ty €)0, T1] such that the application w — T'(wo, g;, w) is a contraction

over (Bg(0), [[ - [lm)-

Proof. Using (5.14) with zg = wo, h; = ¢;, we have

|| F(wm i, w) - F(wm Gi, Z) ||H
<e(T) VT [|Jw — 2|l + ||w]]x ]
+ (M) VT [ (14 VT) JJw = 2l |[wlla + llw — 2lls [Jwllx | . (5.43)

If w, z € Br(0) we obtain
|| F(wo, Gis w) - F(w(]a [ Z) HH
<(T) VT [||w— 2|z + R]

+c(T) VT [(1—1—@) ||w—ZHHR+||w—Z||HR}
<AT)VT [[242R]+ VT R |lw— 2[|s (5.44)

such that, if 7" is small enough namely
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oT)VT [[2+2R]+VT R| <1
then the application w — I'(wg, ¢;, w) is a contraction over (Bg(0), || - ||x). =

Theorem 5.4 If n < 0, there there exists a unique w defined in Hr, weak
solution of (1.1)-(1.4).

Proof. To apply the Banach’s fixed point Theorem for (wy, g, w) — I'(wy, g, w)
on Bg(0), which is a complete metric space and yields local existence and

uniqueness. H

Theorem 5.5 If n < 0. Then the solution w depends continuously on wy €
L*((1+ z*)dz) and g; € H. (RT).

Proof. From (5.14) for small times, one gets

lw—2 [l
<e(T) [fwo — 20| 220, £y + (T) VT { 1.9 = hi ll#r0,m) + |Jw — 2|l + ||Z||H}
+ (M) VT | (1+VT) JJw— 2|l |[wl]e + |[w — 2] [[w]a | (5.45)

Then if wy — zy in L*((1 + 2?)dz) and if g; — h; in H*(0, T') one gets that
w — z in Hy. The proof follows. m

These results were obtained locally in time. But, since the time interval where
this result holds depends only on ||wo||z2(0,z) and ||gi|| a0, 1), it can be ex-
tended as long the solution exists. Indeed we obtain

Theorem 5.6 (Existence and Uniqueness) Letn < 0, ug € L*((1+2?)dx),
gi € HE (RT) fori=0, 1, and 0 < L < +oc. Then there exists a unique weak
mazimal solution defined over [0, Ty] for (1.1) — (1.4). Moreover, there exists

Tin > 0 independent of L, depending only on ||uol|r20, 1) and ||gi||m o, 1)

such that Ty, = Thin- The solution u depends continuously on ug and g; in
the following sense: Let a sequence ul — ugy in L*((1 4 x?)dx), let a sequence
g — g; in H. (RT) and denote by u™ the solution with data (u?, g%) and T}

its existence time. Then

liminf 77" > T}, (5.46)

n—-4o0o

and for all t < Ty, u" exists on the interval [0, T| if n is large enough and
u"™ — u in Hyp.
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6 Numerical Methods

We consider finite differences based on unconditionally stable schemes similar
to the described in [19] for the KdV equations.

Description of the scheme. We note by v!" the approximate value of u(iAx, nAt),
solution of the nonlinear problem (1.1)-(1.4), where Ax is the space-step, and

At is the time-step, for ¢ = 0,..., N, and n = 0,..., M. Define the discrete
space

Xy = {u= (ug,u1,...,uy) € RV |yg =u; =0 and uy = uy_; = uy_o =0}

4 _ Ujr1 — Uy _ Uy — Uj—q . .
and (DTu); = =F— gnd (D u)z = "Rz the classical dlfferen(%e op-
erators. In order to obtain a positive matrix we have to chose a particular
discretization. The numerical scheme for the nonlinear problem (1.1)-(1.4)

reads as follows :

ptl — g a
— Av™H §D_[v"]2 =0, (6.1)

where A=nDTD*DT*D~"D~+ D D*D™ + %(DJr + D7), with a = 1 for the
nonlinear case, and a = 0 for the linear case.

Remark 6.1 We remark that A is well defined as a linear application Xy —
RNTL in the sense that we do not need additional point on the outside of [0, L]
to compute Au. Thus A is represented by a 6-diagonal possitive defined matriz
of (N+1)x (N+1):

c dioer fi
by ¢ dy ey . O
as by c3
Au = - faes (6.2)

- Ep—2

O (p—1 bn—l Cn—1 dn—l

Qp, bn Cn

wherea,-:—%, fori=3,....n, fi= fori=1,....,n—3, and
Ax

Az®’

29



_9Alg+Aif;, fori=1lmn—1,

¢ = —10K7x%+%,fori:2’ n—2
_BKHF—F&’ fori=n,

d— 10A77x5_%?;3+22x’fori:1""v”—2,
5A7;5_A3 sAg Jori=n-—1,

e; = _5Aiajf’+$>f0rz':1,...,n_37
_4$—I—F,f0rz':n_2,

We consider the linear operators DT and D~ as matrices of size (N + 1) X

N
(N + 1) and we note the following internal product (z,w) = Y zw; and

1=0
N

(z,w)y = (z,2w) = Y _iAzz;w;, and the norms in RN : |z| = /(2 z) and
1=0

|z|l2 = 4/(2, ). Then, we have the following lemma :

Lemma 6.1 For all z,w € RV, we have

(D" z,w) = zywy — 2wy — (2, D~ w), (6.3)
N 1(2% 2 L
(D 2,2)25 A—x_A—:L'_Ax|D 2%, (6.4)
(D" z,w), = Nzywy — (2, D" w), + Ax(z, D" w) — (2, w), (6.5)
1
(D%z,2), = 5 (Nz]zv — Az|D* 2| — |z|2) . (6.6)

Proof. Equations (6.3) and (6.5) are result of summing by parts. Equation
(6.4) is result of using (a — b)a = 3(a® — b*) + (a — b)%. with z; = a and
zir1 = b, and summing over i = 0, ..., N. The last equality (6.6) is result of
the same identity with z; = a and z;,; = b, multiplying by iAx and summing
over t=0,...,N. m

In order to obtain estimates for the solution of the numerical scheme for the

linear case, we have the following lemmas describing the quadratic forms as-
sociated to the different matrices.
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Lemma 6.2 For all u € Xy, we have

1
A
(D*D*D~u,u) = i|D+D-u|2, (6.8)
1 Ax
+P+D+tp-n- + =)= 2
(D*D*DYD™ D u, u) = —E[D D~ u} — 5 |D*DDuf (6.9)

Remark 6.2 Since u € Xy, the first term in the right-hand side of (6.9) is
given by = [D~D~u]} = (Az)ul.

Proof. The matrix %(DJr + D7) is clearly antisymmetric and we have (6.7).
Using (6.4) with z = D~u we obtain (6.8), and using the same identity with
z = D™D~ u we obtain (6.9). =

Corollary 6.1 Ifn <0, then I + AtA is positive definite, and for any u™ €
Xy there exists a unique solution u™* of (6.1).

Proof. From Lemma 6.2 we have for all u € Xy with u # 0,

AA
(T + AtA)u, u) > [uf® + 2 =D
”A‘”Atuﬁp Du \2—;’% (DD~ u} >0, (6.10)

when n < 0. m

The following estimate shows that the numerical scheme (6.1) with @ = 0 is
[2-stable and unconditionally stable.

Proposition 6.1 Let n < 0. For any v" € Xy satisfying the linear scheme
(6.1) with o = 0, there exists C(T) > 0 such that [v"] < |[0°].

Proof. Multiplying the numerical scheme (6.1) by v"*! we obtain
|Un+1|2 4 At(AUn+1,Un+1) — (Un+1,1)n), (611)

and then, using the same identity of the proof of the Lemma 6.1 with @ = v¥*!
and b = v* and summing for K =0,...,n — 1 we have

n—1 n
|Un|2 + Z |Uk+1 _ ,Uk|2 + QAtZ(AUk,'Uk) _ |'UO|2.

k=0 k=1

From (6.10) this last equality becomes
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n—1 e B
"2+ ALY At |———— +AxZAt|D+D‘ k|2
k= 0 At k=1
Az AUDTD D - S A (DD’
k=1 Azk 1
< O (6.12)

]
In order to obtain the unconditional stability for the nonlinear version of the
scheme, we will find a discrete estimate that is equivalent to that of (3.28)

(see Proposition 3.1). Let us denote by x the sequence z; = iAz. We have :

Lemma 6.3 For all u € Xy, we have

1 1 1
5((DJr + D7 )u, vu) = ZAI2|D+U|2 — §|u|2,
A Az?
(D*D*D~u, zu) = g|D_u|2 + §|D+D—u|§ - Tx|D+D_u|2,
FP+E DD S5 Az o
(DTDTDT™D™D u,xu):—§|D D~ u| —7|D D™D ul;
2t =12 L =12
+A2?| DD D uf? = S [D" D74
2 0
where (zu); = iAzu;.
Proof. Using (6.3), (6.4) and (6.5) we have

(D" + D7 )u,zu) = (D" u,u); — (u, D™ ), + Ax(u, D" u) — |ul’
Az?

T\D+U\2 - |U|27

=—Az(DTu,u) — |ul* =
and then we have the first identity of the Lemma. Following the same idea and
applying the identities of Lemma 6.1 is easy to prove the rest of the identities.

Proposition 6.2 Let n < 0. For any v" € Xy satisfying the linear scheme
(6.1) with o = 0, there exists C(T) > 0 such that |v"|, < C(T)]v°|, and

p
p

=

AfD v ) < ),

i M: i M:

At|DTDv"| 2) < C(T)|v°, if n <0,
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Proof. We multiply the numerical scheme (6.1) with « = 0 by zv™*!. Then,
applying Lemma 6.3, and the same identity of the proof of Lemma 6.1 with
a = /zv*! and b = \/z0v*, we deduce

n—1 Rl k|2 Ax2
W2+ ALY AL ——— <3+—> > At DR
k=0 At T 2 k 1
+AxZAt\D+D‘ F2— (50 + Ar?) ZAt|D+D‘ k|2
k=1
—nAxZAt\D+D D™v k\2+2nA:czzAt\D+D D" ?
k=1 k=1
—[DD] = R Y At (6.13)
k=1
On the other hand, Noting that
+mr—,k|2 +n—,k|2 N_l(i_l) k k k 2
|ID*D~v*2 — Az| DD P =" N (Vi — 207 + v 4)° =0,
=1
|D* D™D~ v"? — 2Ax| DT Dok ?
1 N— l
"‘E [D D v } ALE z—l—l - 3U + sz 1 Uzk—2)2 2 O’
=2

and replacing these inequalities in (6.13), we deduce

n—1 R k|2
W2+ ALY At T +32At\D— k)2
k 0 t T k=1
—5nZAt\D+D— PO 4D AR
k=1 k=1

Finally, using the inequalities of Proposition 6.1 and the fact that we have in
a boundary domain (0, L), we may conclude the proof. m

Now, let us introduce the non-homogeneous linear scheme approximating the
solution of the (KdVK)yy problem :

_'_ n+1 fn

The existence proof of the continuous case studied in the previous sections
applies in the discrete non-homogeneous linear case and the discrete non-
linear case for any discretization of the non-linear part, in particular for
fn= %D‘[u"]? Thus, we obtain the following result of convergence :
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Theorem 6.1 For any u™ € Xy satisfying the non-linear scheme (6.1), with
a=1, and n <0, there exists g > 0 such that, if At < gy, then there exists
T >0 and a constant C' = C(T) > 0 (independent of At and Ax) such that :

p p
sup [vF17+ At > | D0 = nAt > DD VM < Clug.
k=0,...,p k=0 k=0

.....

This result means that the scheme is unconditionally stable. Let us observe
that in agreement with the gain of regularity of the (KdVK) equation, we
obtain an additional estimate respect to the analogous numerical scheme of
the KdV equation, studied in detail in [19]. On the other hand, in [21] it is
described a similar scheme with application to KdV and Benney-Lin equations.

7 Some numerical results

First we compare our numerical solution with an explicit solution obtained
by the Adomian decomposition method for a KdVK equation with initial
condition in the unbounded domain z € R ([22,23]). The tanh method to
obtain explicit solutions of the KdvK equation is proposed by Wazwaz [24]
in a slightly different way. To compare our numerical solution in a bounded
domain (0, L) with an explicit solution in all # € R we consider solitons moving
between z = 0 and x = L no touching the boundaries. Let the KdvK equation

Ut — Ugpzzre + Uper + Uy + Uy = 0, reER, t>0 (7.1)

with the initial condition

105, . 1
u(z,0) = 169Sech <2ﬂ3(x x0)>

where it is known that the explicit solution is given by the following travelling
wave (see [22,23]):

105 1 205t
t) = ——Sech’ — — .
This result can be verified through substitution.

We make the simulations in Fortran90, using a factorization A = LU with a
generalization of the Thomas algoritm for a 6-diagonal matrix like (6.2), and a
posteriori error correction using the residual. We choose z¢y = 20.0, L = 200.0,
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L L L L L L L L L
20 40 60 80 100 120 140 160 180 200

Fig. 1. Comparison between the exact solution and the simulated for Az = 1073
At =12x10"* (T = 0.0 sec, T = 60.0 sec, and T = 120.0 sec).

T = 120.0 and we fix At/Axz = 0.12. We compute different simulations on the
time interval [0, T for n = 2x10',2x10%,...,2x10°. The comparison between
exact solution and the best simulation (with n = 200000) is represented in
Figure 1 for three different times. The error, that is the norm L>(0, T, L*(0, L))
of the difference between the exact solution and the simulation for different n
is represented in Figure 2.

10 T T T T T T

10° b

107

107k

10

i i i
10 10 10 10 10 10

Fig. 2. Decreasing of the error between exact solution and simulated solution as
function of n = L/Ax.

The second numerical test is an intersection of two solitons. We consider the
equation (7.1) with the following initial condition:
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u(z,0) = % {Sech4 (2%3 (z — 20.0)) + isech4 (ﬁ(m — 60.0))}

This correspond to the superposition of two solitons with different speeds given
by the nonlinear term wu, + u, of the equation (7.1). For this example, we
choose L = 1000.0, T" = 800.0, n = 100000, At = 8 x 1074, Az =1 x 1072,
Figure 3 shows three-dimensional plots of the solution.

0 100 200 300 400 500 600

Fig. 3. Interaction of two solitons for the KdV-Kawahara equation.
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