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Abstract

We consider triangular arrays of Markov chains that converge weakly to a
diffusion process. Edgeworth type expansions of order o(n™17%),8 > 0, for tran-
sition densities are proved. For this purpose we represent the transition density
as a functional of densities of sums of i.i.d. variables. This will be done by ap-
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1 Introduction.

In this paper we study triangular arrays of homogeneous Markov chains X, (k) (n >
1,0 < k < n) that converge weakly to a diffusion process (for n — o00). Our main
result will give Edgeworth type expansions for the transition densities. The order of
~1=9)§ > 0. The theory of Edgeworth expansions is well devel-
opped for sums of independent random variables. For more general models approaches
have been used where the expansion is reduced to models with sums of independent
random variables. This is also the basic idea of our approach. We will make use of the
parametrix method. In this approach the transition density is represented as a nested

the expansions is o(n

sum of functionals of densities of sums of independent variables. Plugging Edgeworth
expansions into this representation will result in an expansion for the transition density.

Weak convergence of the distribution of scaled discrete time Markov processes to
diffusions has been extensively studied in the literature [see Skorohod (1965) and Strook
and Varadhan (1979)]. Local limit theorems for Markov chains were given in Konovalov
(1981), Konakov and Molchanov (1984) and Konakov and Mammen (2000,2001). In
Konakov and Mammen (2000) it was shown that the transition density of a Markov
chain converges with rate O(n='/2) to the transition density in the diffusion model.
For the proof there an analytical approach was chosen that made essential use of
the parametrix method. This method permits to obtain tractable representations of
transition densities of diffusions that are based on Gaussian densities, see Lemma 3.1
below. Similar representations hold for discrete time Markov chains X,,, see Lemma 5.1
below. For a short exposition of the parametrix method, see Section 3 and Konakov and
Mammen (2000). The parametrix method for Markov chains developped in Konakov
and Mammen (2000) is exposed in Subsection 5.1. Applications to Markov random
walks are given in Konakov and Mammen (2001). In Konakov and Mammen (2002) the
approach is used to give Edgeworth-type expansions for Euler schemes for differential
equations. Standard references for the parametrix method are the books by Friedman
(1964) and LadyZzenskaja, Solonnikov and Ural “ceva (1968) on parabolic PDEs and for
diffusions McKean and Singer (1967).

The paper is organized as follows. In the next section we will present our model for
the Markov chain. In Section 3 we will give a short introduction into the parametrix
method for diffusions. Our main result that states an Edgeworth-type expansion for
Markov chains is given in Section 4. Some auxiliary results are given in Section 5.
In particular, in Subsection 5.1 we will recall the parametrix approach developped in
Konakov and Mammen (2000) for Markov chains. The proof of our main result is given
in Section 6.



2 Markov chain model.

We now give a more detailed description of Markov chains and their diffusion limit.
For each n > 1 we consider Markov chains X,,(k) where the time k runs from 0 to n.
The Markov chain X, is assumed to take values in IRP. The dynamics of the chain X,
is described by

(1) Xo(k+1) = X, (k) + n7'm{ X, (k)} + n~ V%, (k + 1)

Here, m is a function m : IR? — IRP. We make the Markov assumption that the
conditional distribution of the innovation £,(k+1) given the past X,(k), Xp,(k—1),...
depends only on the last value X, (k). Given X,,(i) = z(i) for =0, ..., k the variable
en(k + 1) has a conditional density g{z(k),e}. The conditional covariance matrix
of €,(k + 1) is denoted by X{z(k)}. Here ¢ is a function mapping IR x IR? into
IR, . Furthermore, ¥ is a function mapping IRP into the set of positive definite p x p
matrices. The conditional density of X, (n), given X,,(0) = z, is denoted by p,(z,e).
Study of the transition densities p,(z,y) is the topic of this paper. Conditions on
m{z(k)}, ¢{z(k), e} and X{z(k)} will be given below.

By time change the Markov chain X, defines a process Y, on [0, 1]. More precisely,
put Y, (t) = X, (k) for k/n <t < (k+ 1)/n. Under our assumptions, see below, the
process Y,, converges weakly to a diffusion Y (¢). This follows for instance from Theorem
1, p. 82 in Skorohod (1987). The diffusion is defined by Y (0) = z and

dY (t) = m{Y (t)}dt + A{Y (t) }dW (t),

where W is a p dimensional Brownian motion. The matrix A(z) is the symmetric
matrix defined by A(z)A(z)" = X(z). The conditional density of Y (1), given Y (0) = z,
is denoted by p(z,e). Remind that the conditional density of Y;,(1), given Y, (0) = z,
is denoted by p,(z, e).

For our result we use the following conditions.

(A1) For z € IRP let g{z, o} be a density in IR? with [ ¢{z,z}zdz = 0 for all z € IR?,
[ ¢{z, 2}zizjdz = 04i(z) for all z € IRP and ¢,j = 1,...,p. The matrix with elements
0ij(z) is denoted by X(x).

(A2) There exist a positive integer S’, a constant v > 0 and a function ¢ : IRP —
R with sup,epy ¥(z) < 0o and [g, ||z]|° ¢(z)dz < oo for S = 2pS’ + 4 such that
|DY¢{z,z}| < 9¥(z) for all z,z € IRP , and |v| = 0,...,6, |DZ¢{z, z}| < 9¥(z) for all
z,z € RP , and |v| =0, ...,6, [D2¢®{z, 2} < k"(z) for all z,z € IR? , k > 1, and
lv|=0,1.

Here ¢™*)(x, z) denotes the k - fold convolution of ¢ for fixed z as a function of z.



(A3) There exist positive constants ¢ and C such that
c<0TE(2)0 < C
for all 0, ||0|| =1 and z.

(A4) The functions m(z) and X(z) and their derivatives up to order six are bounded
(uniformly in z) and Lipschitz continuous with respect to z.

3 The parametrix method.

Our approach makes use of the parametrix method. This approach allows to state
series expansions for the transition densities of the limiting diffusion and for the Markov
chain. The series only depend on transition densities of “frozen” processes. The “frozen”
diffusion is a Gaussian process that has a Gaussian density as transition density. For
the “frozen” Markov chain we get transition densities that are densities of sums of
independent variables. In this section we will give an overview on the method for
diffusions and Markov chains.

We now discuss the parametrix method for diffusions. This gives an infinite series
expansion of the transition density p of the limiting diffusion process Y, see Lemma
3.1. We will give a similar expansion for the Markov chain in the next subsection, see
Lemma 3.3. Our proof of Theorem 4.1 will be based on the comparison of these two
series. The series for the transition densities will be derived by the parametrix method.
We will give a description of the parametrix method below.

For the statement of the expansion of p in Lemma 3.1 we have to introduce addi-
tional diffusion processes. For 0 < s < 1 and z,y € IR? we define diffusions Y = ﬁ,m,y
that are defined for s <t <1 by

Y(s)==z

and
dy (t) = m{y}dt + A{y}dW ().

The processes Y are called “frozen” diffusions. We define P(s,t,z,y) as the conditional
density of YV (t)[ = Y;.,(t)] at the point y, given Y(s) = z. Note that the variable
y acts here twice: as the argument of the density and as a defining quantity of the
process Yy = ffsmy Furthermore, we denote by ﬁg(x,z) the conditional density of
Y((5+1)/n)[= Yjmay((G+1)/n)] at the point z, given Y'(j/n) = x. The process Y is
a simple Gaussian process. Its transition densities p are given explicitely. By definition,
we have that
B(s.t,z,y) = (2m(t — 5)) "% (det £(y))/*

Q) el =)y — o= (t = 5)m()} Sw) "y - 2 — (¢ - Hm(p)}]
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Let us introduce the following differential operators L and L:

Li(s,t,y) = m{e)T TELDY) %tr[A(z)TWA(@],
£t = m) B0 4 Saria ) L A )

Note that L and L corresponds to the infinitesimal operators of Y or of the frozen
process Y 5, respectively, i.e.

() Lf(s,ty) = lm b B, Y (s + b)) | Y(s) =a] - f(s,t,2,0)},

(4) Lf(s,t,z,y) = lim h™{B[f (5,1, Vaay(s + h),9)] = f(5,1,2,)}.
We put
H = (L - L)p.
Then
1 ¢ 62~ ’ta l
(5) H(s,t,z,y) = 2 i;(aij(z) — Oij(y))W

+ 3 (ma(a) — ma(y) 2L D).

=1 axz

Now we define the following convolution type binary operation ®:

t
(f ®9)(s,t,2,y) = / du /m £(s, 0,7, 2)g(u t, 2,y) dz.

We write ¢ ® H® for g and for r = 1,2,... we denote the r-fold “convolution” (g ®
H (T_l)) ® H by ¢ ® H™. With these notations we can state our expansion for p.

Lemma 3.1 For 0 < s <t <1 the following formula holds:

o0

p(sataxay) = (ﬁ@ H(T)) (S,t,.’L‘,y).
r=0

A proof of Lemma 3.1 can be found in McKean and Singer (1967). We will make
use of the bounds on H and p® H() that are stated in the following lemma. Proofs of
these bounds can be found again in McKean and Singer (1967). For a more detailed
proof of Lemma 3.2 see also LadyZenskaja, Solonnikov and Ural’ceva (1968).

Lemma 3.2 There erist constants C' and Cy (that do not depend on x andy ) such
that the following inequalities hold:

‘H(S’ ta Z, y)‘ S Clp_1¢c’)p(y - l'),

5



and

e HM (st < 1 P _
‘p® (Sa a$ay)| = Cl F(1+ %)(}SC,P(y .CII),

where p? = t = 5, ¢ (u) = pPéc(u/p) and

o _exp(=Clul’)
Pl = T ap(C ol o

4 Edgeworth type expansions for Markov chains.

The following theorem contains our main result. It gives Edgeworth type expansions for
P For the statement of the theorem we introduce the following differential operators

Flfls iz = 3 2 s b0,

V.
|v|=3

fZ[f](satal'ay) = Z XVV—(!Q:)D;f(Sata €, y)'

lv|=4
Furthermore,

w(@) = [ #a(e.2)dz,

~ Xv\Y) ~v~
7T1(87 t,m,y) = (t - 8) Z V—(l)Dmp(Sata z, y)a

lv|=3
mo(s, t,x,y) = (t — s) Z XVV—('y)D;'ﬁ(s, t,z,y)
v|=4 2
+%(t —s)’ X”V(!y) Dy ¢ (s, t,,y),

where X, (z) are the cumulants of the density ¢(z,e).

Theorem 4.1. Assume (A1)-(A4). Then there exists a constant § > 0 such that
the following expansion holds:

sup (14 1y = ol ) |pnle9) = p(o ) = 072 (5,9) = 7 o) = O,
z,y€
where S' is defined in Assumption (A2) and where

(6) m(z,y) = (p® F[p))(0,1,2,y),

(7) mo(z,y) =

(NN

(p (LE—L2)p) (0,1,x,y)+(p®.7-"2[p])(0,1,m,y)

6



+(p®.7:1[p®.7:1[p]])(0, 1a1"7y)'

Here p(s,t,x,y) is the transition density of the diffusion Y (t), L, is defined analogously
to L but with the coefficients “frozen” at the point x. The norm ||e|| is the usual Euclidean
norm.

The proof of Theorem 4.1 will be given in Section 6. Now we make some remarks
concerning the approximating terms 7 (z, y) and ma(z, y).

Discussion and remarks.

e It can be shown that the term 7 (z,y) and each term on the right hand side of
(7) have subgaussian tails. This means that these terms can be bounded from
above by C} exp|—Cy(y — z)?] with some positive constants C; and Cj.

e If the innovation densitiy ¢(z, ®) does not depend on z then one gets that L, = L
and that p(s,t,z,y) = p(s,t,z,y) where p is defined in (2) with £(y) = ¥ and
m(y) = m. This gives

1(z,y) /ds/ OstZ’uy vp(s, 1,v,y)dv

|v|=3

'u”D"/ ds/ (0,s,z,v)p(s,1,v,y)dv

lv|=3
—Zu" 2p(0,1,2,y)

|v[=3
- %1(05 1; x y)

PR Fip))(s,1,2,y) = /du/ suzwdyzu" v o(u, 1, w,y) dw
=3 =

- _ Z ,LL,,D,,/ dup(s,u, z, w)p(u, 1, w, y)dw

|v|=3

= (1-5) 3 DiDlis, 1,2,),

|v|=3

Rl ABs Lzy) = (1= > D2 #s1,2.9),

|v|=3

(ﬁ® ‘7:2[57])(0’ 1717’ y) + (ﬁ®fl[ﬁ® -7:1[?7]])(0,1’33,?})

/ds/ (0,s,z,v) ZX"D” (s,1,v,y)

|v|=4



2

+(1-135) Z%D,’j p(s,1,v,y) | dv

1
Z %DZ/ ds/ﬁ((], 5, T, U)ﬁ(s,l,v,y)dv
: 0

v|=4
2

1
/’LV v ~, ~
+ Z ol Dy /0 (1 _S)dS/p(O,S,w,U)p(s,1,v,y)dv

lv|=3
= %2(07 15 z, y)
Thus from Theorem 4.1 for this case we just get the first two terms of the classical
Edgeworth expansion n~/27,(0,1,z,y) +n~'7(0, 1, z,y).
If p,(z) =0 for |[v| = 3 and for x € IRP then it holds that F; = 0. This gives
that the expansion of Theorem 4.1 holds with
1 (.'L', y) = Oa

ma(z,y) = (p ® F2)[p](0,1,z,y) + % (p® (L2 — L*)p) (0,1, z, 7).

If in addition we have that x,(z) = 0 for |v| = 4 then the first four moments
of the innovations coincide with the first four moments of a normal distribution
with zero mean and covariance matrix X (z). In this case we have F, = 0 and

(8) m(z,y) =0,

9) m(z,y) = = (p® (L — L*)p) (0,1, z,y).

DN | =

Our expansion can be applied to study the performance of discrete approxi-
mations of diffusions. An Euler approximating scheme is defined by putting
Yo([k+1]/n) = Ya(k/n) +n~tm(Ya(k/n)) + A(Ya(k/n))[W ([k+1]/n) = W (k/n)].
It has been shown that Y, (1) = Y (1) + Op(n~%/2). For a discussion of Euler
approximations, see Kloeden and Platen (1992). For this scheme it holds that
Fi1 = F» = 0. Thus the expansion of Theorem 4.1 holds with (8) and (9). This re-
sult was obtained by Bally and Talay (1996). Higher order asymptotic expansions
for Euler schemes are given in Konakov and Mammen (2002).

A more refined approximating scheme for stochastic differential equations was
introduced by Mil’shtein (1974). Mil’shtein’s scheme is based on higher or-
der stochastic approximations of the stochastic differential equation. Mil’shtein
(1974) proved that for his scheme Y, (1) = Y(1) + Op(n~!). Thus this scheme
has a better strong approximation rate than Euler schemes. We now apply The-
orem 4.1 to this approximating scheme. We will compare the approximations



of the transition densities for these two schemes. It will turn out that the rate
is not improved for Mil’shtein’s schemes, in contrast to the mentioned rates of
strong approximation. However, we will argue that Mil’shtein schemes lead to
more stable approximations. For simplicity we consider only the one dimensional
case. For Mil’shtein schemes the innovation density g,(x,®) depends on n but
asymptotically this dependence vanishes. For Mil’shtein schemes it holds that

pea(2) = ) + 5 (0@ (0 paale) = O,
Xinl5) = o (2) = 304(2) = 2205a) (0]

Hence,
T (-Ta y) = Oa

(p® (L2 - L*)p) (0,1,z,9) + (p® M)(0,1,z,y),

DN =

7T1(.’L','y) = 0,77'2(117,@/) =
Wl(xay) = Oa

(p® (L2 — L*)p) (0,1,2,9) + (p® M)(0,1,,y),

DN | =

P ("Ea y) =
where
63p(83 ta Z, y)
o0z '
The last expression for my(z,y) allows to compare Mil’shtein and Euler schemes.

M(s,t,z,y) = %a(x)a'(ac)

In the one dimensional case the function (L2 — L?)p(s, 1, z,y) is equal to

1
§(Lz - L2)p(s, 1: 2 y) = R(57 1727 y) - M(S, 1azay)7

where
R(s,1,2,y) = - %m(Z)m’(z) + %m"(z)aQ(z)} W
1 ) 1, 9 1 vog 1 )
~ [ ()o@ +gm (2)o™(z) + glo(2)o ()" + g7 () (z)]

L P51, 2,y)
022 '
By linearity of ® we get that for Mil’shtein schemes

ﬂg(:l?,y) = (p® R)(O’ 1,$,y)-

Thus Mil’shtein schemes are constructed such that in the expansion the third
derivative of the diffusion density p is eliminated from the expansion of the Euler
scheme. This derivative is the most unstable and singular summand near point
s = 1. This suggests that Mil’shtein schemes lead to more stable approximations
of transition densities of diffusions.



5 Some auxiliary results.

This section contains some auxiliary results that will be used in the proof of Theorem
4.1. In Section 3 we represented the transition densities of the diffusion by nested sums
of functionals of densities of frozen’ processes. The difference between the densities
of the ’frozen’ Markov chains and the Gaussian densities can be treated by Edgeworth
expansions. This is done in Subsection 5.2. In contrast to Konakov and Mammen
(2000a) now we use higher order Edgeworth expansions. These are the main steps of
the proof of Theorem 4.1. In Section 5.3 we will give some bounds for the kernels and
their differences used in the expansions of the parametrix methods.

5.1 Application of the parametrix method to Markov chains.

In this subsection we derive a finite series expansion of the transition density p,(s,t, z, y)
of the Markov chain, see Lemma 5.1. Here, p,(s,t,z,e) denotes the conditional den-
sity of Y, (t), given Y,(s) = z (in particular, p,(0,1,z,y) = pu(z,y)). We proceed
similarly as in Section 3. Again we apply the parametrix method and for this purpose
we introduce additional “frozen” Markov chains. These are defined as follows. For all
0<j<nand z,y e IRP we define the Markov chains X,, = Xn’j,w,y. For fixed 7,z and
y, the chain is defined for ¢ with 5 <4 < n. The dynamics of the chain is described by

and
X,(i4+1) = X,(6) +n'm{y} + n V25,3 +1).

The stochastic structure of the IR? valued innovations &,(i) is described as follows.
Given X, (1) = z(l) for I = j,...,i the variable &,(; + 1) has a conditional density
¢{y, ®}. Note that the conditional distribution of X, (i + 1) — X, (i) does not depend
on the past X’n(l) for | = j,...,i. Let us call X, the Markov chain frozen at y. We
put Y, (t) = X,{k} for k/n <t < (k+1)/n and we write p,(j/n, k/n,z,y) for the
conditional density of X,,(k)[= X, jz4(k)] at the point y, given X,,(j) = =. Note that,
as in the case of a “frozen” diffusion the variable y acts here twice: as the argument of
the density and as a defining quantity of the process X,, = Xn’j,w,y. Let us introduce
the following infinitesimal operators L,, and L,:

Lnf(j/n,k/n,x,y)

=n /pn,j(x, 2)f((G+1)/nk/n, z,y)dz — f((G +1)/n, k/n, 2,9)| ,

Enf(j/n,k/n,x,y)

—n / (@, 2)F(G + 1) /n, kfn, 2, y)dz — (G +1)/mk/mz,y)| |

10



where we write
pn,j(x’ Z) = pn(j/na (.7 + 1)/TL, z, Z)

and where P, ;(z, ®) denotes the conditional density of X,(G+1)[= Xy jwy(+1)] given
X,(j) = z. Note that L, and L,, are defined in analogy with the definition of L and
L, see (3)-(4). We remark that for some technical reasons on the right hand side of the
definitions of L,f and L,f the terms f((j +1)/n,...) appear instead of f(j/n,...).
The reasons will become apparent in the development of the proof of Theorem 4.1. For
k > j we put in analogy with the definition H

The next lemma from Konakov and Mammen (2000) gives the “parametrix” expan-
sion of p,.

Lemma 5.1 For 0< j < k < n the following formula holds:

pn(j/na k/n,x,y) = ) (ﬁz On Hv(zr)) (.7/”, k/nax),

T

.

Il
<)

where in the calculation of p, H we define

pn(k/n,k/n,x,y) = p(k/n, k/n,x,y) = 0(z — y).

Here § denotes the Dirac function.

5.2 Bounds on p, — p based on Edgeworth expansions.

In this subsection we will develop some tools that are helpful for the comparison of
the expansion of p (see Lemma 3.1) and the expansion of p, ( see Lemma 5.1). These
expansions are simple expressions in p or p,, respectively. Recall that p is a Gaussian
density, see (2), and that p, is the density of a sum of independent variables. The
densities p and p, can be compared by application of Edgeworth expansions. This is
done in Lemma, 5.2. This is the essential step for the comparison of the expansions of
p and p,. In the next lemma bounds will be given for derivatives of p,. The proof of
this lemma also makes essential use of Edgeworth expansions. The following lemma is
a higher order extension of the results in Section 3.3 in Konakov and Mammen (2000).

Lemma 5.2 The following bound holds with a constant C' for v = (11, ...)" with
0<|y| <6
‘Dgﬁn(.j/n, k/n, z, y) - DZﬁ(]/TL, k/n: z, Z/)
—n” 2 DYT (§/n, k/n, @, y) — 0 DYT (i /0, k0, 3, )|

< On2p 3¢ M(y — z)

11



forall j < k,z andy. Here DY denotes the partial differential operator of order v with
respect to z = p~'S(y)"?(y — z — p*m(y)). The quantity p denotes again the term
p=[(k—3)/n]'/?. We write (o) = p~#C*(e/p) where

L+l
S+ 2 IF 1z

¢*(z) =

PROOF OF LEMMA 5.2. We note first that p,(j/n,k/n,z,e) is the density of the

vector
k—1

T+ p*m(y) +n” 1/225n i+1),
i=j
where, as above in the definition of the “frozen” Markov chain Y, &,(i + 1) is a se-

quence of independent variables with densities ¢(y, ). Let f,(e) be the density of the
normalized sum

n~ % [k - 5)2(y)] 1/2ZEH (i+1)=n"Y2p 18y I/ZZEH i+1).

1=j
Clearly, we have
Pu(i/n,k/n,z,0) = p7P det B(y) " fu{p™ ' S(y) [0 — z — p’m(y)]}.

We now argue that an Edgeworth expansion holds for f,,. This implies the following
expansion for p,(j/n,k/n,z,e)

(10) Pu(3/n, k[, 2, 0)

= p P detX(y 1/2[2 )PP (=0 {Xp PP E(y) [0 — 2 — pPm(y)]}

+O(k = 372201 + |{p ' S(y) [0 — z — PPm()]}]*TH)]

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, P,
denotes a product of a standard normal density with a polynomial that has coefficients
depending only on cumulants of order < r + 2. Expansion (10) follows from Theorem
19.3 in Bhattacharya and Rao (1976). This can be seen as in the proof of Lemma 3.7
in Konakov and Mammen (2000a).

It follows from (10) and Condition (A3) that

—n PR (i/m b/, y) = (i fn b/, )|
< COnpS T (y — ),
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where
p(i/n, k/n,z,y) = p~P det ©(y) ~V/2(2m) P/2

expl=3 (y— 2 = Fm(y) r20) "y - 5 = ()},

F1(i/n b,z y) = —p P det B(y) T2 W) pog £oisiy) 2y — 5 — Pmly)) )

V!
|1/|:3

wo(j/n. k/n, 2, y) = p P det B(y) "2 | ) X"V—(,y)Dié {p7' )2y — = = p’m(y))}
lv|=4 )

+% Wt g {p'S@W) " (y —z - P’m(y))}| ,

V!
|v|=3

where %, (y) are the cumulants of X(y) /26, (i + 1) and D?¢ denotes the derivative of
¢ of order v. The definitions of 7; and 7y coincide with the definitions given at the
beginning of Section 4. This follows by replacing the differential operator D) by D?~.
For v = 0 the statement of the lemma immediately follows from (11). For v > 0 one
proceeds similarly. See the remark at the end of the proof of Lemma 3.7 in Konakov
and Mammen (2000).

From the last lemma we get the following corollary. The statement of this lemma
is an extension of Lemma 3.7 in Mammen and Konakov (2000) where the result has
been shown for 0 < |b| < 2,4 = 0.

Lemma 5.3 The following bounds hold:
| Dy Dy /0, k/n, 2, y)| < Cpml=PICI=1el(y — z)

for all j < k , for all x and y and for all a ,b with 0 < |a| + [b] < 6. Here, p =
[(k—7)/n]"? [for simplicity the indices n, j and k are suppressed in the notation]. The
constant S has been defined in Assumption (A2).

5.3 Bounds on operator kernels used in the parametrix expan-
sions.

In this subsection we will present bounds for operator kernels appearing in the expan-
sions based on the parametrix method. In Lemma 5.4 we compare the infinitesimal
operators L, and L, with the differential operators L and L. We give an approxima-
tion for the error if, in the definition of H,, = (L, — in)ﬁn, the terms L, and L, are
replaced by L or L, respectively. We show that this term can be approximated by
K, + M, where K, = (L — L), and where M, is defined in Lemma 5.4 . Bounds on
H,, K,, and M, are given in Lemma 5.5. These bounds will be used in the proof of

13



our theorem to show that in the expansion of p, the terms p, ®, HT(LT) can be replaced
by Pn ®n (M, + K,).
Lemma 5.4. The following bound holds with a constant C
j k

j ok Jk

Hn ) _Kn Ty Ty _Mn Ty Ty
(o o 2oY) (o o %:Y) (Cs o %:Y)
< Cn 1Cf(y —x)

where ]

7k

Kn( aﬁal‘ y) (L_L)pn( ) :l‘ay)a
) 3
J k J ok
Mn Ty Ty = Mn NN ) )
(5 —=3,9) l:zl W5~ 7,0)
Mar (L5 ) = Mann (L5 ) 4 Moo 5 2 )+ Mosa (L 2 ),
nn n'n’ n'n’ nn
ik _ D¥pn( j,ﬁ z,Y)
My (s~ n2y (1w (2) = 1(9)),
lv|=3
ik, _ D% ,;,n, )
My 12(=, ! Z {u () — o (y)
|v|=4
- Z V!N(Vv u’)u,,,(y)[u,,_,,,(x) - NV—I/’(y)]}a
V=2

)k
Mn,13(l’ — T, y) =
nn

3/2{2 [ / (2.0) — a(y, )] 6 D" Az + SH(O))[1 — d]*d5do

41 Zcr,l(y Z / / oy, 0)(0 + n="2m(y))" (L — L) D"+t \(z + 55(0))dsdo

lv|=1

-3 Z // a(y, 0)(0 + " 2m(y))”(1 — 6)2(L — L)D*A(z + 5h(0))dsdo

||3

—22“” —mly) ‘// 0y, 0)(0 + n~2m(y))” (1 — 6)

v[=3 v'|=2
D" X(z + 6h(6))dédf
-y n el 5 / / 4y, 0)(0 +n”! (y))"’D"+"’A(x+67z(0>)d6d9},
|v|=4 V=1
k k |k
M’I‘L,Q(la _axay) - Mn,?l(la — T,y ) + ...+ Mn,25(la _axay):
nn nn nn

14



V=3 i=1
ML, % 2,) = {Z LNy > sl &) = e 0]
|v|=4

+Zmz Z// o, 0)(0 + n=2m(y))” (L — L)D”*+4\(z + 6h(0))dsdo

' |=1

oy —my) Z// (y,0) (0 + n~2m(y))” D A( + 6h(0))dbd0

v|=2 =1

— Z ] Z vi[mi(2) py—e; () — M3 (Y) thy—e; (V)]

lv|=3  i=l

> f / q(y,0)(0 +n~*m(y))” DL Na + h(9))dsdo

V=1

_ Z ,LL,, My ) Z m(y)u’DZ—I—u’)\(z)}

|v|=3 V=1
Mo E ) =50 0 25 )~ mtw) [ [ ate0
n,23 TL’ TL’ ) = U L () ] 0 )
0"~ DY \(z + 5%(0))[1 — §]*dsd,
J k 2
M _
n,24(nn Z ” //[qx@ q(y,0)]
|v|=5 i= 1
9"~ D¥ \(z + 0h(0))[1 — 8]*dédo,
M, 25( E ,x,y) = sn~>? Z Z// z,6)0” D”*“/\(x+(5h(0))
|v|=5 .1 1 \ul 1
(mq(x) — mi(y))*6[1 — 6]*dbdo,
Mn,s(%, Eaxay) = My, 31(1 —,Z,Y) F . + My, 34(1 —,,Y),

Jk 3 v—e;
Mn Ty Ty =
sl b= 35S e [ [ ateon

" DN (@ + 5h(0)) (ma(w) — my(y)) 51 — 6]*ddd.

|p|=1
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ik _ 1 &
Mn,32(ﬁ’ Ea z, y) = 5n 5/2 Z J Z [mi(‘r)mi’ (l') - mi(y)mi' (y)]
v|=5 =1

/ / 1 q(z, 0)0"=4< D¥ \(z + 6h(0)) (1 — 6)*dbdd,

Mn,%(%, %,x,y) =50 % > mi(y)ma (y) //0 lg(z,0) —a(y,0)]

lv|=5 " i4'=1

eu—ei—ei/DuA(l. + 5};(@))(1 — 6)4d6d0,

ik s 1< / /1 e
M, (=, — = — ; ¢
n,34(nana$7y) on |§3 V'Zzzlmz(x) o Q(xae)e
" DN (@ + 5h(0)) (mi(w) — ma(y)) 51 — 6]*dddp.
lu/=1
Here e, denotes a p - dimensional vector with r — th element equal to 1 and with all
other elements equal to 0. Furthermore, for |v| =4, |V'| = 2 we define

N(y, V') — oV I=14x[(v—v)1=1]-2

where x (o) means an indicator function. We put m(z)” = mq(x)"* - ... - mp(z)* and
m(z)” = 0 and p,(x) = 0 if at least one of the coordinates of v is negative. We define
also the following functions

i+l k
A =Pn\———H %, )
(2) =pu(™ —, 29)

h(6) = n"'m(y) + n~'20.
For all j < k, x and y the function (, is defined as in Lemma 5.2. Here again p denotes
the term p = [%]1/2. Forj=k—1andl=1,...,3 we define

The proof of Lemma 5.4 is based on some lengthy calculations. It follows the lines
of the proof of Lemma 3.9 in Konakov and Mammen (2000). The difference is that this
time we use higher order Taylor expansion. Then we replace A(z) = 5n(j#, f—L, z,y) by
ﬁn(%, %,x,y) in (L — E)/\(x) and in the expressions for M,, 11, M, 12, My, 91 and M, 3.
To this end we use the Taylor expansion for A in the following formula
J k =

K ey) = / a(y,0) D’z + 1(6))db.

Duﬁn(_a
nn

T

Lemma 5.5 The following bound holds with a constant C

(12)  |Muy(G/nk/n,z,y)| < On-EDPp 15y —2)  forl=1,..,3,
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(13) | DeD) M, (5/n, k/n, z,y)| < Cple=PI=t ¢Sl 1y — ) fori=1,..,3,

(14) |DeDEH,(j/n, k/n,z,y)| < Cpm 9= PI=1¢S~lal1(y — ),

(15) | D2 Dy K (3/m, ki fn, z,y)| < Cp TR y — ),

(16) | DEDYE @ (K + Ma) ]/, i/, 2,)|
SCB(G5) o B, ) G2y — g,

k;]] 1/2 ‘

n

for all j < k and y. Here again p = [

PROOF OF LEMMA 5.5. For a,b = 0 claims (14) and (15) have been shown in
Konakov and Mammen (2000), Lemma 3.10. For a proof of these claims for |a| > 0 or
|b| > 0 and for the proofs of (12) and (16) one proceeds similarly.

6 Proof of Theorem 4.1.

We now come to the proof of Theorem 4.1. Main tools for the proof have been given
in Subsections 5.1 - 5.3. From Lemmas 3.1 and 3.2 we get that

n B . 1
p(0,1,3,9) = ;p@’ HO(0,1,2,y) + — Ru(2,y),

where R, (z,y) is a function with subgaussian tails, i.e. for constants C,C" it holds
that

|Ra(z,y)| < Cexp[-C'(z —y)?.
With Lemma 5.1 this gives
(17) p(0,1,2,9) = pa(0,1,2,9) = T1 + ... + T5 + n"*Ry(z,y),

where

Tl - Zﬁ®H(T)(Oa 1axay) - Zﬁ®n H(r)(oa 1;"L‘ay):

=0 r=0

n n
T,=)Y @ HD(0,1,2,9) = Y _p®n (H+ M+ 2N)(0,1,2,y),
r=0 r=0
n n

Ty=Y p®n (H+ M, +n"2N)D(0,1,2,9) = Y p®n (Kn + M) (0,1,2,y),

r=0 r=0

17



T4 = Zﬁ ®n (Kn + Mn)(r)(oa l,w,y) - Zﬁn ®n (Kn + Mn)(r)(oa 17 z, y)7
r=0

r=0
Ts =Y pn ®n (Ku+ Ma)D(0,1,2,9) = > pn @ HD(0,1,,7).
r=0 r=0

Here we put N (s,t,z,y) = (L — Z)%l(s, t,2,y).
We now discuss the asymptotic behaviour of the terms 77, ..., T5.

Asymptotic treatment of the term T;. Using Theorem 2.1 and the remark following
Theorem 1.1 in Konakov and Mammen (2002) we get that

1 ~ 1
T, = —p®,(L-L)*%®, ®0,1 R,
1 an® ( ) PR (Oa y Ly y) + ’I'L2R (may)a

where R, (z,y) is a function with subgaussian tails, i.e. for constants C,C" it holds
that

[Ru(2,y)| < Cexp[-C'(z —y)’]
and where ®(s, t,z,y) = >0 H"(s,t,z,y).

Asymptotic treatment of the term T,. We will show the following expansion of T for a
constant C' > 0 and for 6 > 0 small enough.

(18) T, —4) p®, HM(0,1,1,y)
r=0

+Z§®n (H + Mn,ll + n_l/le)(r)(O: 17 :an)

r=0

+ Zﬁ@n (H + Mn,l?)(r) (Oa ]-a z, y)
r=0

+3 5@ (H + Myp1)™(0,1,2,7)

r=0

+Y 5@ (H+ My5) " (0,1,2,9)| < Cn™7(y — 2).
r=0

For the terms on the left hand side of (18) we will show the following bounds with a
constant C' > 0.

(19) P ®n (My11 +n" 2N, + H)D(0,k/n, z,y)

—D®n H(0,k/n,z,y)|
cro 11 ro1k

B(§, 5) IR B(E’ 5)(5)(T_1)/2CT+1’0”€(?J - ),
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(20) D ®n (M 12 + H)(T)(O, k/n,z,y) — p ®n H(T)(O, k/n,x,y)|

cr 11 r 1.k
< ZB(Z.Z)... .. Do MNG-2)/2 pr+1,0k 0,
(21) |5®n (H + Mn721)(r)(05 k/naxay) _ﬁ®n H(T)(Oa k/naxay”
cr 11 r 1.k
< ZB(Z.2)Y....-B(=.2)(Z (r-1)/2 r+1,0,k(,,
(22) P ®n (H 4+ My,3)"(0,k/n,z,y) — P H' (0, k/n,z,y)|
cr 11 r 1.k
< _B ) L B — — — (T_l)/2 T+1507k —
<CB(. 5B DG everony )

where
Chik(x) = max{(p, * ... x () :p1 > 0,..., 9 >0,

pi+ . +pf = (k—j)/n},

o) =1+ a1 { [+ ||u||23’1—1du}1.

We now give the proofs of (18), (19) and (20). The proofs of claims (21)-(22) are
omitted. These claims follow by similar arguments as (19)-(20). All claims are proved
iteratively by induction. In the induction steps the bounds given in (19)-(22) are used
for 1 < k < n—1. Note that in (18) the terms only appear for £ = n. We now start
by proving (19) and (20). The proof of (18) will be given afterwards.

Proof of (19). We first prove (19) for » = 1. For this purpose we write

D 1
P (Mg + 1 V2N (0, k/n,2,9) =n 2 S S,

|v|=3
where
1 k-1 N ' o
@) S= 0 Y [ 0.5/ 0D/ k) ) - 0]
+Xu(y),02 /‘ﬁ(ov ]/n’ Z, u) [Z Df“ﬁ(i/”a k/nv u, y)( m(u) - ml(y))

_% Z Drretap(i/n, k/n,u, y)(oq(uw) — Uil(y))]

il=1

We now decompose the summand S,

1 1
S,,z;Z/...du—l—;Z/...du,

jEI JEJ2
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where J1 = {j:0<j< (k—-1)/2}and Jo={j: (k—-1)/2 < j < k—1}.

With

p = +/k/n—j/n and k = \/k/n we get from Lemma 5.3, (23) and (A2) with some

constants C and C;

_12/ du|<CnIZp 2e(y — )

je€N JjEJ1

k/(2n) dt
< Oy — ) /0 kjn—1)

= Oy — ) In(2)
11
< G2y - 2)B(5, 5)
22
Furthermore, with e, + e; < v (componentwise)

_IZ/

JEJ2

|y {/Derm (0,5/n, @, w){p () = (y)}]

jE€J2

Dy %p.(j/n,k/n,u,y)du

() / DEr e (0, j/n, , u){ma(as) — ma(y)}]

Drteé=er=esp(5/n, k/n,u,y)du
(1) / Do [5(0, 4 /n, 3, w) {ou(u) — ou(y)}]

Du+ei+ez—er—%§(j/n, k/n, u, y)d’U/}|

1
C -1 2,0,k —
< Can Jeszj/ \/j/n\/k/n—j/n]c (y — =)
< G (y — )

with some constants Cy, C's > 0. Combining the last two estimates we get that

11
Su] < Cu*¥(y - 2) B3, 5)

for some constant Cj.

This shows claim (19) for r = 1. We now check the claim for r = 2. We have

P Qn (My 11 + n~YIN, + H)(2) - P ®y H®

= §®n (Mn,ll + n_1/2N1) ®n (Mn,ll + n_1/2N1 + H)
D ®@n H @n (M1 + 1 '2Ny).
The first term on the right hand side can be bounded as follows

|ﬁ®n (Mn,ll + n_l/QNl) ®n (Mn,ll + n_1/2N1 + H)(Oa k/na z, y)‘
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k—

1 11, 1 .
—== %z —2)B(5, 7) ¢y — 2)dz
fnz/ 22" [k _ i

1=0

C 1112 4
< 3Ok (y — 2)B(=, =) -
- \/7_7,C (v —2) (2’2)nl:0 %_%
C k 11 1
< &~ (BNy2p80k,, 41 Y
< SN0y~ a) B B )

For the second term we get

|ﬁ®n H On (Mn,ll + n_l/ZNl)(Oa k/na z, y)‘

— |12 Z Z{/ P ®n H)(0,5/n, z u)D;ﬁn(%, %u y) [ (1) — o (y)]

‘I/|:3

+xu(y)pz/(ﬁ®n H)(0,j/n, z,u) [Z Dy p(j/n, k/n,u, y) (mi(u) — mi(y))

=1

+% > Dt/ k/n,u,y)(ou(u) — Uiz(y))] du}‘

il=1

11 11
—-1/2 it —-1/2 i
<wt 3OS a2 YD S [
|v|=3 jed1 |v|=3 jEJ2
These two terms can be treated similar as in the proof for » = 1. The first term can

be bounded by use of direct estimates. The second term can be easily bounded after
two applications of partial integrations.

The proof for r > 2 follows by iteration and use of similar methods.

Proof of (20). The claim follows similarly as in the proof of (19). Again the region of
the summation is splitted into two regions J; and J,. Again, for the treatment of the
second sum partial integration is used.

Proof of (18). This expansion immediately follows from the following bounds
(24) |5®n (Mpa1 + n 2Ny + My2 + My 3+ H)'(0,k/n, 2, y)

—p ®n (M 11 + 0" V2Ny + My 10+ H)D(0,k/n, z, y)]

o 11 r 1 k-3
< —= Z.2Y....-B(=.= (r—3)/2 /r+1,0,k
(25) P ®n (H + My +n 7Ny + Mn,2)(r) (0,k/n,z,y)

—P @ (H + My +1 2Ny 4+ My, ) (0, k/n, z,y))|
cr 11 r 1 k
— _B(=.2). .'B—— (r 1)/2 ~r+1,0,k
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(26) |5®n (H + Mn,l + n71/2N1 + Mn,2 + Mn,3)(r) (Oa k/na z, y)

—p ®n (H + Myy +n" 2Ny + My, o + My, 51)7(0, k/n, z,y)|

cr 11 r 1k
< —B(=.=)-...-B(=. = (r—1)/2 /r+1,0,k
— n3/ZB(2’2) B(2 2)( ) C (y )

(27) |ﬁ®n (Mp11 + n 2N + My 12 + H)(T)(Oa 1,z,y)

_5®n (Mn,ll + nil/le + H)(T)(Oa Lz, y)

_[ﬁ®n (Mn,12 + H)(T) - ﬁ®n H(T)](Oa 17 x, y)|
C’I‘

1
< WB(E,E) e B(§ +re,e)((y— ),

(28) |ﬁ®n (Mn,l + n_1/2N1 + Mn,21 + H)(T)(Oa 17 z, y)

—D®n (M1 +n72Ny + H)D(0,1,2,9)

_[ﬁ®n (H + Mn,21)(r) _ﬁ®n H(T)](Oa 17"E7y)|
C”‘
< WB(LS) ce B(14+7e,6)((y — ),

(29) |5®n (Mn,l + n71/2N1 + Mn,2 + Mn,31 + H)(T) (0’ 1’ z, y)

_ﬁ®n (Mn,l + n_1/2N1 + Mn,2 + H)(T)(Oa ]-axay)

< & ——=B(1,€)-...- B(1+re,e)¢(y — x).

nd/2—¢
These estimates are valid for any € € (0, 5) with a constant C(e) < oo depending on ¢.

We will prove (24) and (27). The proofs of the other claims are quite similar to the
proofs of (19), (24) and (27) and will be omitted.

Proof of (24). For r = 1 we get by use of direct bounds

5@ Mais(0,k/n,2,9)| < 5 () B(5, )¢y — 2).

In the next step (r = 2) we use the bound

This gives the additional log factor in (24). Besides this the claim can be proved along
the lines of the proof of (19).
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Proof of (27). Denote the expression under the sign of the absolute value in (27) by
I',. Then we have the following reccurrence formula

(30) Fr = Fr—l ®n -H + [§®n (Mn,ll + n_1/2N1 + Mn,12 + H)(T_l)

=P @n (Mp,11 + n~2N; + H)(T_l)] ®n (Mp11 + n_l/QNl)
+ [P ®n (M1 +n V2Ny + My, 10+ H) Y
P ®n (Mp12+ H)" V] @4 My12 =T+ IT+I11.

Note that I'g = I'y = 0. We start from the estimation of the second summand I in
(30). Similarly as in the proof of (19) we decompose the sum into two sums

11:12/...du+12/...du.
njeh njEJz

The following bound is a modification of (20).
(31) |ﬁ®n (Mn,ll + n_1/2N1 + Mn,12 + H)(T)(O’ k/na x, y)
~P @ (M1 +n Ny + H)O(0,k/n, 2,y)|

cr .11 r 1 .k
< = B(%,2) ... B(z, =) (=) 2/2¢r 00k _ ),

Proof of (81). The claim can be shown similarly as in the proof of (19). Again the

sum is splitted into two regions J; and J; and for the second sum partial integration

is used. For the partial integration we make use of the following bounds that easily

follow from the definition of M,, 1,

Ci k—j
T S

Co k—3j
DY My +1 2N (G, b+ 0)| < 2 (5 )G o),

|D2DY (My11 +n~Y2N1) (5 /n, b/, @, y) | < )~ @FalFED 2 (y — ),

for some constants Cy,Cy > 0. We also have that for some constants C3 and Cy

(32) |DEDY (B @y (Mo + 17 Y2N) ) (0, k/n, 2, y)|
c; 11 r 1k
< B(=.2).....B(=.2) (X)) (al+bl+1-r)/2 —
— n1/2 (272) (2’2)(7?,) Cp(y .’E),
(33) |DZ(5®n (Mpa1 + n~Y2NY) N0, k/n, z, x + v)‘

cr 11 rl ko,
< =) e B(=, 2)(2)2¢ ().

The inequalities (32), (33) can be shown as in the proof of (5.7) and (5.8) in Konakov
and Mammen (2002).
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Using (31) we get for r > 2

cr1 1 r—11
() o> [ <CoBGy B
]EJ1
1 -7 (r—3)/2 7,0,7
JEN
CT 11 r 1k ,_ ,
< B ..-3(5 5)( )oY _ ).

For j € J, we have with € € (0, 3)

Z/ Ldu| <

JEJz

(35) _

B(e, )B(%-}—s,a)-...-B(%—F(T—Z)a,a)

n

o ) e [ e -

]EJ
4 1 1 k
< gleB(E,e)B(é +e,€)- ... B(§ + (r— 1)5,5)(5)(“1)5(”1’0”“(31— z).
n2

To estimate the third term 717 in (30) we use the following estimate for the deriva-
tives

(36) | DS [ ®n (M1 +n" 2Ny + Mo + H)®

P ®p (M1 + H) ] (0,k/n,z,y)|

cr 11 r 1 k
< — i - (r 2)/2 r+1,0,k

Inequality (36) can be shown by induction on 7. The basic tools are integration by
parts and the following estimates for H and p,

S k S k C
(37) ‘Dy H(Haﬁaxay) +Dm H(;: ;axay)‘ S ;gbC,P(y_-’E)a

ik ik C
DEDYp, (L2 DEDp (L, 2z, 9)| < ZCo(y — z).
(38) s DuD (n,n,w,y)+ > DyD (n ek y)‘_ pCp(y )

Inequality (37) is contained in Lemma 3.4 in Konakov and Mammen (2000). Inequality
(42) can be shown by direct calculations. The proof uses the representation of p, and
of its derivatives (with respect to covariance and mean) from Lemma 3.7 in Konakov
and Mammen (2000). To estimate the derivatives we also use Lemma 4 from Konakov
and Molchanov (1985). We omit the details. For estimating the third term I17 in (30)
we again split the summation region

I == Z/ cdu+ — Z/

]€J1 ]EJz
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For an estimation of % dien [ ... du we use the direct estimate

- _ k
p ®n (Mn,ll + n_1/2Nl + Mn,12 + H)(T 2 (05 ﬁa z, y)

~ k
—-p ®n (Mn,12 + H)(T_l)(oa ﬁa z, y)

ct 11 Br—l 1

< e BG3) Bl ’2)&

n

)(r—2)/2<r,0,k(y _ x)

For an estimation of %Eje 7, J -+ du we apply integration by parts and (36) several
times. This completes the proof of (27).

Asymptotic treatment of Ts. We will show that

(39) Ty =) p& HV(0,1,2,y)

r=1

S 1
- ZP ®n [H + ;NZ](T)(Oa 17 z, y) + RZ(iE, y)a
r=1
with Ny(s,t,z,y) = (L — L)7a(s, t,z,y), |R%(z,y)| < Cn 1% (y — ) for § > 0 small
enough, and a constant C' depending on §. For the proof of (39) it suffices to show that
for 6 small enough:

(40) Zﬁ@n (H+ M, +n 2Ny +n 'Np)(0,1, 2, )
r=1
~ > P @ (Ku+ M) (0,1,2,)
r=1
< On™'%(y — ),
(41) > P ®n (H+ M, +n7?N1)(0,1,,y)
r=1

- Zﬁ@n (H+ M, +n7 2Ny +n7 Np) (0,1, 2, y)

r=1

—) 5@, HO(0,1,2,9) = > & (H+n""No)P(0,1,2,y)]
r=1

r=1

< Cn ' (y — o).

Proof of (44). Denote for 0 < m <mn

J . o J
D3,m(0’ Ea z, y) = Z[p ®n (Kn + Mn)( )(03 ﬁ’xa y)

r=0
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B ®n (H + My, +n"Y2N, + 0~ 1N) (0, L, 2, 9)].
n

Then we have to show
D3 (0,1,2,9)| < Cn~'%¢(y — ).
We now make iterative use of
D3 = D31 ®n (H+ M, + n" 2Ny + 07 Ny) + By,

for m =1,2, ..., where

m

hin(0, 2, 3,9) = = 3P @ (Kn + Ma)? @ (H = Ko+ 172Ny + 07 Ny) (0,2, 2, y)
r=0

= Sn,m ®On (L - Z)dn(oa » Ty y)

with
dn=Pn—P—n""F — 07T,
i _ i
Sn,m(oa Ha z, y) = Zop ®n (Kn + Mn)(r)(oa ﬁa z, y)

Iterative application of this equation gives

n—1
(42)  Dsn(0,1,2,9) =Y hy @y (H + My + 072Ny + 07 No)™70(0,1, 2, ).

r=0

To prove (40) we will show that

(43) by ®n (H + My, + 172Ny + 07 Np)771(0, 1, 2, y) |
1 n—r—11
—1-dpm—r—1 Y. . R _
n IO TB(1, 5) - B, 5)C(y ).

For this purpose we decompose the left handside of (43) into four terms

Z / H+M T 1/2N +n 1N )(niril)(zalauay)dua
n

0<i<n/2

- > 5 Y s tan

n/2<z<n 0<k<z/2

v, u)(H 4+ M, +n 2Ny +n 1Ny)(m7 1)(—,l,u y)dvdu,

1 ~ k
Qr3 = Z E Z /(Lt — Lt)Snﬂ‘(O, ;, Z, U)

n/2<i<n  §/2<k<i—n®

v,u)(H + M, + n 2N, + nilNQ)(nfrfl)(i, 1,u, y)dvdu,
n
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1 ~ k
am = Z E Z /(Lt — Lt)Snﬂ-(O, ;, Z, 'U)

n/2<i§n i—n‘s’<k§i—1
k 1 ;
an(ﬁa %a v, U) (H + Mn + 7’1,_1/2N1 + n_1N2)(n_r_1)(%, 1, v, y)dvdu

Here Lt and L! denote the adjoint operators of L and L. Note that

(L' — LY f(s,t, 2, u) = Z

t”
8u18u, J(s,t,2,u)

X (0ij(u) — 0ij(y ]_Za/auz st x, u) (mi(u) — mi(y))].

In particular, we have
h, = (L' = LY)S,,, ®n dy,

For the proof of (43) it suffices to show for j=1,...,4

1 n—r—11
(44) angl <0100 B, ) B ) - )

Proof of (44) for j = 2. The claim follows from (12) and (15) by noting that for
k<i/2,n/2<i

(45) Sn,T(O,g,a:,v) < C(5H2

\/_k/_n(v - ‘/I")a

‘(H + M, + nil/ZNl + nilNZ)(niril)(ia L, u, y)
n

<ot byrepa eI D ),
(L= Dol v,0)| < Cn 2 0 = ).

Proof of ( 44) for j = 3. We now apply that i/2 < k < i—n®,n/2 < i. It follows from
(11), (13), (15) and (45) that

~ k
t Tt g S—4 _
‘(L L )Sn,r(07 nama’u) < CC\/k/_n(v 37),
d (E . v,u)| < Cn~*2p 3¢5 % (u —v)
n nﬁn, 9 — P

with p = /(i — k)/n. Note that

1 ~ k k
- Lt_Lt n,r - n\
Ly w50 e nad,

i/2<k<i—ns’
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1
< = -3/2 -3 _
< > 2 (u— )
i/2<k<i—nd’
! ]. !
< p-1-@)?/2 2 —2+44 _
<n - E p C(u—2)
i/2<k<i—nd’

<Cn '¢(u—2)
for 6" small enough.
Proof of (44) for j =4. For i —n% <k <i—1,n/2 < i we have

~ k -~k 1
/(Lt — LS, (0, 2 V)P ( l,v,u)dv

D
nn

~ k w  mu),
= L'—rt — - _ (i—k)
/( )Sn,r(oa naxvu \/’E n )q (’LL, w)dw

(L' — Et)sn,r(o, %, z,U— )

1 ¢ T k m(u),| i —k
+§Zijwl (L _L)Sn,r(oaaaxau_ n ) n Uj,l(u)

+0(n™*)¢5 2 (u — z)

for § small enough. Here ( A2) has been applied and it has been used that

[ wdo =1, [ g, w)dw =0, [ wig P, w)dw = - Ho(w),

The same expansion holds with p, replaced by p. Furthermore, one can show by partial
integration that

~ k 1 1 k
. . ' ~ _
/(L — L")S, ;(0, e z, U)[—\/ﬁm + —nﬂz](—n,

= O(TL_I_J)C\/Z-T"(U - z)
for § small enough. Hence, (44) holds for j = 4.

i,v,u)dv
n

Proof of (44) for j = 1. We define
1

~ k
a’1‘,5 = Z ﬁ Z /(Lt — Lt)Sn’T(O, ﬁ, x, 'U)

0<i<n/2  j—nd' <k<i—1

ko )
dn(ﬁ, %, v,u)(H + M, + n 2N, + n’lNg)(”’T’l)(%, 1, u, y)dvdu.

By integrating by parts with respect to v and by using (45) and arguments as in the
proof of (44) for j = 4 one can show that

1 1 n—r—11
lars| < O(n! 5)3(1,5)._“.3(7 1
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for ¢ small enough. Now, by using arguments as in the proof of (44) for j = 3 one can
show that

1 -r—11
ara = ars| O )B(L3) .. B(——, 3

5 )E(y — )

for 6 small enough. This shows (44) for j = 1. So for (39) it remains to show (41).
This can be done by arguments as in the proof of (27).

Asymptotic treatment of T,. We will show that

o0
(46) T4 = —’I'L_l/2 Z%l ®n (H + Mn,ll + n_1/2N1)(r)(05 13 z, y)
r=0

") T @, H(0,1,2,9) + Ru(z,)

r=0
with |Ru(z,y)[ = o(n™'7%) - {(y — ).

Proof of (46). Note first that with S,,(s,t,z,y) = >, (Kn+M,)"(s,t,z,y) the term
T, can be rewritten as

We start by showing that for § > 0 small enough (uniformly for z,y, € IRP)

@ |2 [E-peLausd ey d < on -

1<j<né

for &' small enough. For the proof of (47) we will show that uniformly for 1 < j < n?
and for z,y € IRP

L J J -
(48) /pn(ovj/na z, U)Sn(ﬁa 17 u, y)du = Sn(ﬁv 1,.T, y) + O(n Jg(y - 33)),
(49) /ﬁ(O,j/n,x,u)SR(%, Luy)du = Su(2,1,2,y) +o(n™((y - o).
Claim (47) immediately follows from (48) - (49). We now show (48) for j = 1. The
proof for j > 1 and for (49) follows along the same lines and, in particular, makes use

of the last condition in (A2). For the proof we will make use of the fact that for all
1<j<nandallz,y € R and |v|=1

(50) 02532 1,2,9) < 00 - )¢, - )

for some constant C > 0. Claim (50) can be shown with the same arguments as the
proof of (5.7) in Konakov and Mammen (2002). Note that the function ® in that paper
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has a similar structure as S,. For 1 < j < n’ the bound (50) immediately implies for
a constant C' > 0

(51) D25,(21,2,9)] < C'Cly — ).

We have p,,(0,1/n, z,u) = n?/?q[u, v/n(u—z — 2m(u))]. Denote the determinant of the
Jacobian matrix of v — n~'m(u) by A,. So, because of (A2) and (51), it holds with
the substitution w = /n(u — z — m(u))

1
/ﬁn(o, 1/n,x,u)Sn(ﬁ,1,u,y)du

= [ g, it - 5 = Sm)S, (1)

[ ) g 1w )
- [aa+ e+ TR wa s G e o T

_ / lq(z, w) + o(n *)p(w)][1 + o(n‘s)]Sn(%, Lo+

= Sn(%’ 1,z y) + O(H_J)C(y - .’L')

From (47) we get that for a 6 > 0

Ti= G-F)0La)+y Y [F-F)0.0/ms 0810 i+ Rao,y)

nd<j<n
with |R,(z,y)| < Cn~ ' C(y — z).

We now make use of the expansion of p, — p, given in Lemma 5.2 . We have with
p= (j/n)1/2 > n6/2—1/2

1~ 3 —3/ J
_ - Sn _717 ’ d
- > 27 [ (u— ) (1, y)du

j=n®

_1__sn . e _ ! j
<Cntp! Zp 246 /‘Cp(u_g;)sn(;,l,u,y)du ,

j=n
where &' < §(1 —4)!, 8" > 0 is small enough. Now using similar arguments as in the
proof of (19) we get that

S / = )S0(L,1,u,)du < CCly— )
j=1

for a constant C. This shows that
T4 = - [n_l/Q%I + n_l%Q] (07 13 Z, y)
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1 & '
- Z/ [n™V%%, +n'7,) (O,J’/n,x,U)Sn(%, Lu,y) du+ R, (z,y)

j=n?

with | R, (z, )| < On 19" C(y - ).

Claim (46) now follows from (47) by application of the expansions of K,, used
above.

Asymptotic treatment of Ts. From Lemma 5.4 we immediately get that

5] < O(n™*¢y — x)).

Plugging in the asymptotic expansions of T1,..., Ts. We now plug the asymptotic
expansions of 71,..., T5 into (17). This gives

(52) pu(2,9) = p(e,y) =Y T @, (H + Myay + 072 N)O(0,1, 2, y)
r=0

[e.e]
+3 "5 ®n [(H + Mup1 +n 2N — HOJ(0,1,2,y)
r=0

o
+D @ [(H + May2)™ — HO)(0,1, 2,y)
r=0

+3 B ®u [(H + Myp)™ = HOJ(0,1,,y)

r=0

+ > P @u[(H + M) = HOJ(0,1,7,y)

r=0

o
+> P®u [(H+n'N)" — HOJ(0,1,,y)
r=0

1 1 ~
- 7 ®, HD(0,1 — —p®, (L-L)p®, ®(0,1,z,7v),
+n§7rz® (0,1, 2,9) = 5-p ®n ( )P ®, 9(0,1,2,y)

where means an equality up to terms that are absolutely smaller than Cn=17%
exp[—C'(z — y)?] for positive constants C, C" and 6.

For the proof of Theorem 4.1 it remains to show that the right hand side of (52)
can be approximated by n~V/27(z,y) + n~'my(z,y). We will prove this claim in three
steps. In a first step we will prove that 'ﬁn(%, %, x,y) can be replaced by ﬁ(%, %, z,y) in
My, 11, My 12, M, 21 and My, 31. Then in a second, we show that the convolution operator
®p can be replaced by the operator ® in (52). In a third step we will show that the
resulting expression is asymptotically equivalent to to n=Y/2m (z,y) + n~'ma(z, y).

Asymptotic replacement of p, by p. We now show that
(53) pu(z,y) — p(z,y) = 027 + p @, ] @, ©(0,1,2,9)
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+n H{[fe + 1 ®n ® Qp R1 + 1% @, Ro + 0¥ Qi R3] @, (0,1, 2,y)

97 @0 (R 82 ®)O(0,1,2,9) + 5 5 © (I~ L0, 1,2,9)}
where

Ri(s,t,z,y) = (L — D)F1(s, t,z,y) + Ms(s,t,z,y) — Mg(s,t, z,Y),

Ro(s,t,,y) = (L — L)a(s, t, 2, ) + My(s, t,z,y) — Mu(s, t,,y),

Ro(s,t,2,9) = Y o D4, 1,2,0) 00 (@) = 0 (1),

V=4

Ms(s,t,z,y) = ZMV Drp(s,t,z,y),

[v|=3
M3 $,t,2,y) u,, 5,1,2,9),
[v|=3
. () e
M4(S,t,$, y) = % o mel(satax’y%
My(s,t,z )—Z'u”(y)D”%(stx )
4:,,3/—”_3 ! zT1(S, 1,2, Y)-

Proof of (62). We will make use of the following approximation

(54) Dn (.’17, y) - p(l‘, y)

o0
n_1/2 Z%l ®n (H + Nn,ll + n_1/2N1)(T) (07 1’ T, y)
r=0

+Zp®n [(H + Nya1 +n~ 2N — HOY(0,1, 2,y)
r=0

+> D@ [(H + Npa2)™ = HO)(0,1,2,y)
+) P ®u [(H + Nuon)™ — HDJ(0,1,2,y)

+Zﬁ®n [(H + Nn,31)(T) - H(T)](Oa 1a$ay)
r=0

+> P ®n [(H+n'No)") — HOJ(0,1,7,9)

r=0

+> D@ [(H+n"'N3)" — H)(0,1,2,y)
r=0
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1 ~ o
+— ZWZ ®n 0’1717 y) %p@)n (L_L)2p®n @(0,1,1‘,2/),

where N3(s,t,z,y) = My(s,t,z,y) — J\Z(s,t,x,y) and where N, ;; is defined as M, ;;
but with p, replaced by p.

A proof of (54) will be given below. To simplify (54) we make use of the following
identities

(55) iﬁ ®n [(H+n'N)T — HM(0,1, z,y)

r=0

—Z —p? @0 (N ®, ®)7(0,1,2,y),

r= 1
(56) D P [(H+n '’ N0 — HD)(0,1,2,9)
r=0
= 1 d ! (r)
= Z n,/Qp ®n (N ®n (I)) (0; 1,3771/),
r=1

where p?(s,t,z,y) =(p ®, ®)(s,t,z,y) and N is one of the functions nN,, 15 , NN, 21,
nN, 31, Ny or N3 and where N’ = n/2N,, ;; + N;. These identities follow from linearity
of ®,, by simple calculations. We will show the following approximations for the right
hand sides of (55) and (56)

o0

1

r=1
~ 1 d
= ﬁp ®'n,N®TL @(0,1,.’12,:(}),

o

1
(58) > =t @ (V' @, 2)7(0,1,,9)

r=1

1

1 1
Wpd ®n N ®n (I)(O’ 1a z, y) + ﬁpd ®n (N, ®n (I))(Q)(Oa 17$7 y)'

We prove (57) for N = nN,, 15. The proofs for the other cases are essentially the same.
For r =1 and |v| = 4 it is sufficient to estimate

ik
z2)Dp(=, — — u,(y))dz.
Z > [vo B ) () — o))z
Splitting the last sum into two sums
k—1
e = .+
7=0 {7:1<a%} {7:>50}



we get by applying integration by parts and by using Theorem 2.3 in Konakov and
Mammen (2002)that

(0" @, N @, )0, %, 2,9)| < (& " (y— 1)
p n n 7n7$7y — C,ﬁy x‘

n

This bound implies

1 k
ﬁpd ®n (N ®n (I))(2)(Oa ﬁaxa y)‘

= W(pd ®n N ®, ®) ®, (n" "N ®, @)‘
C’Q 1 k —1/2+6
< n1+5B(§,5) (n> (bc’\/g(y— )

for ¢ small enough. Iterative application of similar arguments for r» > 2 gives

1 k
(59) —p* @ (N ®, )7(0, =, 7, y)‘
n n
cr 1 1 1
< WB(E,E)B(i + 6,6)...B(§ + (r —2)e,¢)

k —1/24+(r—1)e
(n) ¢C,\/§(y_x)'
The bound (59) immediately implies (57) for N = nN,, 12.

By plugging (57) and (58) into (54) and taking into account the relation

1 ik 1. .§ k
—(L _L2 Ty Ty _§R NG
5y (Ls = L)P(C o2 y) + - Ra(, -, 2,y)

|k
= (Npa2 + Npo1 + Nn,31)(%, el Y)
we get (53) by collecting similar terms. So it remains to show (54).

Proof of (54). We shall use the following recurrence relation

(60) [Zﬁ@n (H + My2) =y 5@ (H+ Nn,u)(’")] (0,1,2,9)

r=0 r=0

n—1 n—1
5500 -ty - 760 54 )
r=0 r=0

®n(H + Mn,12)(oa 1,.’13, y) + Sn Qn (Mn,12 - Nn,12)(0’ l,x,y),
where S, (s,t,z,y) = Z::g P®n(H+ N, 12)") (s,t, 2, y). For fixed v, |v| = 4, we consider

n—1 . . .
1 N .
©) 5> [ 5.0 0 uGula, )DL 1 u) ~ DL 1,0, ) du
j=1
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1 1

n—nd<j<n 0<j<n—n’
=1+11,
where
Gy (u,y) = p(u) — Z V!N (v, v Y (9) (o (4) — 10 (y))
V=2

with N (v, ') defined as in the statement of Lemma 5.4. We start with estimating /. For
the summand in I for j = n — 1 we have to consider p, (%2, 1,u,y) = n?/?qly, /n(y —

n )

u— tm(y))]. With the substitution w = /n(y — u — tm(y)) and by using integration
by parts one gets

n—1
[ 800,722 5 )G, ) DL 1w, )

= [ D0, "T‘l 2, )G, ) oy, Vily — u— m(y)))du

= /D”[Sn(O, nT_l,:v,y - % - %y))(?u(y - % - @,y)]q(y,w)dw

n—1 _
= D'Z[Sn(oa T: z, ’U,)G,,(’U,, y)] ‘u:y +0(n J)C(y - :I?)
Analogously,
—1 -1
/ 520, 2, u) G, )DL 1,y

= DYISu(0, " 2, w)Go(,9)] [umy +o(n)C(y ~ ).

These two expansions imply that the summand in I for j = n — 1 is smaller than
Cn=27%((y — z) for & small enough. For n — n? < j < n — 2 one can show the same
bound. This implies that

(62) Il <Cn ¢y —2)
for ¢’ small enough.

We now treat the sum /7. For 0 < j < n—n® we have that p, = 1/1 — 7]7 > =172,
By applying integration by parts we get

1l = % Z /DZI[SH(O’%’ ;u) Gy (u, y)| Dy~ n( ’1’U y) — ( ’Lu y)ldu

0<j<n—nd

1 | . .
— 5 Y [ D180 L e wiGuw DL B 1) - Byl

n2
0<j<n—nS
+ L 3 / DE[S,(0, L, 2, u)| DX G (u, y) DY~ n(J 1,u,y) — (7 1,u,y)|du
n2 . u n u ) u 7 7 7 )
0<j<n—nS
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j €]Te v—e|—e '7
b 2 [S0. 2 m DG )DL (L 1uy) = B 1wy

=I'+II'+1II'
For I' one can show that |I'| < Cn~!'7%((y — z) with § small enough. The summands

II' and I1I' can be bounded similarly. Because of the expansion given in Lemma 5.2
this only requires application of the following estimate

1 _3/9 _
= Z n3/2p25

0<j<n—nd

_1 (5’1 Zp—l —2+48" /Cpl sz ) U

<O ¢y —a)

D150, 2 2,w)]| G,y — )

with p; = \/% and ¢’ and 6” small enough. With the resulting bound on I7 and with
(61) and (62) we get

(63) |Sn ®n (Mn,12 — Ni2)(0,1,2,9)| < Con 2 ((y — x),

where >~ | C,, < co. From iterations of (60) and (63) we obtain

[Zﬁ@n (H + M’n,12)(7) - Zﬁ@n (H + Nn,12)(r)] (Oa 1axa y)

r=0 r=0

<COn 'V (y— 7).

For the terms in (52) that contain M,, 5; or M,, 3; analogous estimates can be obtained
for the errors if Mn 91 and M,, 31 are replaced by NN, o1 or IV, 31, respectively. In M, 1; we
replace p, by p+ fﬂ'l and we get a similar bound for the resulting error. By collecting
these bounds we get (54).

In the next step of the proof of Theorem 4.1 we will replace p? by p in our expansion
of p, — p.

Asymptotic replacement of p? by p. We now show that in (53) p? can be replaced by
p. This gives the following expansion

(64) Pu(@,y) — p(z,y) = 0727 4+ p ®p Ri] @, ©(0,1,2,Y)
+n 7 {[72 + T1 ®n @ @ R +p @ Ko+ p @ R3] @, (0,1, 2, y)

1
Proof of (64). The claim immediately follows from the following formula

l l
(65) p(O,—,SE,y) _pd(oa_al‘a y)



<

C I e—1/2
BB (5)  byrli-a) ce0))

nl—e n

To prove (65) we proceed as in the proof of Theorem 2.1 in Konakov and Mammen
(2002). This gives the following relation

l I
(66) p(0, —2,y) = p*(0, —, 2, 9)
1 \ 1
= 5P ®n (L= L)p&n 20, - z,9) + R0, ~,z,y),
where
188 &L pG+/m 7 1
67) RO, -.29)= §ZHZ/M nfu— ) du/o (1—5)d(5/dz

- -
. L — L)3D(s.: i P rr
[ 900.55,2.0)(L = L35, 20,210 2,0

with s; = 5;(u,6) = £ + 6(u — L) . By iteratively using integration by parts in (67) a
derivative operator of order 3 can be transferred from p to ® and a derivative operator
of order 1 can be transferred from p to p. We also make use of the inequality

2
| DE(s,,€,€ + )| < Ci(t — ) P exp {—02 l=] } :
(t—s)
This enables us to pass from derivatives with respect to v to derivatives with re-
spect to z. Using Beta functions to bound the integrals appearing in the definition of
R(0, %,x,y) one can show that n=2R(0, é,x,y) is bounded by the right hand side of
(65). The first summand in the right hand side of (66) can be estimated analogously.
For the proof of this claim with the help of integration by parts a derivative operator of
order 1 is transferred from p to ® and a derivative operator of order 2 from p to p. By
using linearity of ®, and by applying (65) we easily get that p? can be replaced by p.
For proving that ®, can be replaced by ® in the last summand of (53) we proceed as
in the proof of Theorem 2.1 in Konakov and Mammen (2002). This gives the following
inequality
p ®n (L = L*)p(0,1,z,y) — p® (L — L*)p(0, 1, z,y)|

C
< 5(/50,1(?/ — ).

We now come to the next modification of our expansion of p, — p.

Asymptotic replacement of p®, (R, ®, ®)?(0,1,z,y) by p® (R1 ®, ®)?(0,1,z,y) and
p ®n §Ri ®TL ®(07 1’ x’ y) by p ® §Ri ®n ®(07 17$’ y)’ Z':172’3'

We now show the following expansion
(68) pu(z,y) = p(2,y) =0~ 2[M +p @ Ri] ®, @(0,1,2,9)
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+n71 {[%2 +7A1:1 Qn q>®n §R1 +p® §R2 +p® §R3] Rn @(0,1,$,y)

1
+p® (R ®, ®)P(0,1,2,y) + 5P® (L2 - L*)p(0,1,2,y)} .

Proof of (68). The claim follows from the following estimates

< Ce)n "o (y — z)

for i = 1,2,3 and for € € (0,3). Thus it remains to show (69). We will prove it for
1 = 1. The proof for 1 = 2, 3 is quite similar. Because of linearity of ® it is sufficient
to consider the differences corresponding to the four summands in the definition of
Ri1(s,t,z,y). The proof for the four summands is quite similar. We only consider the
difference p® L7 ®», ®(0,1,2,9) —p®n L1 ®n ®(0,1,z,y). As in the proof of Theorem

2.1 in Konakov and Mammen (2002) (with H replaced by L7, ®, ®) we get

P® Z%l ®n ®(0> ]-a Z, y) —PpQ®n Z%l ®n @(0, 17 xay)

1 ~ o~ 1
= %p On (LL - LL)Wl On q)(oa 1,$,y) + ER(Oa 1,.’L‘, y)a

where now
1, 11 ; -
1011 G+1)/n s 1
R(O,l,x,y)—Q;n;/j/n nfu—7) du/oa—a)da/dz

n

~ o~ l l
[/p(O, sj,7,v)(LL — LL)*T4 (s, Y z)dv®d( ,l,z,y)] i

These terms can be bounded by using integration by parts and dividing the sums in
the definition of R into appropriate partial sums. This completes the proof of (68).

Now we further simplify our expansion of p, — p. We now show the following
expansion

(70) pu(z,y) = p(z,y) =0~ (p® Fi[pa]) (0,1, 2,y)
+n7 {(p ® Fo[pal) (0,1, 2, ) + (0 @ Fi[p @ Fi[pall) (0,1, 2, y)
+3p® (L= 0. 1,2.0) |
where for t € {1,...,1}, s € [0,¢ — 1]

pA(Sa t’ v, y) = (ﬁ®',n (P)(Sa ta v, y)

. ~ ] J
= p(s,t,v,y) + Z E/p(s, ;,v,z)@l(ﬁ,t, z,y) dz.
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Here &, = Z;’il H® H® = Hr-Y g, H, and the binary type operation ®! is defined

as follows
nt—1

(f ®n9)(s:t,z,y) = Z /f(S tzy)dz

j>ns

Note that for s € {%, ey 1} these operations coincide, that is ®) = ®,,.
Proof of (70). Linearity of ® implies
(71) (p ® §R1)(8‘71-7 z, y) = (p ® L%l)(sa t7 z, y) - (p by z%l)(sa ta x, y)

+(p® Ms)(s,t,2,y) — (0 ® My)(s, 1,2, ).

We now consider the second summand on the right hand side of (71).

(p® L7)(s, t, 2, y) Z oy / dT/ (s,7,2,v)(t — 7)DY(Lp(r, t,v,y)dv

v|=3
Z o (y /(Ht Z o (y) / )
=1+11.

By application of the Kolmogorov backward and forward equations and by using inte-
gration by parts with respect to the time variable we get that

(s+t)/2 o
(12) I= / / T(t — 7)p(s, 7, , v)a— (D¥p(7,t,v,y))
lv|=3
= 5220 [y s, 000 = 1D 1 0,) 67
v!
lv|=3
(s+t)/2
—/ Drp(t,t,v,y) (M(t —7)— p(S,T,SC,U)) dT]
s T
v t— t ~ t -
==y 2 ) S DT v+ (s, 5,0)
Vs v! 2 2 2
1 ( (s+)/2
+ Z - / dr(t—7) /Ltp(S,T, z,v)Dyp(T,t, v, y)dv
|v|=3 |

(s+t)/
Z MU(y / dT/p(S, T,I,U)Dsﬁ(’r; t,v,y)dv-
= Vs

Analogously we get

" (t—s s+t s~ S+t
(73) 1= Y B [ 2 e D )
v|=3 !
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1

=y |

dr(t — ) / Lip(s, 7,2, v) DYB(r, t, v, y)dv

|V|:3 . (5+t)/2
t
-, MV—(,y)/ dT/P(S, 7,z,v)Dyp(7,t, v, y)dv.
w=s U stt)2

Substituting (p ® L7)(0,1,,y) = I + I into (71) we get after cancellation of some
terms

(74) (s, t,z,y) + (P R1) (s, t,2,9) = (p ® M3)(s,t,z,y).

Similarly, by using integration by parts with respect to the time variable we obtain
(75) (1 @ ®1)(s,t,2,9) + (P @Ry @, B1) (5,8, 7,9) = (p® Ms &, 1)(s,t,2,y),
where t € {1,...,1}, s € [0,¢ — 1]. From (74) and (75) we have

(76) (%l ®:1 (I))(Sa l,z, y) + (p ® éRl ®In (I))(S, t,z, y)

= (p® M3 ®, ®)(s,t,2,y) = (p® Falpal) (s, 1,2, y).

Using similar arguments as in the proof of (76) one can show that

(77) (m, @ ®+pR@ Ry &, & +p @Ry &, B)(s,1,2,y)
= (PO My®, @ +p® F[p] @, ®)(s,t,2,9)
= (p® M4 ®In <I>)(8,t,m,y) + (p®f2[pA])(Sataxay)

By plugging (76) and (77) into (68) we obtain that the right hand side of (70) is
equal to

1
@) e Fpa)0.1s0) + 07 { (p8 sl + g (12 -
PO My ®, @+ ®, @0, R ®,8+p® (R ®, 2)?) (0,1,2,9)}
For the sum of the two last terms in (78) we get from (76)
[%1 ®n Q) +p® §Rl ®n Q] ®n (éRl ® nq))(oa 1, Z, y)

Moreover,

(p® My ®;, 2)(0,1,2,y)

:/o o / p(0,u,2,0) 3 Y Dl @), @), 1,2 9)d,

V!
lv|=3
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and, hence, the sum of the last three terms in (78) is equal to
(p® Fi[T1 ®), © +pa @, (R1 ®, )])(0,1,2,y).

For the proof of (70) it remains to show that

(79) (p® Fi[m1 ®, @ +pa @, (B @, 2)])(0,1,2,y)

~ (p® Filp ® Filpa]]) (0, 1,2, y).
We shall show that

(80) n"Hp® Fi[(p — pa) @, (R @, ®)])(0,1,2,9) ~ 0
and
(81) n '(p® FAlp®), (B @, 9)|(0,1,2,9) ~n~' (p® Filp ® (B1 ®, D)])(0, 1, z,).

Then (79) will follow from (80), (81) and (76). We now make use of the following
representation

J J J
(82) p(u, ﬁvm,y) _pA(uv H?xuy) = (p®H _p®ln H)(’U,, ﬁ,x,y)

i*(u)

(p®H—-pQ), H)(u,%,x,y) :/ ! dT/p(u,T,a:,z)H(T,%,z,y)dz-kR(u,l,m,y),
u n

j j—1 (i+1)/n
R(u,ﬁ,x,y)z Z/ T——//[pUT:EZ

i=j*(u)
J
(L- L) BT L, 2,9)] Iy dzdbr,

where j*(u) = [un]+ 1 (with a convention [z] =z —1 for z € N) and ™ = 7*(4,6,7) =
L 4+6(T—2%) . Representation (82) was obtained in the proof of Theorem 2.1 in Konakov
and Mammen (2002). For the remainder term R the following estimate holds uniformly
in 6 € [0,1] and for j > j*(u) + 2

. C j—2 1
) L RIE w2 _7”/ $(y =)
im o dr c [uv dr C
+ [ R e .
Ay e T (F-n) Ve A=)



where p = ,/% —u. For 7 = j*(u) + 1 the estimate (83) follows directlty from the

deﬁnitions of p and pa. Moreover,
7*(u) c
< — - . —
O —ugyly=2) < - dyly )

and, hence, the estimate (83) holds for the first summand in (82). It is easy to obtain
that the same estimate (83) remains true for the second summand in (82). It follows

J (u)

dr | p(u,7,z,2)H J ,y)dz

from the smoothing properties of the operation ... ®/, ®;. Hence, we get an estimate

. . .
(5) ol L)~ palu L) < B oy~ ).

We give only the sketch of the proofs of (80) and (81). From the definitions of ; and
®, we have

, : .
(86) ‘(%1 ®n (I)l)(%a Lz, y)‘ < OTLE(I - %)571/23(5" 5) ’ ¢\/m(y - Z)
and from (85) and (86)

C
(5" (0= 2) @1, 80 0a(01,0.) < S 65l =)

Now for each summand in (80) we split the integral in two integrals

1
n_l/ du/p(O,u,:I:,v)u
0

1/2 1
:n_l/ du...-l—n_l/ du=1+11.
0 1/2
By integration by parts we obtain from (87) that II ~ 0. To estimate I we consider

n—1 . .
v 1
o Y 1 [mpa) 22 ueae) Loz )l
J=5*(u)

two cases, namely, a) Z—u>1 andb) Z-wu<i, 1—2> 1 Inthe casea) we
differentiate with respect to v in (88) and use (82) Wlth a substltutlon v+uw =w we

have
i*(w) .
‘Dq’j [/ dT/p(u,T,v,w)H(T,l,w,z)dw]
“ n

3% () .
Dy l/ i dT/p(u,T,v,v-f-w')H(T,l,v—f-w',z)dw']
n
u

C
< el ¢ /—,nz_u(z - ),
where we used that Z —7 > 1 for 7 € [u, 1" (u)
inequality

Gy
ﬁ—mm'“m

(89) |DYp(u, 7,v,v+ w')| <
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This inequality is proved in Freedman (1964) , p. 260. The other terms in (82) can
be estimated analogously. At last, in the case b) with similar substitutions we make
use of (89) and the following inequality (see Konakov and Mammen (2002))

2

!
& 'eXP[—CQ ‘w |

v ! .-
|D,UH(U,T,’U,U+U))| S (T—u)(p+1)/2 T_u].

The proof of (81) is similar to the proof of Theorem 2.1 in Konakov and Mammen
(2002) where ®; plays now role of H in Theorem 2.1. We omit the details. This
completes the proof of (70).

Asymptotic replacement of pa by p. We start from a comparison of n=! (p®F,[pa])(0, 1, z, y)
and n7'(p ® F[p])(0,1,z,y). From simple estimates

du p(0,u,z,2) - x.(2)Dip(u, 1, 2,y)| < Cn~’¢(y — z),

/1n du/D” 0,u,2,2) - x,(2)] - p(u, 1, 2, y)‘<0n Sy — z),

p(0> u,x, Z) ) XU(Z)DZPA(U, la Z, y) S Cn_6¢(y - .’L'),

-
du
0

1
[ s dU/DZ[p(O,u,x,z) ' Xu(z)] 'pA(ua 1azay)‘ < Cn_6¢(y - .’13),

we obtain that it is enough to consider v € [n"%,1 — n~°]. Then we get

-5

/nl" dU/ (0,u,2,2) - xu(2) - Dy(p — pa) (u, 1, 2, y)dz

-8

é

1/2 1-n~
:/ du...+/ du... =1+ 11I.
n—9 1/2

The relation n~'-IT ~ 0 for the second term IT follows from (84) and from the following
estimates

7*(u)

(90) ‘/2 dU/D"[p 0,u,2,2) xu(2)] - —u- iy —2)dz

< Coly—a) - \/
< Co(y /H_l \/Z+1—udu<— (y—x),

n—1

H—l)/n
(91) Z / (r—— / /Ltp u, T, 2,0)H(1,1,0,9) |r=7+ dvdddr
7*(u)
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n-1 (i+1)/n i 1 p —
+ Z / (T - ﬁ) / /(L’v - Lv)tp(ua T, %, U)va(T’ ]-a v, y)] |T=T* d'l)déd’r
0

i=j*(u) /™
=I'"+1TI.

Taking into account that u € [n7%,1 — n~%] we obtain

1< 0= w B, ) - by 2)

and an analogous estimate holds for I1". Thus, n~' - IT ~ 0. For u € [n™°, }]

1/2
ot / du / D¥[p(0, 4, 7, 2) - X0 (2)] (0 — pa) 1, 1, 2, y)dz = 0
n—&

because o
ID2p(0,1,2,2)| < - fyalz = 2) < €1 pilz — )

and the only difference from the previous estimate is an additional factor n? where
0 > 0 can be choosen arbitrary small. Finally we obtain

(92) n(p ® Falpal)(0,1,2,9) ~n ' (p® Fp]) (0,1, z,y).

To prove that
(93) nil(p oY .7:1[]7 ® fl[p]])(oa 1a z, y) - nil(p X fl[p ® fl[pA]])(O’ 1’ z, y)

=n'(p® Filp® Filp—pal])(0,1,2,y) ~ 0

we proceed as above. We consider a typical summand in (93)

(94) /du/ (0,u,z, 2) (2 D”[/dT/ (u, 7, 2,v) ()

X Dy(p = pa)(7;1,v,y)dv] dz

As in the proof of (92) it is enough to consider u € [n%,1 — n%]. Now (94) is a sum

of 4 integrals
1/2 (1+u)/2
1)L = n_l/ du/ D:/ dT/...
1/2 1
2) I, =n" / du/ .D / dT/...
(1+u)/2
(1+u)/2
) I=n / du/ . D} / /
1
NI=n / " [ o / ir [ ..
14u)/2

I



We show that I; ~ 0, ¢ = 1,2,3,4. The proofs for all cases are similar. They use an
integrationtha by parts and estimates for the derivatives of p or p — pa. We consider
only the case I,. For this case 7 — u > % and we get from (85) that

n1 /nl/: du/p(O,u,x,z),uy(z) . {/(11+u)/2 dT/DZV [Dyp(u, 7, 2, v) y (v)-]
C(e)

X (p=pa)(m, 1,0, y)dv}dz < by — 2) ~ 0

for e € (0, 3).
Now we consider the first term in (70)
(95) n 2 (p® Fipal) (0,1, 2,y) =n 2 (p @ Fi[p])(0,1,2,9)

+n 2 (p® Filpa — p)) (0,1, z,).

By (82) the last term in (95) is equal to
(96) n e AS])(0,1,2,9) + 07 (p ® F[S)(0,1,2,1)

n 2 (p® F[S5))(0,1,,y),

where

i*(w)
Si(u, 1, 2,9) =/ ! dT/p(u,T,z,v)H(T,l,v,y)dv, Sa(u, 1, 2,9) = R(u, 1, 2,y),

Ss={(p®H~-p&, H)®, ®:} (u,1,2,y).
From (83)

C(e)

1
n2 / du / DY[p(0, u,, 2)p, ()| Rlu, 1, 2,9)dz| < ——s6(y —2) =20
1-n—

for 0 < € < 4. Analogously,

C(e)

n—9
‘n—1/2/ du/p(O,u,x,z)u,,(z)DZR(u, 1,2z,y)dz| < mqﬁ(y— z) ~ 0.
0

For u € [n™%,1 — n~%] we obtain

-5

1-n
_— / du / p(0,u, 2, 2), (2) DY R(u, 1, 2, y)d2

-5

1/2
= ’l’Ll/Z/ du/p(O: u,g;,z),u,,(z)DZR(u,1,Z,y)d2
n—9%

1-p=9$
+n—1/2/ du/DZ[p(O,u,x,Z)uu(z)]R(u,1,z,y)dz =I+1I.
1/2
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We have I ~ 0 and II ~ 0. This follows from simple estimates and from the following
estimate for n™'/2R(u, 1, z,y) with v € [n™%,1 — n™?]

n-2 (1+1)/”
In"2R(u,1,2,y)| < n”'/? Z /
(2

1 ~\ 2
x/ /[p(u, T,2,0) (L — L) p(7,1,0,y)] |r=r+ dvdddr

(7*(u)+1)/n N
12 / (r— —)/ /[,’D u, 7, 2,0) (L — L) 57, 1,0,9)] |r—rs dvdédr
*(u)/n
+n 12 / (r—— / / (u, T, 2,0) (L L) p(1,1,0,9)] |r=r dvdddr
11
c = 1 1 1 (3*(u)+1)/n j*(u)
=7 — _ ~1/2 . B
S no (11— tL)3/2 ¢yraly —2) +n /j*(u)/n (T m )

_dr g [t n=1 [ ; )~
wmm [ =) [ [z (L 1) 1)
+(I)ML — L)*p(u, 7, 2,v)p(T, 1, v, y)]dvdddr

C Voodt C
B nd/2—¢ u (1_t)175+n5/2,35/2 QS\/ﬁ(y_z)-

Thus, we get n=Y2(p@F1[S2]) (0,1, z,y) ~ 0. The proof that n~/2(pF[S1]) (0, 1, z,y) ~
0 is quite similar. First, we show that it is enough to consider u € [n=%,1 —n7°]. Then

the assertion follows from the following estimates

1/2
12 / du / p(0, u, 7, ) (2) DS (u, 1, 2, y)dz
n—9

3™ (u) (u)

1/2
n—1/2/ du/ (0,u,z, 2)p, (2 D"/ dT/p(U,T,Z,z-H)')

" (M )du-¢(y—a:):o,

n

xH(r,1,z+ v, y)dv']| < Cn_l/Q/

n—9

1—n~98
_y / du / DY[p(0, v, , 2) 1 (2)]Sh (1, 1, 2, y)dz
1/2

C 1-n—¢ _]*(U,)
Sm/l/z (T—u>du-¢(y—x):0.

The same estimate holds true for the last summand in (96) that is

n 2 (p® F1[S3])(0, 1, z,y) ~ 0.

It follows from the smoothing properties of the operation ®!,®;and can be shown by
the same methods. This completes the proof of Theorem 4.1.
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