Categorification of the braid groups
Raphael Rouquier

To cite this version:
Raphael Rouquier. Categorification of the braid groups. 2004. hal-00002981

HAL Id: hal-00002981
https://hal.archives-ouvertes.fr/hal-00002981
Preprint submitted on 30 Sep 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
CATEGORIFICATION OF THE BRAID GROUPS

RAPHAËL ROUQUIER

1. Introduction

Actions of braid groups on triangulated categories are quite widespread. They arise for instance in representation theory, for constructible sheaves on flag varieties and for coherent sheaves on Calabi-Yau varieties (cf [RouZi] and [SeiTho] for early occurrences). In this work, we suggest that not only the self-equivalences are important, but that the morphisms between them possess some interesting structure.

Let W be a Coxeter group and C a triangulated category. We consider gradually stronger actions of W or its braid group B_W:

(i) W acting on $K_0(C)$
(ii) a morphism from B_W to the group of isomorphism classes of invertible functors of C
(iii) an action of B_W on C.

We construct a strict monoidal category B_W categorifying (conjecturally) B_W and we propose an even stronger form of action:

(iv) a morphism of monoidal categories $B_W \to \mathcal{H}om(C,C)$

The first section is devoted to a construction of a self-equivalence of a triangulated category, generalizing various constructions in representation theory and algebraic geometry. This should be viewed as a categorification of an action of $\mathbb{Z}/2$.

In section §3, we construct a monoidal category categorifying (a quotient of) the braid group. It is a full subcategory of a homotopy category of complexes of bimodules over a polynomial algebra. The setting here is that of Soergel’s bimodules.

Section §4 is devoted to the category \mathcal{O} of a semi-simple complex Lie algebra. There are classical functors that induce an action of type (i). We show how to use the constructions of §3 via results of Soergel, to get a genuine action of the braid group and even the stronger type (iv).

The case of flag varieties is considered in §5. There again, there is a classical action up to isomorphism of the braid group on the derived category of constructible sheaves (type (ii)). Using a result of Deligne and checking some compatibilities for general kernel transforms (Appendix in §6), one gets a genuine action of the braid group (type (iii)). Now, using the link with modules over the cohomology ring, we get another proof of this and even the stronger (iv).

In a work in preparation we study presentations by generators and relations, homological vanishings and relation with the cohomology of Deligne-Lusztig varieties.

A few talks have been given in 1998–2000 on the main results of this work (Freiburg, Paris, Yale, Luminy) and I apologize for the delay in putting them on paper.

I would like to thank I. Frenkel, M. Kashiwara, M. Khovanov and W. Soergel for useful discussions.

Date: Septembre 2004.
2. SELF-EQUIVALENCES

We describe a categorification of the notion of reflection with respect to a subspace. The ambient space is K_0 of a triangulated category, the subspace is another triangulated category and the embeddings and projections are given by functors. We actually allow an automorphism of the “subspace” category, which allows to categorify the q-analog of a reflection.

We present here how a functor from a given triangulated category gives rise to a self-equivalence of that category, when the functor satisfies some conditions. Then, we give three special “classical” cases. The first one concerns constructible sheaves on a \mathbb{P}^1-fibration (it occurs typically with flag varieties, cf §3). The second one deals with the case where the target category is the derived category of vector spaces, where we recover the theory of spherical objects and twist functors (it arises as counterparts of Dehn twists via mirror symmetry). The last application essentially concerns derived categories of finite dimensional algebras (it occurs in particular within rational representation theory, cf §4).

All functors between additive (resp. triangulated) categories are assumed to be additive (resp. triangulated).

Given an additive category \mathcal{C}, we denote by $K(\mathcal{C})$ the homotopy category of complexes of objects of \mathcal{C}.

Given an algebra A over a field k, we denote by A-mod the category of finitely generated left A-modules. We put $A^{en} = A \otimes_k A^{opp}$, where A^{opp} is the opposite algebra.

Given a graded algebra A, we denote by A-modgr the category of finitely generated graded A-modules.

2.1. A general construction.

2.1.1. This section can probably be skipped in a first reading.

We will be working here with algebraic triangulated categories (following Keller), a simple setting that provides functorial cones.

Let \mathcal{E} be a Frobenius category (an exact category with enough projective and injective objects and where injective and projective objects coincide). Let $\text{Comp}_{\text{acyc}}(\mathcal{E}-\text{proj})$ be the category of acyclic complexes of projective objects of \mathcal{E}. Let Frob be the 2-category of Frobenius categories, with 1-arrows the exact functors that send projectives to projectives and 2-arrows the natural transformations of functors.

The construction $\mathcal{E} \mapsto \text{Comp}_{\text{acyc}}(\mathcal{E}-\text{proj})$ is an endo-2-functor of Frob. The 2-functor from \mathcal{E} to the 2-category of triangulated categories that sends \mathcal{E} to its stable category $\tilde{\mathcal{E}}$ factors through the previous functor.

The important point is that the category $\text{Comp}_{\text{acyc}}(\mathcal{E}-\text{proj})$ has functorial cones. Given $F, G : \text{Comp}_{\text{acyc}}(\mathcal{E}-\text{proj}) \to \text{Comp}_{\text{acyc}}(\mathcal{E'}-\text{proj})$ and $\phi : F \to G$, then we have a well defined cone $C(\phi)$ of ϕ and we have morphisms $G \to C(\phi)$ and $C(\phi) \to F[1]$ such that $F \to G \to C(\phi) \to F[1]$ gives a distinguished triangle of functors from $\tilde{\mathcal{E}}$ to $\tilde{\mathcal{E'}}$.

Note that if $\phi_0 : F_0 \to G_0$ is a morphism of functors (exact, preserving projectives) between \mathcal{E} and $\mathcal{E'}$, then we get via $\text{Comp}_{\text{acyc}}(-)$ a morphism of functors $\phi : F \to G$, with $F, G : \text{Comp}_{\text{acyc}}(\mathcal{E}-\text{proj}) \to \text{Comp}_{\text{acyc}}(\mathcal{E'}-\text{proj})$.

The category of functors (exact, preserving projectives) $\text{Comp}_{\text{acyc}}(\mathcal{E}\text{-proj}) \to \text{Comp}_{\text{acyc}}(\mathcal{E}'\text{-proj})$ is a Frobenius category. We define the category $\text{AlgTr}(\mathcal{E}, \mathcal{E}')$ to be its stable category. Its objects are the exact functors $\text{Comp}_{\text{acyc}}(\mathcal{E}\text{-proj}) \to \text{Comp}_{\text{acyc}}(\mathcal{E}'\text{-proj})$ and $\text{Hom}_{\text{AlgTr}}(\mathcal{E}, \mathcal{E}')(F, G)$ is the image of $\text{Hom}(F, G)$ in $\text{Hom}_{\text{Fun}}(\bar{\mathcal{E}}, \bar{\mathcal{E}}')(F, G)$.

This defines the 2-category of algebraic triangulated categories AlgTr, with objects the Frobenius categories \mathcal{E}. We have a 2-functor from AlgTr to the 2-category of triangulated categories obtained by sending \mathcal{E} to $\bar{\mathcal{E}}$. It is 2-fully faithful.

2.1.2. Let \mathcal{C} and \mathcal{D} be two algebraic triangulated categories, $F : \mathcal{C} \to \mathcal{D}$, $G : \mathcal{D} \to \mathcal{C}$ be two functors and Φ be a self-equivalence of \mathcal{C}. Let there be given also two adjoint pairs (F, G) and $(G, F\Phi)$. We have four morphisms (units and counits of the adjunctions)

$$\eta : 1_{\mathcal{D}} \to F\Phi G, \quad \varepsilon : GF\Phi \to 1_{\mathcal{C}}$$

$$\eta' : 1_{\mathcal{C}} \to GF, \quad \varepsilon' : FG \to 1_{\mathcal{D}}.$$

Let Υ be the cocone of ε' and Υ' be the cone of η: there are distinguished triangles of functors $\Upsilon \to FG \xrightarrow{\varepsilon'} 1_{\mathcal{D}} \rightsquigarrow$ and $1_{\mathcal{D}} \xrightarrow{\eta} F\Phi G \to \Upsilon' \rightsquigarrow$.

Assume

$$1_{\mathcal{C}} \xrightarrow{\eta'} GF \xrightarrow{\varepsilon\Phi^{-1}} \Phi^{-1} 0$$

is a distinguished triangle.

Proposition 2.1. The functors Υ and Υ' are inverse self-equivalences of \mathcal{D}.

Proof. Let γ be the map $F\Phi G \to \Upsilon'$ in the triangle above, i.e., we have the distinguished triangle $1_{\mathcal{D}} \xrightarrow{\eta} F\Phi G \xrightarrow{\gamma} \Upsilon' \rightsquigarrow$. We have a commutative diagram with horizontal and vertical distinguished triangles

\[
\begin{array}{ccc}
FG & \xrightarrow{\text{id}} & FG \\
\downarrow & & \downarrow \\
FG & \xrightarrow{F\varepsilon G} & FG\Phi G \\
\downarrow & & \downarrow & & \downarrow \\
F\Phi G & \xrightarrow{F\varepsilon' \Phi G} & F\Phi G \\
\Upsilon' & \xrightarrow{\Upsilon'} & \Upsilon' \\
\end{array}
\]

The octahedral axiom shows that $(FG\gamma) \circ (F\eta' \Phi G) : F\Phi G \rightleftharpoons FG\Upsilon'$ is an isomorphism.

We have a commutative diagram

\[
\begin{array}{cccc}
F\Phi G & \xrightarrow{F\varepsilon' \Phi G} & FG\Phi G & \xrightarrow{FG\gamma} & FG\Upsilon' \\
\downarrow & & \downarrow & & \downarrow \\
F\Phi G & \xrightarrow{\text{id}} & F\Phi G & \xrightarrow{\varepsilon' \Upsilon'} & \Upsilon' \\
\end{array}
\]

The distinguished triangle $\Upsilon\Upsilon' \to FG\Upsilon' \xrightarrow{\varepsilon' \Upsilon'} \Upsilon' \rightsquigarrow$ gives a distinguished triangle $\Upsilon\Upsilon' \to F\Phi G \rightleftharpoons \Upsilon' \rightsquigarrow$, hence $\Upsilon\Upsilon' \simeq 1_{\mathcal{D}}$.

The case of $\Upsilon'\Upsilon$ is similar — note that the triangle (1) shows that $GF \simeq \text{id}_{\mathcal{D}} \oplus \Phi^{-1}$, hence Φ commutes with $\text{id}_{\mathcal{D}}$. □
Remark 2.2. One sees easily that $\eta F + F\Phi' : F \oplus \PhiF \sim \PhiFGF$ and $G\eta + \Phi'G : G \oplus \PhiG \sim GF\PhiG$ are isomorphisms. One can show that the requirement that $\eta FG + F\Phi'G : FG \oplus F\PhiG \sim \PhiFGF \oplus \PhiF \PhiG$ are isomorphisms, instead of the stronger requirement that (\mathbb{I}) is a distinguished triangle, is enough to get Proposition 2.1.

2.1.3. Let us recall a version of Barr-Beck’s Theorem ([Mac, §VI.7, exercise 7], [De2, §4.1]).

Let \mathcal{C} be a category. A comonad is the data of a functor $H : \mathcal{C} \to \mathcal{C}$, of $c : H \to H^2$ and $\varepsilon : H \to \text{id}$ such that $\varepsilon H \circ c = (Hc) \circ c$ and $(\varepsilon H) \circ c = (H\varepsilon) \circ c$. Note that ε is determined by c.

A coaction of (H, c, ε) on an object M of the category \mathcal{C} is the data of a morphism $\rho : M \to H(M)$ such that $\varepsilon(M) \circ \rho = \text{id}_M$ and $c \circ \rho = F(\rho) \circ \rho$. The category (H, c, ε)-comod has objects the pairs (M, ρ) and a morphism $(M, \rho) \to (M', \rho')$ is a morphism $f : M \to M'$ such that $\rho' f = H(f) \rho$.

Let \mathcal{A} and \mathcal{B} be two abelian (resp. algebraic triangulated categories), $T : \mathcal{A} \to \mathcal{B}$ an exact functor (resp. a triangulated functor). Assume T has a right adjoint U. Put $H = TU$, denote by $\varepsilon : H \to \text{id}_{\mathcal{B}}$ and $\eta : \text{id}_{\mathcal{A}} \to UT$ the counit and unit of adjunctions and let $c = \varepsilon \eta U : H \to H^2$.

We have a functor $\tilde{T} : \mathcal{A} \to (H, c, \varepsilon)$-comod given by $M \mapsto (TM, T\eta(M))$.

The following Theorem is an easy application of Barr-Beck’s general result to abelian and triangulated categories.

Theorem 2.3. If T is faithful, then $\tilde{T} : \mathcal{A} \sim (H, c, \varepsilon)$-comod is an equivalence.

We deduce from this Theorem that the category \mathcal{C}, together with the functors F, G and the adjunctions, is determined by $\mathcal{D}, \Theta = FG$ and $c = F\eta'G : \Theta \to \Theta^2$. We view this as a categorical version of the “fixed points” construction.

Remark 2.4. Let $V = K_0(\mathcal{D}), U = K_0(\mathcal{C}), f = [F] : U \to V$ and $g = [G] : V \to U$. Assume $[\Phi] = \text{id}_U$. Then, $gf = 2\text{id}_U$ and $\theta = [\Theta] : x \mapsto x - fg(x) : V \to V$ is an involution. One recovers U (up to unique isomorphism) from θ acting on V as V^θ.

2.2. Applications.

2.2.1. We consider schemes of finite type over an algebraic closure of a finite field \mathbf{F}_q (the case of complex algebraic varieties is similar). Let $\pi : X \to Y$ be a smooth projective morphism already defined over \mathbf{F}_q. Assume the geometric fibers are projective lines.

Let A be a field of coefficients ($=\text{an extension of } \mathbf{Q}_l$) for $l \nmid q$ a prime number). Put $\mathcal{C} = D^b(Y)$ and $\mathcal{D} = D^b(X)$ (bounded derived categories of constructible sheaves of Λ-vector spaces). Take $F = \pi^*, G = R\pi_*$ and $\Phi = ?(1)[2]$. We have a canonical isomorphism (projection formula) $\pi^* \otimes R\pi_* \sim R\pi_\ast \pi^*$. Via this isomorphism, Φ' becomes $\text{id} \otimes \Phi'(\Lambda_Y)$ and ε becomes $\text{id} \otimes t$, where $t : R\pi_\ast \Lambda_X \to \Lambda_Y(1)[-2]$ is the trace map (an isomorphism on \mathcal{H}^2).

So, the triangle (\mathbb{I}) is obtained from the triangle $\Lambda_Y \xrightarrow{\eta'(\Lambda_Y)} R\pi_* \Lambda_X \xrightarrow{\text{tr}} \Lambda_Y(1)[-2] \sim$ by applying $\otimes \otimes$. This is indeed a distinguished triangle, for it is so at geometric fibers.

Let \mathcal{L} be a relative ample sheaf for π and $c \in H^2(X, \Lambda(1))$ be its first Chern class. The hard Lefschetz Theorem states that the composition $\Lambda_Y \xrightarrow{\eta'(\Lambda_Y)} R\pi_* \Lambda_X \xrightarrow{\varepsilon} R\pi_* \Lambda_X(1)[2] \xrightarrow{\varepsilon(1)[2]} \Lambda_Y$ is an isomorphism. It follows that the connecting map in the triangle above is zero.

Thus, we are in the setting of Example 2.1.2 and we get a self-equivalence of $D^b(X)$.

This can be also constructed as a kernel transform. Let $\alpha, \beta : X \times_Y X \to X$ be the first and second projections. Let $i : \Delta X \to X \times_Y X$ be the closed immersion of the diagonal and
Let $j : Z \to X \times_Y X$ be the open immersion of the complement of ΔX. Denote by $\partial : 1_{D^b(X \times_Y X)} \to i_*i^*$ and $\tilde{\eta} : Rj_!j^* \to 1_{D^b(X \times_Y X)}$ the adjunction morphisms. One checks easily that there is a commutative diagram where the rows are distinguished triangles

\[
\begin{array}{cccc}
\mathcal{Y} & \to & \pi^* R\pi_* & \xrightarrow{\varepsilon'} & 1_D \sim \sim \sim \sim \sim \\
\downarrow & & \sim & & \\
R\beta_* Rj_!j^* \alpha^* & \to & R\beta_* \alpha^* & \xrightarrow{R\beta_* \varepsilon \alpha^*} & R\beta_* i_* i^* \alpha^* \sim \sim \sim \sim \\
\end{array}
\]

where the middle vertical map is the base change isomorphism.

Denote by $p, q : Z \to X$ the first and second projections. Then, $\mathcal{Y} \simeq Rp_!q^*$ and $\mathcal{Y}' \simeq Rp_*q^!$.

2.2.2. Assume we are in the setting of §2.1.2 with $\mathcal{C} = D^b(k\text{-mod})$ where k is a field and the categories and functors involved are k-linear. There is an integer n such that $\Phi = ?[n]$. Let $E = F(k)$. Then, $F \simeq E \oplus q$ and $G \simeq R\text{Hom}(E, ?)$. The morphism ε comes from $t : \text{Hom}(E, E[n]) \to k$.

The morphism ε is the counit of an adjoint pair $(G, F\Phi)$ if and only if $\dim_k \bigoplus \text{Hom}(E, M[i]) < \infty$ for all $M \in \mathcal{D}$ and $\text{Hom}(E, M) \times \text{Hom}(M, E[n]) \to k$, $(f, g) \mapsto t(gf)$ is a perfect pairing for all $M \in \mathcal{D}$.

The triangle $[\mathcal{Y}]$ is distinguished if and only if $0 \to k \cdot \text{id} \to \bigoplus \text{Hom}(E, E[i]) \xrightarrow{t} k \to 0$ is an exact sequence.

In other words, E is an n-spherical object and $\mathcal{Y}, \mathcal{Y}'$ are the corresponding twist functors of Seidel and Thomas [SeTh, §2b]. So, the framework above corresponds exactly to the twist functor theory when $\mathcal{C} \simeq D^b(k\text{-mod})$ also leads to interesting examples.

Remark 2.5. The case $\mathcal{C} = D^b(k^d\text{-mod})$ also leads to interesting examples.

Remark 2.6. It would be interesting to see if the construction of §2.1.2 can be used to construct automorphisms of derived categories of Calabi-Yau varieties corresponding, via Kontsevich’s homological mirror symmetry conjecture, to graded symplectic automorphisms on the mirror associated to Lagrangian submanifolds more complicated than spheres.

2.2.3. Let us consider here two abelian categories \mathcal{A} and \mathcal{B} and $\tilde{F} : \mathcal{A} \to \mathcal{B}$, $\tilde{G} : \mathcal{B} \to \mathcal{A}$ and $\tilde{\Phi}$ a self-equivalence of \mathcal{A}. We assume we have two adjoint pairs (\tilde{F}, \tilde{G}) and $(\tilde{G}, \tilde{F}\tilde{\Phi})$. So, we have four morphisms (units and counits of the two adjunctions)

$\tilde{\eta} : 1_\mathcal{B} \to \tilde{F}\tilde{\Phi}\tilde{G}$, $\tilde{\varepsilon} : \tilde{G}\tilde{F}\tilde{\Phi} \to 1_\mathcal{A}$

$\tilde{\eta}' : 1_\mathcal{A} \to \tilde{G}\tilde{F}$, $\tilde{\varepsilon}' : \tilde{F}\tilde{G} \to 1_\mathcal{B}$.

Let $\tilde{\mathcal{Y}}$ be the complex $0 \to \tilde{F}\tilde{G} \xrightarrow{\tilde{\eta}'} 1_\mathcal{B} \to 0$ and $\tilde{\mathcal{Y}}'$ the complex $0 \to 1_\mathcal{B} \xrightarrow{\tilde{\eta}} \tilde{F}\tilde{\Phi}\tilde{G} \to 0$ (with $\tilde{F}\tilde{G}$ and $\tilde{F}\tilde{\Phi}\tilde{G}$ in degree 0). We put $\mathcal{C} = K(\mathcal{A})$ and $\mathcal{D} = K(\mathcal{B})$ and we denote by F, G, etc... the extensions of \tilde{F}, \tilde{G}, etc... to \mathcal{C} and \mathcal{D}.

Assume \mathcal{B} is artinian and noetherian (every object is a finite extension of simple objects). If we have the equality $[\tilde{G}\tilde{F}] = [\text{id}] + [\tilde{\Phi}^{-1}]$ as endomorphisms of $K_0(\mathcal{A})$ (or more generally, if $[\tilde{F}\tilde{\Phi}\tilde{G}\tilde{F}\tilde{G}] = [\tilde{F}\tilde{G}\tilde{F}\tilde{G}\tilde{F}\tilde{G}] = [\tilde{F}\tilde{G}] + [\tilde{F}\tilde{\Phi}\tilde{G}]$ in $\text{End}(K_0(\mathcal{B}))$), then, the conclusion of Proposition 2.1 remains valid.

Let us justify this, following ideas of Rickard [RiI, §3]. There is an adjoint pair $(\mathcal{Y}', \mathcal{Y})$, hence there is a map $u : \text{id} \to \mathcal{Y}\mathcal{Y}'$ that doesn’t vanish on a non-zero object of \mathcal{B}. One shows that $\mathcal{Y}\mathcal{Y}'$ is homotopy equivalent to a complex of functors with only one non-zero term, R, in degree
0 and R is an exact functor. The assumption on classes shows that $[R] = [\text{id}]$. So, R sends a simple object to itself, for a simple object is characterized amongst objects of \mathcal{B} by its class in $K_0(\mathcal{B})$. In particular, $u : \text{id} \to R$ is an isomorphism on simple objects. So, u is an isomorphism.

3. The 2-braid group

3.1. Coxeter group action.

3.1.1. Let (W, S) be a Coxeter system (with S finite) and $V = \bigoplus_{s \in S} ke_s$ be the reflection representation of W over a field k. We assume the representation is faithful (this is always the case if the characteristic is 0). Given $s, t \in S$, we denote by m_{st} the order of st. We assume that $2m_{st}$ is invertible in k, for all $s, t \in S$ such that m_{st} is finite. We denote by $\{\alpha_s\}_{s \in S}$ the dual basis of $\{e_s\}_{s \in S}$ (so that $\ker(s - \text{id}) = \ker\alpha_s$ for $s \in S$). Let B_W be the braid group of W. This is the group generated by $S = \{s\}_{s \in S}$ with relations

$$\tau_{s_1 \cdots s_{m_{st}} \cdots} \sim \tau_{s_{m_{st}} \cdots s_1 \cdots}$$

for any $s, t \in S$ such that $m_{st} < \infty$.

Let $A = k[V]$ be the algebra of polynomial functions on V. All A-modules considered in this section are graded.

We will sometimes identify an object M of $K^b(A^{en}-\text{modgr})$ with the corresponding endofunctor $M \otimes_A -$ of $K^b(A-\text{modgr})$. In particular, we will sometimes omit the symbols \otimes_A when taking tensor products of bimodules for the sake of clarity.

3.1.2. The action of W on V induces an action on A, hence on A^{modgr} and on $D^b(A^{\text{modgr}})$: the element $w \in W$ acts by $A_w \otimes_A -$ where A_w is the (A, A)-bimodule equal to A as a left A-module, with right action of $a \in A$ given by right multiplication by $w(a)$. We have an isomorphism of (A, A)-bimodules, $\text{id} \otimes 1 : A_w \sim k[\Delta_w]$, where $\Delta_w = \{(w(v), v)\}_{v \in V} \subset V \times V$.

We have a canonical isomorphism $A_{w} \otimes_A A_{w'} \sim A_{w w'}$ given by multiplication. Let $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$ be sequences of elements of S such that $x_1 \cdots x_m = y_1 \cdots y_n = w$. We denote by $c_{x,y} : A_{x_1} \cdot \cdots \cdot A_{x_m} \sim A_{y_1} \cdot \cdots \cdot A_{y_n}$ the isomorphism obtained by composing the multiplication map $A_{x_1} \cdot \cdots \cdot A_{x_m} \sim A_w$ with the inverse of the multiplication map $A_{y_1} \cdot \cdots \cdot A_{y_n} \sim A_w$.

3.2. Braid group action. Let us now construct a non-obvious lift of the action of W on $D^b(A^{\text{modgr}})$ to an action of B_W on $K^b(A^{\text{modgr}})$.

3.2.1. For $s \in S$, we define the complex of (A, A)-bimodules

$$F_s = F_s = 0 \to A \otimes_A A \xrightarrow{\epsilon_s} A \to 0$$

where A is in degree 1 and ϵ_s is the multiplication.

Since $A = A^s \oplus A^{\alpha_s}$, the morphism of A^{en}-modules

$$A_s \to A \otimes_A A(1), \ a \mapsto a \otimes \alpha_s - a \alpha_s \otimes 1$$

induces an isomorphism

$$f_s : A_s \sim F_s(1) \text{ in } D^b(A^{en}-\text{modgr}).$$
3.2.2. For \(w \in W \), let \(\Delta_{\leq w} = \bigcup_{w' \leq w} \Delta_{w'} \) and \(D_w = k[\Delta_{\leq w}] \). Note that \(D_s = A \otimes A^s \) for \(s \in S \).

Given \(w' \leq w \), we have a canonical quotient map \(D_w \to D_{w'} \) given by restriction of functions. We have

\[
\text{Hom}(D_w, D_{w'}) = \begin{cases} k \cdot \text{can} & \text{if } w' \leq w \\ 0 & \text{otherwise} \end{cases}
\]

3.2.3. In the next lemma, \(0 \to L \to M \to 0 \) denotes a complex with \(L \) in degree 0.

Lemma 3.1. Assume \(W \) is a finite dihedral group, i.e., \(\dim V = 2 \), \(S = \{ s, t \} \) and \(m_{st} < \infty \).

Let \(x \in W \) such that \(tx > x \). Then,

\[
\begin{align*}
(1) \quad & D_s(0 \to D_{tx} \xrightarrow{\text{can}} D_x \to 0) \simeq (0 \to D_x(-1) \xrightarrow{\text{id}} D_x(-1) \to 0) \oplus (0 \to D_{stx} \xrightarrow{\text{can}} D_x \to 0). \\
(2) \quad & F^*D_x \simeq (0 \to D_x \xrightarrow{\text{id}} D_x \to 0) \oplus (0 \to D_x(-1) \to 0 \to 0).
\end{align*}
\]

Proof. Let us recall some constructions and results of Soergel [Soe4, Lemma 4.5, Proposition 4.6 and their proofs]. Since \(2m_{st} \) is invertible, then given \(u, u' \) two distinct reflections of \(W \), we have \(\ker(u + id) \neq \ker(u' + id) \).

Given \(I \) an ideal of \(A \otimes A \) invariant under \(s \times 1 \), we put \(((A \otimes A)/I)^+ = ((A \otimes A)/I)^{s \times 1} \).

Let \(r \) be the reflection of \(W \) such that \(rx < x \) and \(rx \neq tx \). Then, \(\Delta_x + \Delta_{rx} \) is a hyperplane of \(V \times V \) and let \(\beta \in V^* \times V^* \) be a linear form with kernel this hyperplane. Let \(M \) (resp. \(N \)) be the \((A^s \otimes A)\)-submodule of \(D_{tx} \) generated by the image of the elements \(\beta \) (resp. 1) of \(A \otimes A \).

Then, \(D_{tx} = M + N, M \simeq D_x^+(-1) \) and \(N \simeq D_{stx}^+ \) as \((A^s \otimes A) \)-modules.

Let \(M' \) (resp. \(N' \)) be the \((A^s \otimes A)\)-submodule of \(D_x \) generated by \(\alpha_s \otimes 1 \) (resp. 1). Then, \(D_x = M' \oplus N', M' \simeq D_x^+(-1) \) and \(N' = D_x^+ \) as \((A^s \otimes A) \)-modules. Denote by \(p : D_x \to M' \) the projection.

Let us show now that \(\beta \notin (V^*)^s \times V^* \). Equivalently, we need to show that \((\Delta_x + \Delta_{rx}) \cap (k\alpha_s \times 0) = 0 \). This amounts to proving that \(\text{im}(\text{id} - r) \neq k\alpha_s \). But this holds, since \(r \neq s \).

Let us now come to our problem. Since \(\beta \notin (V^*)^s \times V^* \), it follows that the image of \(\beta \) in \((A \otimes A)/(A^s \otimes A) \) is a generator as \((A^s \otimes A) \)-module. Consequently, the restriction of \(pf : D_{tx} \to M' \) to \(M \) is surjective, hence it is an isomorphism (we denote by \(f : D_{tx} \to D_x \) the canonical map).

Finally, the multiplication map \(A \otimes A, D_x^+ \xrightarrow{\text{can}} D_y \) is an isomorphism for any \(y \in W \) with \(sy < y \).

We have shown that the complex \(A \otimes A^s(0 \to D_{tx} \xrightarrow{\text{can}} D_x \to 0) \) is isomorphic to the direct sum of the complex \(0 \to D_x(-1) \xrightarrow{\text{id}} D_x(-1) \to 0 \) and a complex \(D = 0 \to D_{stx} \xrightarrow{\phi} D_x \to 0 \). Note that \(\phi = r \cdot \text{can} \) for some \(r \in k \) and we need to prove that \(r \neq 0 \). The complex \(0 \to D_{tx} \xrightarrow{\text{can}} D_x \to 0 \) has zero homology in degree 1, hence the same is true for \(D \). It follows that \(r \neq 0 \).
Let us now prove the second assertion. The multiplication map \(A \otimes_A \, D_x^+ \to D_x \) is an isomorphism. Since \(D_x = D_x^+ \oplus M' \) and \(M' \simeq D_x^+(-1) \), we obtain the second part of the Lemma.

Proposition 3.2. Take \(s \neq t \in S \) with \(m_{st} < \infty \). We have braid relations

\[
\underbrace{F_s F_s \cdots F_s}_{m_{st} \text{ terms}} \simeq \underbrace{F_t F_t \cdots F_t}_{m_{st} \text{ terms}}
\]

in \(K^h(A \otimes A) \).

Proof. We have a decomposition \(V = V_1 \oplus V_2 \) under the action of \((s, t) \), with \(V_1 = V^{(s, t)} \). For the \((A, A)\)-bimodules involved in the Proposition, the right and left actions of \(k[V_1] \) are identical. So, we get the Proposition for \(V \) from the Proposition for \(V_2 \) by applying the functor \(k[V_1] \otimes_k - \). It follows we can assume \(\dim V = 2 \). So, we assume \(W \) is finite dihedral with \(S = \{s, t\} \). We put \(s_+ = s \) and \(s_- = t \).

Let \(m = m_{st} \) and consider \(i \leq m \) and \(\varepsilon \in \{+,-\} \). Let \(\sigma_i^\varepsilon = s_\varepsilon s_{-\varepsilon} s_\varepsilon \cdots (i \text{ terms}) \) and \(D_i^\varepsilon = D_{\sigma_i^\varepsilon} \). We put \(D^\varepsilon = D_{s_\varepsilon} \). Consider the simplicial scheme over \(V \times V : \)

\[
\Delta_1 \Rightarrow \Delta_{\leq s_-} \prod \Delta_{\leq s_-} \prod \Delta_{\leq s_-} \Rightarrow \cdots \Rightarrow \Delta_{s_{i-1}^\varepsilon} \prod \Delta_{s_{i-1}^\varepsilon} \rightarrow \Delta_{s_i^\varepsilon}
\]

where the maps are the inclusions.

We now define \(F_i^\varepsilon \) as the complex of \((A, A)\)-bimodules coming from the structural complex of sheaves of this simplicial scheme :

\[
F_i^\varepsilon = 0 \to D_i^\varepsilon \xrightarrow{(+)} D_i^\varepsilon \oplus D_i^{\varepsilon -} \xrightarrow{(-)} D_{i-1}^\varepsilon \oplus D_{i-1}^{\varepsilon -} \to \cdots \to D^+ \oplus D^- \xrightarrow{(+)} D_1 \to 0
\]

where the sign denotes the multiple of the canonical map considered (we put \(D_i^\varepsilon \) in degree 0).

We have \(H^r(F_i^\varepsilon) = 0 \) for \(r > 0 \), since \(\Delta_{\leq s_\varepsilon} \cap \Delta_{\leq s_{-\varepsilon}} = \Delta_{\leq s_\varepsilon^+} \cup \Delta_{\leq s_{-\varepsilon}^-} \) and we have an exact sequence

\[
0 \to k[\Delta_{\leq s_\varepsilon^+} \cup \Delta_{\leq s_{-\varepsilon}^-}] \xrightarrow{(+)} k[\Delta_{\leq s_\varepsilon^+}] \oplus k[\Delta_{\leq s_{-\varepsilon}^-}] \xrightarrow{(-)} k[\Delta_{\leq s_\varepsilon^+} \cap \Delta_{\leq s_{-\varepsilon}^-}] \to 0.
\]

The complex \(F_i^\varepsilon \) is isomorphic to \(F_{s_\varepsilon} \). We will now show by induction on \(i \) that \(F_{s_\varepsilon} F_{i-\varepsilon} \) is homotopy equivalent to \(F_{i+1}^\varepsilon \) for \(\varepsilon = \pm \). This will prove the Proposition, since \(F_m^\varepsilon \simeq F_{m-}^\varepsilon \).

Let us consider the complex \(C = F_{s_\varepsilon} F_{i-\varepsilon} \). This is the total complex of the double complex

\[
\begin{array}{ccccccc}
D_i^\varepsilon & \to & D_i^\varepsilon D_{i-1}^\varepsilon & \to & D_i^\varepsilon D_{i-1}^\varepsilon & \cdots & \to & D_i^\varepsilon D_1 \\
D_{i-\varepsilon} & \to & D_{i-1}^\varepsilon D_{i-1}^\varepsilon & \to & D_{i-1}^\varepsilon D_{i-1}^\varepsilon & \cdots & \to & D_{i-1}^\varepsilon D_1 \\
\end{array}
\]

By Lemma \([3.3]\), the complex \(0 \to D_i^\varepsilon D_{i-\varepsilon} \xrightarrow{\text{can}} D_i^\varepsilon D_{i-1}^\varepsilon \to 0 \) is isomorphic to the direct sum of \(0 \to D_i^\varepsilon D_{i-1}^\varepsilon(-1) \xrightarrow{\text{id}} D_{i-1}^\varepsilon(-1) \to 0 \) and of \(0 \to D_{i-1}^\varepsilon \xrightarrow{\text{can}} D_{i-1}^\varepsilon \to 0 \). Also, the complex \(0 \to D_i^\varepsilon \xrightarrow{\text{can}} D_i^\varepsilon \to 0 \) is isomorphic to the direct sum of \(0 \to D_i^\varepsilon \xrightarrow{\text{id}} D_i^\varepsilon \to 0 \) and of \(0 \to D_{i-1}^\varepsilon \xrightarrow{\text{id}} D_{i-1}^\varepsilon \to 0 \). It follows that \(C \) is homotopy equivalent to a complex

\[
C' = 0 \to D_{i+1}^\varepsilon \to D_i^\varepsilon D_{i-\varepsilon} \to \cdots \to D_1 \to 0
\]
where the maps remain to be determined. Since F_s has non-zero homology only in degree 0 and that homology is free as a right A-module, it follows that the homology of C vanishes in degrees > 0.

To conclude, we have to show that a complex X with the same terms as F_i^ε and with zero homology in degrees > 0 is actually isomorphic to F_i^ε. We have

$$X = 0 \to D_i^\varepsilon \xrightarrow{(a_i, c_i)} D_{i-1}^\varepsilon \oplus D_{i-1}^{-\varepsilon} \xrightarrow{(a_{i-1} b_{i-1}, c_{i-1} d_{i-1})} D_{i-2}^\varepsilon \oplus D_{i-2}^{-\varepsilon} \to \cdots \to D^\varepsilon \oplus D^{-\varepsilon} \xrightarrow{(c_1, d_1)} D_1 \to 0$$

where the coefficients are in k and the maps are corresponding multiples of the canonical maps.

Take $r \leq i$ minimal such that there is an entry of $\begin{pmatrix} a_r & b_r \\ c_r & d_r \end{pmatrix}$ that vanishes. Assume for example $c_r = 0$. Then, $a_{r-1} a_r = 0$, hence $a_r = 0$. We have $b_r c_{r+1} = c_r = 0$, hence $b_r d_{r+1} = d_r d_{r+1} = 0$. If $b_r = d_r = 0$, then X is the sum of the subcomplex with zero terms in degrees $\leq i - r$ and the subcomplex with zero terms in degrees $> i - r$. Otherwise, $c_{r+1} = d_{r+1} = 0$, hence X splits as the direct sum of the subcomplex $\cdots \to D_{r+1}^\varepsilon \oplus D_{r+1}^{-\varepsilon} \to D_r^\varepsilon \to 0$ and the subcomplex $0 \to D_r^\varepsilon \to D_{r-1}^\varepsilon \oplus D_{r-1}^{-\varepsilon} \to \cdots$. Now, a morphism $D_r^\varepsilon \to D_r^{-\varepsilon} \oplus D_{r-1}^{-\varepsilon}$ is never injective, for the support of the left term is strictly larger than the support of the right term. Consequently, the complex X has non-zero homology in degree $i - r$, which is a contradiction. We have proven that none of the coefficients a_r, b_r, c_r, d_r can be zero.

Let Z be the closed subvariety of the affine space of coefficients a_r, b_r, c_r, d_r that define a complex (i.e., $\begin{pmatrix} a_r & b_r \\ c_r & d_r \end{pmatrix} \begin{pmatrix} a_{r+1} & b_{r+1} \\ c_{r+1} & d_{r+1} \end{pmatrix} = 0$) and let Z^0 be its open subset corresponding to non-zero coefficients. We have an isomorphism $Z^0 \cong \left(\mathbb{G}_m\right)^{2i-1}$, $h : (a_r, b_r, c_r, d_r) \mapsto (a_r, c_r)$. The action of $(\mathbb{G}_m)^{2i}$ on the terms of the complex induce an action on Z. The corresponding action on $Z^0 \cong \left(\mathbb{G}_m\right)^{2i-1}$ has a unique orbit. It follows that X is isomorphic to F_i^ε.

3.2.4. Let us define the complex of A^n-modules

$$F_{s-1} = 0 \to A \xrightarrow{\eta_s} A \otimes A^\ast A(1) \to 0$$

where A is in degree -1 and $\eta_s(a) = a\alpha_s \otimes 1 + a \otimes \alpha_s$.

Lemma 3.3. The complexes F_s and F_{s-1} are inverse to each other in $K^b(A^n$-modgr$)$.

Proof. Let $C = K^b(A^n$-modgr$)$ and $D = K^b(A$-modgr$)$. Let $F = A \otimes A^\ast ?$, $G = A \otimes A ?$ and $\Phi = ?(1)$. The morphisms of (A^\ast, A^\ast)-bimodules

$$\varepsilon : A(1) \to A^\ast, \ 1 \mapsto 0 \text{ and } \alpha_s \mapsto 1 \text{ and } \eta_s' : A^\ast \to A, 1 \mapsto 1$$

together with η_s and ε' previously defined give rise to adjoint pairs (F, G) and $(G, F\Phi)$.

We have a split exact sequence of (A^\ast, A^\ast)-bimodules

$$0 \to A^\ast \xrightarrow{\eta'_s} A \xrightarrow{\varepsilon'} A^\ast \to 0,$$

hence we deduce the Lemma from Proposition 3.1.

By Proposition 3.2 and Lemma 3.3, we have already obtained an action “up to isomorphism” of B_W on $K^b(A)$:

Proposition 3.4. The map $s \mapsto F_s$ extends to a morphism from B_W to the group of isomorphism classes of invertible objects of $K^b(A^n$-modgr$)$.\qed
3.3. Rigidification. The key point here is that the rigidification of the braid relations at the homotopy category level is equivalent to the one at the derived category level, where the problem is trivial, since we have a genuine action of W.

3.3.1. Consider the morphism of A^m-modules $A \otimes A \to A$, that sends $1 \otimes 1$ to 1. It induces a quasi-isomorphism $F_{s-1}(-1) \sim A$. We denote its inverse (a morphism in $D^b(A^m, \text{modgr})$) by f_{s-1}.

Now, let $v \in B_W$ and $v = t_1 \cdots t_m = u_1 \cdots u_n$ be two decompositions in elements of $S \cup S^{-1}$. By Proposition 3.3, the invertible objects $F_{t_1} \cdots F_{t_m}$ and $F_{u_1} \cdots F_{u_n}$ of $K^b(A^m, \text{modgr})$ are isomorphic, hence

$$\text{Hom}(F_{t_1} \cdots F_{t_m}, F_{u_1} \cdots F_{u_n}) \simeq \text{End}(A) = k,$$

where $\square \in \{K^b(A^m, \text{modgr}), D^b(A^m, \text{modgr})\}$. It follows that the canonical morphism

$$\text{Hom}_{K^b(A^m, \text{modgr})}(F_{t_1} \cdots F_{t_m}, F_{u_1} \cdots F_{u_n}) \sim \text{Hom}_{D^b(A^m, \text{modgr})}(F_{t_1} \cdots F_{t_m}, F_{u_1} \cdots F_{u_n})$$

is an isomorphism.

So, we have a unique isomorphism

$$\gamma_{t,u} \in \text{Hom}_{K^b(A^m, \text{modgr})}(F_{t_1} \cdots F_{t_m}, F_{u_1} \cdots F_{u_n})$$

such that the induced element in $\text{Hom}_{D^b(A^m, \text{modgr})}(F_{t_1} \cdots F_{t_m}, F_{u_1} \cdots F_{u_n})$ corresponds to

$$c_{(t_1, \ldots, t_m), (u_1, \ldots, u_n)} : A_{t_1} \cdots A_{t_m} \sim A_{u_1} \cdots A_{u_n}$$

via the quasi-isomorphisms $f_{t_1} \cdots f_{t_m}$ and $f_{u_1} \cdots f_{u_n}$.

We now define G_v as the limit of the functors $F_{t_1} \cdots F_{t_m}$, where $t = (t_1, \ldots, t_m)$ runs over the decompositions of v in $S \cup S^{-1}$, with the transitive system of isomorphisms $\gamma_{t,u}$.

There are unique isomorphisms $m_{v,v'} : G_v G_{v'} \sim G_{v v'}$ for $v, v' \in B_W$ and $m_1 : G_1 \sim A$ in $K^b(A^m, \text{modgr})$ that are compatible with the isomorphisms $c_{t,u}$ in $D^b(A^m, \text{modgr})$. So, we get the following result:

Theorem 3.5. The family $(G_v, m_{v,v'}, m_1)$ defines an action of B_W on $K^b(A, \text{modgr})$.

This means we have a monoidal functor from

- the strict monoidal category with set of objects B_W, with only arrows the identity maps and with tensor product given by multiplication
- to the strict monoidal category of endofunctors of $K^b(A, \text{modgr})$.

Remark 3.6. Using tensor products on the right, one obtains a right action of B_W on $K^b(A, \text{modgr})$. This action commutes trivially with the left action of B_W, so, we have an action of $B_W \times B_W^{op}$ on $K^b(A, \text{modgr})$.

3.3.2. We denote by B_W the full subcategory of $K^b(A^m, \text{modgr})$ with objects the G_v for $v \in B_W$. The product $G_v \boxtimes G_{v'} = G_{v v'}$ provides B_W with the structure of a strict monoidal category. Define G_v as $G_{v^{-1}}$.

We have obtained our “categorification” of the braid group:

Theorem 3.7. The category B_W is a strict rigid monoidal category. Its “decategorification” is a quotient of B_W.

Conjecture 3.8. The decategorification of B_W is equal to B_W.

Remark 3.9. One can show that the conjecture is true in type A_{∞}, as a consequence of [KhovSei, Corollary 1.2].
3.3.3. Let $C = A/(A \cdot A^W)$ be the coinvariant algebra. Then, we get by restriction of functors an action of B_W on $K^b(C\text{-modgr})$ and on $K^b(C\text{-mod})$. We get as well monoidal functors from B_W to the category of self-equivalences of $K^b(C\text{-modgr})$ or $K^b(C\text{-mod})$. Note that we get also right actions, and this gives a monoidal functor from $B_W \times B_W^{opp}$ to the category of self-equivalences of $K^b(C\text{-modgr})$ or $K^b(C\text{-mod})$.

Remark 3.10. Let \mathcal{C} be the smallest full subcategory of $(A \otimes A)$-modgr containing the objects $A \otimes_{A^L} A$ and closed under finite direct sums, direct summands and tensor products. This is a monoidal subcategory of $(A \otimes A)$-modgr which is a categorification of the Hecke algebra of W, according to Soergel. The quotient \mathcal{C} of \mathcal{C} by the smallest additive tensor ideal subcategory containing the $A \otimes_{A^{(s,t)}} A$, where $s, t \in S$ and $m_{st} \neq \infty$, is a categorification of the Temperley-Lieb quotient of the Hecke algebra.

When W has type A_n, an action of \mathcal{C} on an algebraic triangulated category is the same as the data on an A_n-configuration of spherical objects [SeTh, §2.2].

4. Principal block of a semi-simple complex Lie algebra

4.1. Review of category \mathcal{O}.

4.1.1. Let $\mathfrak{g} = \text{Lie } G, \mathfrak{h} \subseteq \mathfrak{b}$ a Cartan and a Borel subalgebra. Let \mathcal{O} be the Bernstein-Gelfand-Gelfand category of finitely generated \mathfrak{g}-modules which are diagonalizable for \mathfrak{h} and locally finite for \mathfrak{b}. Denote by \mathcal{Z} the center of the enveloping algebra U of \mathfrak{g}. Let $P \subset \mathfrak{h}^*$ be the weight lattice, $Q \subset \mathfrak{h}^*$ be the root lattice, R (resp. R^+) be the set of roots (resp. positive roots) and Π the set of simple roots.

4.1.2. We have a decomposition $\mathcal{O} = \bigoplus_{\theta} \mathcal{O}_{\theta}$, where \mathcal{O}_{θ} is the subcategory of modules with central character θ. Let D be a duality on \mathcal{O} that fixes simple modules (up to isomorphism).

Let $\Delta(\chi) = U \otimes_{U(\mathfrak{h})} C_\chi$ be the Verma module associated to $\chi \in \mathfrak{h}^*$. It has a unique simple quotient $L(\chi)$. We denote a projective cover of $L(\chi)$ by $P(\chi)$. We put $\nabla(\chi) = D\Delta(\chi)$.

Consider the dot action of W on \mathfrak{h}^*, $w \cdot \lambda = w(\lambda + \rho) - \rho$ (we denote by W the group W acting via the dot action on \mathfrak{h}^*), where ρ is the half-sum of the positive roots.

Given $\lambda \in \mathfrak{h}^*$, let $\xi(\lambda)$ be the character by which \mathcal{Z} acts on $L(\lambda)$ and m_λ be its kernel, an element of $\text{Specm } \mathcal{Z}$, the maximal spectrum of \mathcal{Z}. The morphism $\mathfrak{h}^*/W \to \text{Specm } \mathcal{Z}, \lambda \mapsto m_\lambda$ induces an isomorphism $\mathfrak{h}^*/W \to \text{Specm } \mathcal{Z}$, i.e., an isomorphism of algebras $h : Z \to A^W$ where $A = \mathcal{C}[\mathfrak{h}^*]$. The simple objects in \mathcal{O}_{θ} are those $L(\lambda)$ with $\xi(\lambda) = \theta$.

4.1.3. Consider B the set of intersections of orbits of \tilde{W} and of Q on \mathfrak{h}^*. For $d \in B$, we denote by \mathcal{O}_d (or by \mathcal{O}_μ for a $\mu \in d$) the thick subcategory of \mathcal{O} generated by the $L(\lambda)$ for $\lambda \in d$. Then, $\mathcal{O} = \bigoplus_{d \in B} \mathcal{O}_d$ is the decomposition of \mathcal{O} into blocks.

Let $\Lambda \in \mathfrak{h}^*/P$ and $\lambda \in \Lambda$. We have a root system $R_\Lambda = \{\alpha \in R | \langle \lambda, \alpha^\vee \rangle \in \mathbb{Z}\}$ with set of simple roots $\Pi_\Lambda \subset R^+$. Weyl group $W_\Lambda = \{w \in W | w(\lambda) - \lambda \in Q\}$ and set of simple reflections S_Λ (they depend only on Λ). Note that $R_\Lambda = R$ if and only if $\Lambda = P$. We define

\[\Lambda^+ = \{\lambda \in \Lambda | \langle \lambda + \rho, \alpha^\vee \rangle \geq 0 \text{ for all } \alpha \in \Pi_\Lambda\} \]
\[\Lambda^{++} = \{\lambda \in \Lambda | \langle \lambda + \rho, \alpha^\vee \rangle > 0 \text{ for all } \alpha \in \Pi_\Lambda\}. \]

Then, Λ^+ is a fundamental domain for the action of \tilde{W}_Λ on Λ. The module $L(\lambda)$ is finite dimensional if and only if $\lambda \in P^{++}$.

4.1.4. We define a translation functor between \mathcal{O}_d and $\mathcal{O}_{d'}$ when $d, d' \in B$ are in the same P-orbit. Take $\Lambda \in \mathfrak{h}^*/P$ and $\lambda, \mu \in \Lambda^+$. Let ν be the only element in $W(\mu - \lambda) \cap \Lambda^{++}$. Then, we define $T_{\lambda}^\mu : \mathcal{O}_\lambda \rightarrow \mathcal{O}_\mu, M \mapsto pr_\mu(\tau(\nu) \otimes M \otimes L(\nu))$ where $pr_\mu : \mathcal{O} \rightarrow \mathcal{O}_\mu$ is the projection functor. Since $-w_0 \nu \in \Lambda^{++}$ and $L(\nu) \simeq L(-w_0 \nu)$, it follows that the functors T_{λ}^μ and T_{μ}^λ are left and right adjoint to each other.

Let $d \in B$ containing 0. The corresponding block $\mathcal{O}_0 = \mathcal{O}_d$ is the principal block of \mathcal{O}. Note that $d = W \cdot 0$ is a regular W-orbit and we put $L(w) = L(w \cdot 0)$, etc...

For $s \in S$, we fix $\mu \in P^+$ with stabilizer $\{1, s\}$ in W. We put $T^s = T_0^\mu$ and $T_s = T^0_{\mu}$ and $\Theta_s = \Theta_sT^s : \mathcal{O}_0 \rightarrow \mathcal{O}_0$.

4.1.5. Let $F_s = F_s$ be the complex of functors on \mathcal{O}_0 given by $0 \rightarrow \Theta_s \xrightarrow{\varepsilon_s} \id \rightarrow 0$ where ε_s is the counit of adjunction (id is in degree 1).

Let $F_{s^{-1}} = 0 \rightarrow \id \xrightarrow{\eta_s} \Theta_s \rightarrow 0$, where η_s is the unit of the other adjunction. Then, Rickard [R3, Proposition 2.2] proved that F_s and $F_{s^{-1}}$ are inverse self-equivalences of $K^b(\mathcal{O}_0)$ (this follows from §2.2.3 by the classical character calculation $[T^sT_s] = 2[\id]$).

It is easy and classical that the F_s induce an action of W on $K_0(\mathcal{O}_0)$ (the reflection $s \in S$ acts as $[F_s]$). This realizes the regular representation of W. A permutation basis for this action is provided by $\{[\Delta(\nu)]_{\nu \in W}\}$.

It seems difficult to check directly that the F_s satisfy the braid relations. Using the equivalence between \mathcal{O}_0 and perverse sheaves on the flag variety, this can be deduced from [F].

4.2. Link with bimodules.

4.2.1. We start by recalling results of Soergel [Soe1, Soe2, Soe3] relating the category \mathcal{O} to modules over the coinvariant algebra.

Let $\Lambda \in \mathfrak{h}^*/P$. We denote by $C_\Lambda = A/(A \cdot A^{W_\Lambda})$ the coinvariant algebra of (W_Λ, S_Λ) and $p_\Lambda : A \rightarrow C_\Lambda$ the canonical surjection. Let $\lambda \in \Lambda^+$. We denote by $t_\lambda : A \rightarrow A$ the translation by λ, given by $f \mapsto (z \mapsto f(z + \lambda))$ We have Soergel’s Endomorphismensatz [Soe1, Endomorphismensatz 7] :

Theorem 4.1. The image of the composite map $Z \xrightarrow{h} A^W \xleftarrow{t_\lambda} A \xrightarrow{p_\Lambda} C_\Lambda$ is $C_\Lambda^{W_\Lambda}$ and the canonical morphism $Z \rightarrow \text{End}(P(w_0 \cdot \lambda))$ factors through this morphism $Z \rightarrow C_\Lambda^{W_\Lambda}$.

The induced morphism $\sigma_\lambda : C^{W_\Lambda}_\Lambda \rightarrow \text{End}(P(w_0 \cdot \lambda))$ is an isomorphism.

Let us now recall Soergel’s Struktursatz [Soe1, Struktursatz 9] :

Theorem 4.2. The functor $\text{Hom}(P(w_0 \cdot \lambda), -) : \mathcal{O}_\lambda\text{-proj} \rightarrow C^{W_\Lambda}_\Lambda\text{-mod}$ is fully faithful.

Let $\mu \in \Lambda$ be regular (i.e., with trivial stabilizer in W_Λ).

There is an isomorphism $\phi : T^0_{\lambda}P(w_0 \cdot \lambda) \xrightarrow{\sim} P(w_0 \cdot \mu)$. Any such isomorphism ϕ induces a commutative diagram [Soe1, Bemerkung p.431]
This gives us an isomorphism, via the adjunction \((T^\mu, T^\lambda)\):

\[
\text{Res}^{C_\Lambda}_\Lambda \text{Hom}(P(w_0 \cdot \mu), ?) \cong \text{Hom}(T^\mu_\Lambda P(w_0 \cdot \lambda), ?) \cong \text{Hom}(P(w_0 \cdot \lambda), T^\lambda_\Lambda(?))
\]

between functors \(\mathcal{O}_\mu \to C^{W_\Lambda}_\Lambda\)-mod. So, we have a commutative diagram, with fully faithful horizontal functors

\[
\begin{array}{ccc}
\mathcal{O}_\mu\text{-proj} & \xrightarrow{\text{Hom}(P(w_0 \cdot \mu), ?)} & C_\Lambda\text{-mod} \\
T^\mu & \downarrow & \\
\mathcal{O}_\lambda\text{-proj} & \xrightarrow{\text{Hom}(P(w_0 \cdot \lambda), ?)} & C^{W_\Lambda}_\Lambda\text{-mod}
\end{array}
\]

4.2.2. From the last commutative diagram, we deduce

Proposition 4.3. There is a commutative diagram with fully faithful horizontal arrows

\[
\begin{array}{ccc}
K^b(\mathcal{O}_0\text{-proj}) & \xrightarrow{\text{Hom}(P(w_0), -)} & K^b(C\text{-mod}) \\
F_s \downarrow & & F_s \downarrow \\
K^b(\mathcal{O}_0\text{-proj}) & \xrightarrow{\text{Hom}(P(w_0), -)} & K^b(C\text{-mod})
\end{array}
\]

So, we deduce from Theorem 3.5 the following: given \(v \in B_W\) and \(v = t_1 \cdots t_m = u_1 \cdots u_n\) two decompositions in elements of \(S \cup S^{-1}\), there is an isomorphism \(F_{t_1} \cdots F_{t_m} \cong F_{u_1} \cdots F_{u_n}\) between functors on \(D^b(\mathcal{O}_0)\) coming by restriction from the isomorphism between functors on \(K^b(A\text{-modgr})\). These form a transitive system of isomorphisms, i.e.

Theorem 4.4. The functors \(F_s\) induce an action of \(B_W\) on \(D^b(\mathcal{O}_0)\).

More precisely,

Theorem 4.5. There is a monoidal functor from \(B_W\) to the category of self-equivalences of \(D^b(\mathcal{O}_0)\) sending \(G_s\) to \(F_s\).

Remark 4.6. One has a similar statement for the deformed category \(\mathcal{O}\).

Note that we deduce from §3.3.3 that there is also a right action of \(B_W\) on \(D^b(\mathcal{O}_0)\). We leave it to the reader to check that this corresponds to the actions using Zuckerman functors, or equivalently, Arkhipov functors.

In the graded setting (mixed perverse sheaves for example), the left and right actions of \(B_W\) should be swapped by the self-Koszul duality equivalence, cf. [BerFreKho] (and [BeiG], Conjecture 5.18] for an analog in the equivariant case).

Various constructions have been given of weak actions of braid groups on \(D^b(\mathcal{O}_0)\), cf. [AnStr, Art, KhomMaz, MazSt, St].

5. Flag varieties

5.1. Classical results. Let \(G\) be a semi-simple complex algebraic group with Weyl group \(W\).

Let \(W = \{w\}_{w \in W}\). The braid group \(B_W\) of \(W\) is isomorphic to the group with set of generators \(W\) and relations \(ww' = w''\) when \(ww' = w''\) and \(l(w'') = l(w) + l(w')\).

Let \(\mathcal{B}\) be the flag variety of \(G\). We decompose

\[
\mathcal{B} \times \mathcal{B} = \prod_{w \in W} \mathcal{O}(w)
\]
into orbits for the diagonal G-action. Consider the first and second projections

$$ O(w) \xrightarrow{p_w} B \xleftarrow{q_w} B $$

Then, we have a functor

$$ F_w = R(p_w)! (q_w)^* : D^b(B) \rightarrow D^b(B) $$

where $D^b(B)$ is the derived category of bounded complexes of constructible sheaves of \mathbb{C}-vector spaces over B.

First and last projections induce an isomorphism

$$ O(w) \times_B O(w') \xrightarrow{\sim} O(ww') $$

when $l(ww') = l(w) + l(w')$.

This induces an isomorphism (cf §6.2)

$$ \gamma_{w,w'} : F_w F_{w'} \xrightarrow{\sim} F_{ww'} $$

when $l(ww') = l(w) + l(w')$.

For $s \in S$, then F_s is obtained as in §2.2.1 for the canonical morphism $\pi_s : B \rightarrow \mathcal{P}_s$, where \mathcal{P}_s is the variety of parabolic subgroups of type s. So, F_s is invertible, with inverse $F_{s^{-1}} = R(p_s)_*(q_s)^!$. It follows that F_w is invertible for $w \in W$, with inverse $F_{w^{-1}} = R(p_w)_*(q_w)^!$, hence we get a morphism from B_W to the group of isomorphism classes of invertible functors on $D^b(B)$.

5.2. **Genuine braid group action.** We have a commutative diagram

$$ F_x F_y F_z \xrightarrow{\gamma_{x,y}} F_{xy} F_z \xrightarrow{\gamma_{xy,z}} F_{xyz} $$

for $x, y, z \in W$ such that $l(x) + l(y) + l(z) = l(xyz)$, by Theorem 6.2.

Let $b \in B_W$ and $b = t_1 \cdots t_n = u_1 \cdots u_n$ with $u_i \in W \cup W^{-1}$. Applying braid relations and the corresponding isomorphisms γ, we get various isomorphisms $F_{t_1} \cdots F_{t_n} \xrightarrow{\sim} F_{u_1} \cdots F_{u_n}$. By Deligne [De3], they are all equal. Let us denote by $\gamma_{t,u}$ their common value.

We now define

$$ \tilde{F}_b = \lim_{(t_1, \cdots, t_n)} F_{t_1} \cdots F_{t_n} $$

where (t_1, \cdots, t_n) runs over the set of sequences of elements of $W \cup W^{-1}$ such that $b = t_1 \cdots t_n$ and where we are using the transitive system of isomorphisms $\gamma_{t,u,s}$.

We have now the following result

Theorem 5.1. The assignment $b \mapsto \tilde{F}_b$ defines an action of B_W on $D^b(B)$.

Remark 5.2. Deligne [De3] defines a variety \mathcal{O}_b with two morphisms $p_b, q_b : \mathcal{O}_b \rightarrow B$ for any $b \in B_W^+$. Then, the action of b on $D^b(B)$ is given by $p_b^! q_b^*$.

5.3. **Link with bimodules.**
5.3.1. Fix a Borel subgroup B of G. We consider the setting of §3 with $k = C$ and V^* the complexified character group of B. In this section, we will consider the algebra A with double grading, i.e., V^* is in degree 2.

Let $C \xrightarrow{\sim} H^*(B, C)$ be the Borel isomorphism (send a character of B to the Chern class of the corresponding line bundle) and denote by β its inverse.

Let I be a subset of S, W_I the subgroup of W generated by I, W_I be the set of minimal right coset representatives of W/W_I and P_I the parabolic subgroup of G of type I containing B. Put $P_I = G/P_I$. Denote by $\pi_I : B \to P_I$ the canonical morphism. The map $\pi_I^* : \bigoplus_i \text{Hom}(C_{P_I}, C_{P_I}[i]) \to \bigoplus_i \text{Hom}(C_B, C_B[i])$ induces, via β, an isomorphism $\beta_I : \bigoplus_i \text{Hom}(C_{P_I}, C_{P_I}[i]) \xrightarrow{\sim} C_{W_I}$.

5.3.2. Consider the full subcategory $D^b_\sigma(P_I)$ of $D^b(P_I)$ of complexes whose cohomology sheaves are smooth along B-orbits. Given $w \in W_I$, let \mathcal{L}_w be the perverse sheaf corresponding to the intersection cohomology complex of B_wP_I/P_I. Let $\mathcal{L}_I = \bigoplus_{w \in W_I} \mathcal{L}_w$. The dg-algebra $R\text{End}(\mathcal{L}_I)$ is formal and let $R_I = \bigoplus_i \text{Hom}(\mathcal{L}_I, \mathcal{L}_I[i])$. We have an equivalence $\mathcal{L}_I \otimes ?$ from the category R_I-dgperf of perfect differential graded R_I-modules to $D^b_\sigma(P_I)$.

The functor $\bigoplus_i \text{Hom}(C_{P_I}, ?[i]) : D^b_\sigma(P_I) \to C^{W_I}$-$\text{modgr}$ restricts to a fully faithful functor on the full subcategory containing the $\mathcal{L}_I[i]$. So, we get a fully faithful functor R_I-$\text{dgperf} \to K(C^{W_I}$-$\text{dgmod}$), hence a fully faithful functor $H_I : D^b_\sigma(P_I) \to K(C^{W_I}$-$\text{dgmod}$), where we denote by $K(C^{W_I}$-dgmod) the homotopy category of differential graded C^{W_I}-modules.

As in §1.2, we get a commutative diagram

$$
\begin{array}{ccc}
D^b_\sigma(B) & \xrightarrow{\text{H}} & K(C$-$\text{dgmod}) \\
R\pi_I & \downarrow & \text{Res} \\
D^b_\sigma(P_I) & \xrightarrow{H_I} & K(C^{W_I}$-$\text{dgmod})
\end{array}
$$

and we deduce

Proposition 5.3. Let $s \in S$. There is a commutative diagram with fully faithful horizontal arrows

$$
\begin{array}{ccc}
D^b_\sigma(B) & \xrightarrow{\text{H}} & K(C$-$\text{dgmod}) \\
F_s & \downarrow & F_s \\
D^b_\sigma(B) & \xrightarrow{\text{H}} & K(C$-$\text{dgmod})
\end{array}
$$

In particular, we get a monoidal functor from \mathcal{B}_W to the category of self-equivalences of $D^b_\sigma(B)$.

Remark 5.4. We believe the monoidal functor above is the restriction of a functor with values in $D^b(B)$.

6. **Appendix : associativity of kernel transforms**

6.1. **Classical isomorphisms.**
6.1.1. We consider here
- schemes of finite type over a field of characteristic \(p \geq 0 \) and the derived category of constructible sheaves of \(\Lambda \)-modules, where \(\Lambda \) is a torsion ring with torsion prime to \(p \) or \(\Lambda \) is a \(\mathbb{Q}_\ell \)-algebra, for \(\ell \) prime to \(p \)
or
- locally compact topological spaces of finite soft \(c \)-dimension and the derived category of constructible sheaves of \(\mathbb{C} \)-vector spaces.

We will quote results pertaining to either of the two settings above, depending on the convenience of references. The maps involved will be concatenations of canonical isomorphisms.

We denote a derived functor with the same notation as the original functor: we write \(\otimes \) for \(\otimes^L \), \(f_! \) for \(Rf_! \), etc...

6.1.2. Let \(f : Y \to X \) and \(g : Z \to Y \) be two morphisms. There are canonical isomorphisms \([\text{KaSch}, \, 2.6.6 \text{ and } 2.3.9]\)
\[
(fg)_! \sim f_! g_! \quad \text{and} \quad (fg)^* \sim g^* f^*.
\]

These isomorphisms satisfy a cocycle property (cf \([\text{De1}, \text{ Théorème } 5.1.8]\) for the case \((−)_!\)):

Lemma 6.1. Consider \(X_3 \xrightarrow{u} X_2 \xrightarrow{v} X_1 \xrightarrow{u} X_0 \). Then, the following diagrams are commutative

\[
\begin{array}{ccc}
 w^*v^*u^* & \to & w^*(uv)^* \\
 \downarrow & & \downarrow \\
 (vw)^* & \to & (uvw)^* \\
\end{array}
\quad
\begin{array}{ccc}
 u_!v_! & \to & (uv)_! \\
 \downarrow & & \downarrow \\
 u_!(vw)_! & \to & (uvw)_! \\
\end{array}
\]

We will take the liberty to identify the functors \(v^*u^* \) and \((uv)^* \) through the canonical isomorphism.

There are canonical isomorphisms \([\text{KaSch}, \, 2.6.18]\)
\[
f^*(-1 \otimes -2) \sim (f^*-1) \otimes (f^*-2) \quad \text{and} \quad (-1 \otimes -2) \otimes -3 \sim -1 \otimes (-2 \otimes -3)
\]

We identify the bifunctors \(f^*(-1 \otimes -2) \) and \((f^*-1) \otimes (f^*-2) \) through the canonical isomorphism. Given \(A_i \in D^b(X), \ i \in \{1, 2, 3\} \), we identify \(A_1 \otimes A_2 \otimes A_3 \) with \(A_1 \otimes (A_2 \otimes A_3) \) and we denote this object by \(A_1 \otimes A_2 \otimes A_3 \).

Let \(X' \xrightarrow{g'} X \) \(f' \xrightarrow{f} f \) be a cartesian square. Then, there is the canonical base change isomorphism \([\text{KaSch}, \, 2.6.20]\) :
\[
g^* f_! \sim f'_! g'^*.
\]

We have a canonical isomorphism \([\text{KaSch}, \, 2.6.19]\)
\[
-1 \otimes (f_! -2) \sim f_!(f^* -1 \otimes -2).
\]

6.2. Kernel transforms.
6.2.1. Let us define a 2-category \(\mathcal{K} \).

- The 0-arrows are the varieties.
- 1-arrows: \(\text{Hom}(X, Y) \) is the family of \((K, U)\) where \(U \) is a variety over \(Y \times X \) and \(K \in D^b(U) \).
- 2-arrows: \(\text{Hom}((K, U), (K', U')) \) is the set of \((\phi, f)\) where \(f: U \simto U' \) is an isomorphism of \((Y \times X)\)-varieties and \(\phi: K \simto f^*K' \).

We define the composition of 1-arrows. Consider the following diagram where the square is cartesian

\[
\begin{array}{ccc}
V 	imes_Y U & \xrightarrow{\beta} & V \\
\downarrow^p & & \downarrow^a \\
Z & \xrightarrow{p} & Y \\
\end{array}
\]

Let \(K \in D^b(U) \) and \(L \in D^b(V) \). We put \(L \boxtimes K = \beta^*L \otimes \alpha^*K \). The composition \((L, V)(K, U)\) is defined to be \((L \boxtimes K, V \times_Y U)\).

Let us consider now the diagram with all squares cartesian

\[
\begin{array}{ccc}
W \times_Z V \times_Y U & \xrightarrow{\gamma} & V \\
\downarrow^b & & \downarrow^\alpha \\
W & \xrightarrow{\delta} & V \\
\downarrow^p & & \downarrow^a \\
T & \xrightarrow{p} & Y \\
\end{array}
\]

and take \(M \in D^b(W) \). We have

\[(M \boxtimes L) \boxtimes K = b^*(\delta^*M \otimes \gamma^*L) \otimes (\alpha a)^*K \simto (\delta b)^*M \otimes a^*(\beta^*L \otimes \alpha^*K) = M \boxtimes (L \boxtimes K).
\]

This provides the associativity isomorphisms for \(\mathcal{K} \). With our conventions, we will write \(M \boxtimes L \boxtimes K \) for the objects in the isomorphism above. It is straightforward to check that \(\mathcal{K} \) is indeed a 2-category.

6.2.2. We put \(\Phi_K = \Phi_{K_{p_2,p_1}}^p = p_{2!}(K \otimes p_1^* -) : D^b(X) \to D^b(Y) \).

Let \(c_{L,K} : \Phi_L \Phi_K \simto \Phi_{L \boxtimes K} \) be defined as the composition

\[
p_{4!}L \otimes p_{3}^*p_2((K \otimes p_1^* -)) \to p_{4!}L \otimes \beta_3^*\alpha_3^*(K \otimes p_1^* -) \\
\to p_{4!}L \otimes \beta_3^*(\beta^*L \otimes \alpha^*K) \\
\to (p_{3}\beta)^1((\beta^*L \otimes \alpha^*K) \otimes \alpha^*p_1^* -) \\
\to (p_{3}\beta)^1((\beta^*L \otimes \alpha^*K) \otimes (p_1 \alpha)^* -).
\]
Let \((\phi, f) \in \text{Hom}_K((K, U), (K', U'))\). We have a commutative diagram

\[
\begin{array}{c}
\text{U} \\
\downarrow p_2 \\
\downarrow p_1 \\
\downarrow p_2' \\
\downarrow p_1' \\
\downarrow X
\end{array}
\]

and we define \(\Phi(\phi, f)\) as the composition

\[
p_{2!}(K \otimes p_1^* -) \sim p'_{2!}f_!(f^*K' \otimes f^*p_1^* -) \sim p'_{2!}(K' \otimes p_1^* -).
\]

Theorem 6.2. \(\Phi\) is a 2-functor from \(K\) to the 2-category of triangulated categories.

We have \(c_{M\otimes L,K} \circ (c_{M,L}\Phi_K) = c_{M,L\otimes K} \circ (\Phi_M c_{L,K})\), i.e., the following diagram commutes:

\[
\begin{array}{ccc}
\Phi_M\Phi_L\Phi_K & \longrightarrow & \Phi_{M\otimes L}\Phi_K \\
\downarrow & & \downarrow \\
\Phi_M\Phi_{L\otimes K} & \longrightarrow & \Phi_{M\otimes L\otimes K}
\end{array}
\]

6.2.3. The next two Lemmas deal with composition of base change isomorphisms.

For the first Lemma, see [De1, Lemme 5.2.5]:

Lemma 6.3. Let
\[
\begin{array}{ccc}
X_2 \xrightarrow{f_2} X_1 & \xrightarrow{f_1} & X \\
\downarrow h_2 & & \downarrow h \\
S_2 & \xrightarrow{g_2} & S_1 & \xrightarrow{g_1} & S
\end{array}
\]

be a diagram with all squares cartesian. Then, the following diagram commutes

\[
\begin{array}{ccc}
(g_1g_2)^*h_1 & \longrightarrow & h_2!(f_1f_2)^* \\
\downarrow & & \downarrow \\
g_2^*g_1^*h_1 & \longrightarrow & g_2^*h_1!f_1^* & \longrightarrow & h_2!f_2^*f_1^*
\end{array}
\]

The second Lemma is [De1, Lemme 5.2.4]:
Lemma 6.4. Let $\xymatrix{ X_2' \ar[r]^{g_2} \ar[d]_{f_2'} & X_2 \ar[d]^{f_2} \cr X_1' \ar[r]^{g_1} \ar[d]_{f_1'} & X_1 \ar[d]^{f_1} \cr S' \ar[r]^{g} & S }$ be a diagram with all squares cartesian. Let $A \in D^b(S')$. Then, the following diagram commutes

$$
\begin{array}{c}
A \otimes g^*(f_1f_2)_! - \\
A \otimes g^*f_1f_2_! - \\
A \otimes f_1'g_1^*f_2_! - \\
\end{array}
\begin{array}{c}
A \otimes (f_1'f_2')_!g_2^*- \\
(f_1'f_2')_!(f_1'f_2')^*A \otimes g_2^*- \\
f_1'(f_1'f_2')_!g_1^*f_2_!g_2^*- \\
\end{array}
\begin{array}{c}
A \otimes f_1(f_2B \otimes C)_! - \\
f_1(f_2^*A \otimes f_2'B \otimes C)_! - \\
\end{array}

\text{Lemma 6.5. Let } f : Y \to X \text{ and } A, B \in D^b(X) \text{ and } C \in D^b(Y). \text{ Then, the following diagram commutes}

$$
\begin{array}{c}
A \otimes B \otimes f_!C - \\
A \otimes f_!(A \otimes B \otimes C)_! - \\
\end{array}
\begin{array}{c}
f_!(f^*(A \otimes B) \otimes C)_! - \\
f_!(f^*A \otimes f^*B \otimes C)_! - \\
\end{array}

\text{Proof. The corresponding statement for } f_! \text{ replaced by } f_* \text{ is easy, the key point is that the composition } f^* \circ f_\eta, f^* \circ f_\varepsilon \circ f^* \text{ is the identity of } f^*, \text{ where } \eta \text{ and } \varepsilon \text{ are the unit and counit of the adjoint pair } (f^*, f_\eta). \text{ The Lemma follows easily from this (in the algebraic case, we have only to check in addition the trivial case where } f \text{ is an open immersion thanks to the transitivity of Lemma 6.4, whereas in the topological case we use the embedding } f!C \subset f_*C \text{ for } C \text{ injective).} \quad \square

\text{Lemma 6.6. Let } \xymatrix{ X' \ar[r]^{g'} \ar[d]_{f'} & X \ar[d]^{f} \cr S' \ar[r]^{g} & S } \text{ be a cartesian square. Let } A \in D^b(S) \text{ and } B \in D^b(X). \text{ Then, the following diagram commutes}

$$
\begin{array}{c}
g^*A \otimes g^*f_!B - \\
A \otimes f_!(f^*g^*A \otimes g^*B)_! - \\
\end{array}
\begin{array}{c}
g^*(A \otimes f_!B)_! - \\
A \otimes f_!(f^*A \otimes g^*B)_! - \\
\end{array}
\begin{array}{c}
g^*(g^*A \otimes g^*B)_! - \\
A \otimes f_!(f^*g^*A \otimes g^*B)_! - \\
\end{array}
$$
Proof. As in the previous Lemma, one reduces to proving the analog of the Lemma with \(?\) replaced by \(?_*\). This follows then from the easily checked commutativity of the two diagrams

\[
\begin{array}{ccc}
 f^* g^* f_* & \longrightarrow & f'^* f_* g'^* \\
 \downarrow & & \downarrow \\
 g^* f_* & \longrightarrow & g'^* f_*
\end{array}
\]

where we have used the units and counits of the adjoint pairs \((f^*, f_*)\) and \((f'^*, f_*')\).

\[
\square
\]

Proof of the Theorem. We will show the commutativity of the following diagram

\[
\begin{array}{c}
\Phi_M \Phi_L \Phi_K \\
\downarrow \zeta \\
\Phi_{MCLK} \Phi_{p0^p} p_0(\Phi_{p1^p}) \Phi_{L \oplus K} \Phi_{p0^p} p_0(\Phi_{p1^p}) \Phi_{KL \oplus K} \\
\downarrow \zeta \\
\Phi_{M \oplus L \oplus K} \Phi_{p0^p} p_0(\Phi_{p1^p}) \Phi_{p0^p} p_0(\Phi_{p1^p}) \Phi_{M \oplus L \oplus K} \\
\end{array}
\]

where \(\zeta\) is the composition

\[
p_{0!} (M \otimes p_0^* (p_4 \beta)(\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -)) \rightarrow p_{0!} (M \otimes p_3^* p_2^* \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -)) \rightarrow p_{0!} (M \otimes \delta \gamma \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -)) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -)) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -))
\]

and \(\xi\) the composition

\[
(p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* L \otimes (p_3 \gamma)^* p_{21}(K \otimes p_1^* -)) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* L \otimes \gamma^* p_3^* p_{21}(K \otimes p_1^* -)) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* (L \otimes p_3^* p_{21}(K \otimes p_1^* -))) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* (L \otimes \beta_3 \alpha^* (K \otimes p_1^* -))) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* (L \otimes \beta_3 (\alpha^* K \otimes \alpha^* p_1^* -))) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* (L \otimes \beta_3 (\alpha^* K \otimes (p_1 \alpha)^* -)))) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -))
\]

Let \(u\) and \(v\) be the compositions

\[
u : p_{0!}(M \otimes p_5^* p_{4!} -) \rightarrow p_{0!}(M \otimes \delta_1 \gamma^* -) \rightarrow p_{0!}(\delta^* M \otimes \gamma^* -) \rightarrow (p_{0!} \delta_3) ((\delta^* M \otimes \gamma^* -)
\]

and

\[
v : L \otimes p_5^* p_{21}(K \otimes p_1^* -) \rightarrow L \otimes \beta_3 \alpha^* (K \otimes p_1^* -) \rightarrow \beta_3 (\beta^* L \otimes \alpha^* (K \otimes p_1^* -)) \rightarrow \beta_3 (\beta^* L \otimes \alpha^* K \otimes (p_1 \alpha)^* -).
\]

Then, one has trivially

\[
\zeta(\Phi_{M \oplus L \oplus K}) = u(L \otimes p_5^* p_{21}(K \otimes p_1^* -)) \circ p_{0!}(M \otimes p_5^* p_{4!} v) = \xi(c_{M \oplus L \Phi_K}).
\]
The equality $c_{M,L;K} = c_{M,L;K} \zeta$ follows from Lemma 6.4 applied to $g = p_5$, $g_1 = \gamma$, $g_2 = a$, $f_1 = p_4$, $f_2 = \beta$, $f'_1 = \delta$, $f'_2 = b$ and $A = M$ and from Lemma 6.1 applied to $u = p_6$, $v = \delta$ and $w = b$.

The equality $c_{M_{BL},K} = c_{M_{BL};K} \zeta$ follows from Lemma 6.3 applied to $f_1 = \alpha$, $f_2 = a$, $g_1 = p_3$, $g_2 = \gamma$, $h = p_2$, $h_1 = \beta$ and $h_2 = b$, from Lemma 6.5 applied to $f = b$, $A = \delta^* M$, $B = \gamma^* L$ and $C = (\alpha a)^*(K \otimes p_1^* -)$ and from Lemma 6.7 applied to $f = \beta$, $g = \gamma$, $f' = b$, $g' = a$, $A = L$ and $B = \alpha^*(K \otimes p_1^* -)$.

\[\square\]

References

