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Abstract

The ultimate strength of structures made of brittle materials −such as microconcrete− strongly

depends on microstructural defects, the structure size and the loading pattern.  Probabilistic

approaches allow one to take account of such dependencies.  By using a Weibull model,

cracking of ferrocement panels is analyzed.  Provided the behavior of the reinforcement

remains elastic, it is shown that the Weibull parameters identified on unreinforced

microconcrete samples tested in flexure may be used to predict multiple cracking in

ferrocement panels tested in tension.  A key aspect of the analysis is related to the

understanding and modeling of the stress heterogeneity effect on the local failure probability

of unreinforced as well as reinforced microconcrete by the use of a so-called Weibull stress.

CE Database Subject Headings:

Concrete, reinforced, Cracking, Probabilistic methods, Scale effect.
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INTRODUCTION

Ferciment (i.e., “ferrocement”) was invented 150 years ago by Lambot who, in 1845

constructed pots and seats, and built a boat with this material in 1848.  A first patent on the

mixed use of iron and cement was made in 1851 and ferciment is patented since 1855

(Lambot 1855; Marrey 1995).  Its utilization for structural purposes only started in 1943

thanks to Nervi’s contributions (1951).  Ferrocement is the oldest form of reinforced concrete

and is composed of a cement-based mortar or concrete matrix reinforced with a mesh of

closely spaced iron rods or wires (Naaman 2000).  Nowadays many civil engineering

applications use some kind of (fiber-)reinforced concrete or cement (Balaguru and Shah

1992).  The interest in these materials is due to the gain in toughness and ductility in the

presence of cracks that are bridged by the reinforcements.  Furthermore, lightly reinforced

microconcrete has been developed as a low-cost material to be used in thin-walled structural

components [e.g., pre-formed skeleton (El Debs 2000)].  The strength and deformability of

these structures are improved when compared to conventional “ferrocement” (Hanai and El

Debs 1994).  The prediction of cracking in such structural components is essential for design

purposes and this constitutes the main goal of the present paper.

The understanding of the basic mechanisms and the modeling of the mechanical

properties, such as the tensile response, of ferrocement and other brittle matrix composites

reinforced with continuous fibers are issues that have been addressed by many authors

(Naaman 2000).  Deterministic tensile strength values have been proposed on the basis of

standard direct or indirect experiments and then corrected by empirical factors to account for

scale and stress heterogeneity effects.  However, the resulting values and its representativity

are still a subject of discussion.  Modeling the tensile response of ferrocement by a

probabilistic approach is an alternative that has not been considered.  It is proposed to
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evaluate the predictive capability of a Weibull model to describe cracking of lightly

reinforced microconcrete panels.

The identification of constitutive equations of mortar and unreinforced concrete in

tension is difficult to carry out because of strain localization leading to the formation of a

single macrocrack.  A so-called single cracking regime prevails and alternative techniques

have been proposed to avoid it in experiments.  One of them consists in adding primary

reinforcements acting like fibers in a composite material.  Inspired by the experimental

analysis of L’Hermite (1960), a special tension test designed to prevent single cracking was

devised by Bažant and Pijaudier-Cabot (1989) and modified by Mazars and colleagues (1989;

1990).  In that case, multiple macrocracking can be observed.  The analysis of this type of

experiment requires to account for the behavior of the interface between the primary

reinforcement and the tested brittle material (Boudon–Cussac et al. 1999).

In the present work, the spirit of the above-mentioned experimental technique is

followed.  Contrary to experiments on unreinforced concrete or mortar, it will be assumed that

the reinforcements, even though in low volume fraction, will be sufficient to prevent single

cracking. It is proposed to predict cracking in panels made of lightly reinforced microconcrete

from the analysis of the failure of unreinforced concrete beams and steel reinforcements.  A

probabilistic analysis of the failure of a brittle matrix made of concrete with a controlled

aggregate distribution is presented.  Following the work of Kadlecek and Spetla (1967) and

L’Hermite (1973), the experimental investigation aims at analyzing the scale effects in brittle

materials, namely volume and stress heterogeneity effects.  A Weibull model (1939) is chosen

to describe the scatter of failure stresses in three- and four-point flexure.  The failure

properties of the reinforcements used in the present analysis are evaluated.  Experiments and

predictions of the cracking regime in lightly reinforced concrete panels are reported.  In
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particular, a probabilistic approach is developed to analyze the conditions for single and

multiple cracking.

PROBABILISTIC APPROACH TO THE FAILURE OF

MICROCONCRETE

The failure stress measurements for the microconcrete studied herein are scattered.

Consequently a Weibull model is used to account for the scatter of the failure stress as well as

volume and stress heterogeneity effects.  It can be noted that the Weibull model mainly

describes the crack initiation conditions.  It has been shown to be relevant for ceramics

(Jayatilaka 1979), glasses (Kurkjian 1985), and brittle metals (Beremin 1983).  However, for

quasi-brittle materials such as (reinforced) concrete, it has been shown that the so-called size

effects are not necessarily realistic (Bažant 1984; 2000) because a whole process zone

develops prior to failure instead of a single cracking event.  In the present study, a

microconcrete is considered with weak failure properties that may be analyzed by the simple

Weibull model.

Weibull Model

In the present section, a Weibull (1939) analysis is performed to model the fracture

properties of unreinforced microconcrete samples.  The analysis is based upon the weakest

link hypothesis (Freudenthal 1968).  For unreinforced brittle materials, it is assumed that a

single cracking regime occurs (i.e., the initiation and propagation of a single macroscopic

crack leads to the failure of the structure).  Consequently, the cumulative failure probability

FP  of a domain Ω can be expressed as
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Equation (1) corresponds to a two-parameter Weibull model in which the two independent

parameters are the Weibull modulus m (describing the scatter) and the scale parameter mSV 00

(i.e., 0V  and 0S  cannot be identified separately; usually an a priori value is chosen for 0V  and

0S  is tuned).  The failure stress is defined as the maximum value of the equivalent stress over

the domain Ω

)(max xeF σσ
Ω

= . (2)

Equation (1) can be used to define the effective volume (Davies 1973) and the stress

heterogeneity factor (Hild et al. 1992)
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The so-called Weibull stress (Beremin 1983) is defined as

m
eff

Fw V
V /1
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
=σσ . (5)

It can be noted that, according to the Weibull model, the experimental data should be aligned

according to the following linear interpolation
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where the slope is the Weibull modulus m and the x-intercept is 0ln S .  Furthermore, the

average failure stress can be derived as
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It can be noted that the ratio 0/VVeff  only depends on the Weibull modulus m.  In the

following, the cumulative failure probability relative to a batch of experiments is defined by

(Jayatilaka 1979)

1+
=

N
iPF , (8)

corresponding to the arranged failure stresses Fiσ  in ascending order

FNFiF2F1 ...... σσσσ <<<<< . (9)

Once the failure probabilities are known, the Weibull parameters can be tuned by using a least

squares fit of Eqn. (6).

Experimental Results

Microconcrete samples are made of materials with special proportions (1 volume of

cement, 2.67 volumes of sand, 1.33 volumes of aggregates and 0.80 volume of water) so that

the strength is sufficiently low for panels to be analyzed herein (i.e., with a low volume

fraction of reinforcements).  Furthermore, the sand distribution was controlled by using

different sieve sizes.  Table 1 shows the size distribution for the sand of the region of São

Carlos (SP, Brazil) used in the experiments.  An average size of 0.6 mm is obtained.

Similarly, the size distribution of aggregates was measured (Table 2) and an average size of

2.8 mm is found.  The average compressive strength of 3 standard samples (diameter: 10 mm,

height, 28 mm) tested 41, 69, 97 and 132 days after casting is equal to −17.5 MPa, whereas

the average value of Young’s modulus is equal to 19 GPa (Silva 2002).
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Four series of experiments have been carried out on microconcrete samples.  Two

different sample sizes, namely 25 x 25 x 170 mm3 and 25 x 25 x 320 mm3, and two different

types of loadings, namely three-point flexure (outer span: 150 mm and 300 mm, respectively)

and four-point flexure (outer span: 150 mm and 300 mm, respectively, inner span: 50 mm and

100 mm, respectively) have been considered.  For each series, four different ages of the same

batch of material have been tested (i.e., 41, 69, 97 and 132 days after casting).  Each test

consists of 10 samples (total number: 10 x 4 x 4 = 160).  The tests were carried out on a

servo-hydraulic testing machine with a controlled stroke rate of 0.25 µm/s.  The maximum

load is recorded and a classical beam theory solution (Gere and Timoshenko 1997) is used to

evaluate the maximum tensile stress [or failure stress, see Eqn. (2)].

Effect of Age

Figure 1 shows the results of one set of experimental data obtained for four different

ages of a single batch of microconcrete.  No direct correlations between strength and age can

be inferred from the present results.  This trend was observed for virtually all four series of

experiments (Silva 2002).  Consequently, for each series of 40 experiments, no age distinction

will be made.  The only difference is given by the volume and type of loading between the

four sets of experiments.  This effect is discussed by using the Weibull model.

Model Identification

Each set of experiments is analyzed separately to determine the corresponding Weibull

parameters.  To perform the identification, the following stress heterogeneity factors were

used for a beam theory solution in four-point flexure (outer span / inner span = 3, see

Appendix)

2)1(3
1

)1(6
1

+
+

+
=

mm
H m , (10)

and three-point flexure
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1
+

=
m

H m . (11)

Figure 2 shows the predictions of the model for each series of tests compared with

experimental data.  The failure probabilities are evaluated by using Eqn. (8) for each series

when the failure stresses are ranked in ascending order [see Eqn. (9)].  A reasonable

agreement is obtained (i.e., a correlation coefficient at least equal to 0.96).  Table 3

summarizes the values of the Weibull parameters for a reference volume arbitrarily chosen

(i.e., 3
0 cm20=V ).  Even though the values are not identical, the order of magnitude is the

same.  However, the number of experiments remains small for each series so that the

determination of the Weibull parameters is not very accurate (Absi et al. 1999).  In the

following, it is proposed to use the Weibull stress to analyze all the experimental data as a

single set of experiments on the same material since different load patterns can be compared

in a unified way by means of the effective volume.

Only one set of Weibull parameters is used to describe the failure properties of the

microconcrete matrix.  To start the identification, an initial Weibull modulus is needed (e.g.,

3.5=m ) so that the Weibull stresses [Eqn. (5)] for each experimental point can be determined

by computing the effective volume.  The stresses are then arranged in ascending order and a

new identification of the two Weibull parameters is possible.  For any of the four Weibull

moduli taken as initial value, two iterations are needed to converge to the following values:

namely, MPa0.4 and 3.7 0 == Sm .  It can be noted that these values are very close to the

average obtained for the four sets of experiments (i.e., MPa1.4 and 3.7 0 == Sm ).  Figure 3

shows the results obtained with this procedure in which all the data are considered

simultaneously.  A very good agreement is obtained (i.e., a correlation coefficient greater than

0.99).  This result shows that the Weibull stress is a useful tool to analyze different types of

experiments on different loaded volumes as one single set of experimental data points.
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Lastly, it can be noted that the model describes reasonably well the volume effect (i.e.,

the larger the volume, the lower the average failure stress). This is especially noticeable for 4-

point flexure specimens that experience the lower stress heterogeneity (see Table 3). The

stress heterogeneity effect is also reasonably well modeled (i.e., the higher the stress

heterogeneity, the lower the stress heterogeneity factor, and the higher the average failure

stress).  Table 3 shows that the prediction by the Weibull model of the average failure stress is

such that the maximum difference with the experimental value is less than 10% of the

experimental average strength.

This first analysis allows us to conclude that the Weibull model leads to reasonable

estimates of the failure properties of the microconcrete studied herein for effective volumes

varying between 0.68 cm3 (i.e., small samples loaded in 3-point flexure) and 4.67 cm3 (i.e.,

large samples loaded in 4-point flexure).

FAILURE PROPERTIES OF THE REINFORCEMENTS

The reinforcements are wires 3.8 mm in diameter made of low carbon steel (wt%:

C = 0.08-0.13, S ≤ 0.03, Mn = 0.3-0.6, P ≤ 0.03, Si = 0.1-0.2, Al ≤ 0.008, Fe = balance).  Two

different lengths are tested.  For each series, 10 different experiments are carried out (total

number: 20).  Tensile tests are performed with a servo-hydraulic testing machine with a

controlled stroke rate of 5 µm/s.  The strains are measured with a clip gauge (gauge length: 25

mm).  Contrary to the previous case, it is expected that the overall strength of the

reinforcements does not follow a Weibull model.  This is confirmed by analyzing the data

reported in Table 4 since no significant volume effect is observed.  This result was confirmed

by another series of experiments on wires 2.5 mm in diameter (Silva 2002).  The average

tensile strength is of the order of 870 MPa with an average Young’s modulus of 210 GPa.  For

a frame made of a perpendicular array of 8 welded wires (spacing between wires:
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S = 100 mm, wire diameter: d = 3.8 mm, see Fig. 4), the ultimate strength is given equal to

895 MPa in the longitudinal direction, and 870 MPa in the transverse direction.  It can be

noted that these values are close to those found for pristine wires.

This second study shows that, as expected, a purely deterministic approach can be

used to analyze the ultimate tensile strength of the steel grid to be utilized in the lightly

reinforced microconcrete panels.

CRACKING IN LIGHTLY REINFORCED MICROCONCRETE PANELS

In the present section, one set of 33 panels is analyzed (panel size: 400 x 400 x 25

mm3).  The matrix is identical to that studied previously.  The reinforcement consists of a grid

of welded steel wires analyzed above.  Figure 4 shows a schematic view of the sample

geometry.  A very small volume fraction of reinforcement is used, namely f = 0.005.  The first

part of this section discusses the conditions to obtain multiple cracking for reinforced

microconcrete when the matrix cracking stress is random.  The second part is devoted to the

extension of the cracking conditions to the panels when they are loaded by the longitudinal

wires.  The third part discusses the experimental measurements used to evaluate the induced

flexure caused by the experimental procedure.  As a consequence, the analysis of the cracking

stresses requires using the approach with the Weibull stress.

Single and Multiple Matrix-Cracking of Reinforced Concrete

Following the analysis initially proposed by Aveston et al. (1971; 1973), we consider

an elementary cell (Fig. 5) consisting of a continuous reinforcement (Young’s modulus sE

and volume fraction f) embedded in a matrix (Young’s modulus cE  and volume fraction 1−f).

Before cracking, perfectly bonded interface is assumed so that the longitudinal strains are

identical in the matrix and the reinforcement.  The applied stresses are assumed to be uniaxial
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and uniform in each section.  When no cracking occurs, the macroscopic Young’s modulus is

assumed to be equal to

sc fEEfE +−= )1( , (12)

so that the stress in the reinforcement is expressed as

E
Es

s Σ=σ , (13)

and that in the matrix as

E
Ec

c Σ=σ . (14)

Hence, the applied stress Σ  is related to sσ  and cσ  by

Σ=−+ cs ff σσ )1( . (15)

As was shown previously, the matrix is weaker than the reinforcement.  Multiple matrix-

cracking will occur when the first matrix crack does not lead to the failure of the

reinforcement bridging the crack.  This result is applied to the elementary cell of Fig. 5.  If the

strength sufσ  is less than the stress level at which matrix-cracking occurs ccucr EEσ=Σ ,

there will be single matrix-cracking.  Conversely, when

1

1
−









−+=>

c

s

cu

su
cr E

Eff
σ
σ , (16)

multiple matrix-cracking is expected.  To obtain the previous results, the failure strengths of

the matrix and the reinforcements were assumed to be deterministic.  In practice, this

hypothesis is only a simplification.  In the present case, only the matrix strength is considered

to be of random nature.  A first modification would be to replace in Eqn. (16) the failure stress
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of the matrix cuσ  by its average 
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accounted for.  Another alternative consists in associating to each failure stress of the matrix

cuσ  a cracking probability crP  that can be described by a two-parameter Weibull model (see

Eqn. (4) with ceff VV = )
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so that the critical volume fraction is defined in terms of the first matrix-cracking event in the

composite
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Figure 6 shows the different cracking regimes for a unidirectional reinforced brittle matrix

whose properties are those obtained in the two previous sections (namely, GPa,210=sE

GPa,19=cE  MPa,810=suσ  MPa,0.40 =S  3.7=m ) and subjected to tension.  Above a

given curve, a multiple cracking regime is expected, whereas below that line, a single

cracking regime occurs.  For instance, for a reinforcement volume fraction f = 0.005, multiple

matrix-cracking is likely to occur (i.e., crff > ) for a probability crP  of 72 % when the

volume of the matrix is equal to the reference volume (i.e., 1/ 0 =VVc ).  Furthermore, the

higher the volume cV , the lower the failure stress for the same failure probability [see

Eqn. (4)], therefore the more likely multiple matrix-cracking.  This result is valid provided the

composite is subjected to a uniform tensile stress.  If the stress field is heterogeneous, the



14

above-mentioned conclusion can be utilized by considering the effective volume mcHV

instead of the volume cV  as will be shown below.

It can be noticed that these developments constitute a probabilistic treatment of single

and multiple cracking in reinforced brittle matrices whereas all failure strengths were

deterministic in the original analysis of Aveston et al. (1971; 1973).

Single and Multiple Matrix-Cracking in Lightly Reinforced Microconcrete

Panels

In practice, the steel grid used herein (Fig. 4) induces a loss of symmetry of the

microconcrete panels when loaded by the longitudinal wires because of the eccentricity δ.

Consequently, the previous analysis has to be adapted to account for induced flexure coupled

with tension.  A simplified analysis with a linear distribution of strain in the loading direction

is undertaken.  It is therefore assumed that all the longitudinal wires are equally loaded in this

first analysis.  In the loaded volume, the longitudinal strain field is assumed to be given by

maxmaxmax )1(
2

1)( εεααεαε ≤



 −++=≤

h
xxyy  when 2/2/ hxh ≤≤− . (19)

The flexure parameter α has to be related to the eccentricity δ.  The transverse wires (i.e.,

aligned along the z direction) are not modeled.  However, it is assumed that thanks to their

presence, Eqn. (19) constitutes a good approximation of the longitudinal strain field in an

equivalent beam for which the elastic behavior in the transverse (z) direction is homogenized

for .2/2/ hxd +≤≤− δδ The equivalent Young’s modulus in this homogenized region is

computed as (Fig. 4)

shchh EfEfE +−= )1( , (20)

where the apparent surface fraction of reinforcements is defined as (Fig. 4)
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The eccentricity δ induces a flexural moment δF (Fig. 4) leading to the following relationship

between δ and α
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In Fig. 7, the flexure parameter α is plotted as a function of the eccentricity δ by using the

present material parameters.  When the eccentricity δ varies between 4 and 0 mm, the flexure

parameter α varies between 0 and 1.  In particular, when the symmetry axis of the wire frame

coincides with the mid-section axis of the panel (i.e., δ = d/2 = 1.9 mm) a value of 0.35 is

obtained.  For this value, one can evaluate a priori the effective volume in a ‘tensile’ test of

the panels.  By using Eqns. (3) and (19) and neglecting the reinforcement stress contribution

(since f is very small), the following stress heterogeneity factor is found (see Appendix)


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mHm (23)

Equation (23) shows that the lower α, the lower the stress heterogeneity factor and the higher

the average failure stress [see Eqn. (7)].  By assuming that the relevant volume to consider is

cV  = 300 x 300 x 25 mm3, the dimensionless effective volume 0/VHV mc  is of the order of 20

and a multiple cracking regime is to be expected (Fig. 6) for the present reinforcement volume

fraction (i.e., of the order of 0.005).

This second part shows that even though a uniaxial load is applied, which usually

corresponds to pure tension, the asymmetry of the panel architecture induces flexure in the
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microconcrete matrix.  A stress heterogeneity factor has to be evaluated to be able to compute

a quantity that is relevant for the cracking analysis, i.e. the effective volume mcHV .

Experimental Measurements

Equation (23) shows that an accurate estimate of α is needed to analyze the

experiments on panels.  To evaluate α, six transducers are used, three per analyzed surface

(Fig. 8).  First, from the two groups of three measurements on each surface, an average signal

is determined (i.e., LU  and RU ).  From these two signals, an apparent coefficient of flexure

aα  is determined (when RL UU ≤ )

R

L
a U

U=α . (24)

Since the measurement is performed at a distance b = 40 mm from the surface (Fig. 8), the

parameter aα  is different from α.  The displacements LU  and RU  not only include the strains

in the panel, but also the rotation of the sections described by an angle θ  with respect to the

axis of symmetry of the panel.  The angle θ can be expressed in terms of the thickness of the

panel h and the distance b

)2(2
tan

hb
UU RL

+
−=θ , (25)

so that the actual flexure coefficient α can be deduced

)(
)(

bhb
bbh

a

a

++
++=

α
αα . (26)

Similarly, one can determine a flexure parameter β in the other plane by a linear interpolation

of the three measurements per face.  This second parameter accounts for the fact that the four

longitudinal wires are not uniformly loaded.  Equation (19) is therefore generalized to become



17

max)1(
2

1)1(
2

1),( εββααε 



 −++




 −++=

L
z

h
xzxyy . (27)

Consequently, the stress heterogeneity factor becomes

)()(),( βαβα mmm HHH = , (28)

where (.)mH  is defined in Eqn. (23).  Figure 9 shows an example of six displacement

measurements and the reconstructed strains used to determine α and β.  In this particular

example, an apparent coefficient of flexure 24.0−≈aα  is found, whereas 44.0≈α  and

75.0≈β .  When the value of the flexure parameters α and β are known, one can determine

the maximum stress in the matrix when the first matrix crack appears.  In Fig. 9, one can see a

load drop that can be related to the initiation and propagation of the first matrix crack.  Let 1F

be the load level prior to the first load drop.  The corresponding average tensile stress is given

by hLF /11 =Σ .  The maximum tensile stress in the matrix, 1σ , is related to 1Σ  by

E
EE c

c )1)(1(
4 1

max1 βα
εσ

++
Σ== , (29)

since the average strain in the matrix is such that 4/)1)(1(max βαεε ++≈m .

Beyond the first cracking event, the displacement measurement now includes the crack

opening displacement when the crack is located within the measurement zone. Subsequently,

the analysis of the second and third cracking events requires additional hypotheses to be made

since only global measurements are performed.  One can make one of the following three

different sets of assumptions:

•  the crack opening displacement is identical on both surfaces of the panel.  Equation (26) is

still valid to determine the flexure parameter α and the elastic analysis can still be

performed in the undamaged volume. Furthermore, as suggested by the observation of

many of the tested panels, the first crack is supposed to be located along one of the
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transverse wires that are close to the lower or upper surface, and the other successive

cracks are supposed to occur along one of the other transverse wires. According to such

hypotheses, the undamaged volume can be assumed to be cV  = 200 x 300 x 25 mm3 for

the second cracking event and cV  = 100 x 300 x 25 mm3 for the third cracking event.

•  the first value of the flexure parameter α remains identical during the whole test.

Consequently, the analysis performed for the first cracking event can be repeated for the

second and third ones by using Eqns. (26) and (27) with the value of α measured for the

first load drop.

•  when a crack is located within the measurement zone, the flexure parameter α is kept

constant throughout the subsequent analysis and equal to the value recorded prior to the

cracking event.  Conversely, when no crack is located in the measurement zone, the

flexure parameter can be evaluated again prior to a new cracking event.  It could be

checked that in that case the value of α did not evolve significantly, thereby validating the

hypothesis made when cracking occurred within the measurement zone.  The same type of

analysis is performed for the parameter β. To evaluate the effective volume, it is assumed

that the elastic analysis can be performed in the undamaged volume that is defined as

cV  = 300 x 300 x 25 mm3 for the first cracking event, cV  = 200 x 300 x 25 mm3 for the

second cracking event and cV  = 100 x 300 x 25 mm3 for the third cracking event.

This last choice will be made in the following study.  The present analysis shows that with a

limited number of measurements, the cracking scenario cannot be inferred in a direct way.

Prediction of the Cracking Stresses

Each of the 33 panels that have been tested exhibits a different value of α for the

cracking events.  In Fig. 7, the values of α corresponding to the first matrix crack are plotted



19

and the eccentricities deduced from Eqn. (22).  The values α were obtained by using the strain

measures [Eqn. (24)] and the correction given by Eqn. (26).  As anticipated, these values are

scattered.  Yet the range of values allows us to conclude that the samples did not experience

compressive stresses since α remains positive.  The mean value of α is equal to 0.33 and that

of the eccentricity δ is of the order of 2 mm (corresponding standard deviation: 0.7 mm).  This

value must be compared to the value δ = 1.9 mm (i.e., δ = h/2) that corresponds to a perfect

positioning of the steel frame in the mid-plane of the panel. These results show that, even

though a millimeter positioning was achieved, it is not sufficient to consider one single value

for α.  However, to get a first order solution, the hypothesis δ = h/2 could have been used to

analyze the tests in a classical Weibull diagram (i.e., { }[ ] FFP σln    vs.)1/(1lnln − ).  This

assumption was made in the a priori analysis of single and multiple cracking of lightly

reinforced microconcrete panels.

Since each experiment has a different value of α, the only way to treat globally the

scatter is to resort to the Weibull stress [Eqn. (5)] so that all data can be compared with one

another.  When the values of α and β change, the loading pattern is modified and one

experiment cannot be compared with another one since the stress heterogeneity factor

[Eqn. (28)] and the effective volume [Eqn. (3)] change.  This is all the more important as a

significant variation of α was obtained (Fig. 7).  For each cracking event, the values of α and

β are determined from the analysis of the strain measurements as explained in the previous

sub-section.  By knowing the Weibull modulus m (i.e., m = 7.3), the stress heterogeneity is

determined [Eqn. (28)], as well as the effective volume [Eqn. (3)] and the corresponding

Weibull stress [Eqn. (5)].  All the Weibull stresses are ranked in ascending order so that

Eqn. (8) can be used to evaluate all the failure probabilities.  Figure 10 summarizes all the

experimental observations in the modified Weibull plot (i.e., { }[ ] wFP σln    vs.)1/(1lnln − ).  All

experimental data are located above the curve given by the Weibull model identified with the



20

flexure experiments.  It therefore constitutes a lower estimate. This can be shown when fitting

the experimental data with the same Weibull modulus (i.e., m = 7.3) and leaving the scale

parameter free.  As a consequence, the Weibull stresses remain the same since the ratio

0/VVeff  only depends on the Weibull modulus m.  A value MPa8.4ˆ
0 =S  is found for the

same reference volume (i.e., 3
0 cm20=V ) with a correlation coefficient equal to 0.96.  It can

be noted that the average effective volume observed in the experiments prior to first cracking,

3cm240≈effV , is at least two orders of magnitude larger than those that correspond to the

unreinforced beams tested in flexure.  Consequently, an extrapolation of the model to these

very different scales may explain the 20% difference in scale parameter (i.e., MPa8.4ˆ
0 =S

instead of MPa0.40 =S  for the unreinforced microconcrete).  Last, the fact that the same

Weibull modulus could be used in all the analyses indicates that the overall scatter remains

similar even though the effective volumes are significantly different.

Finally, an a posteriori analysis of the cracking regimes is performed.  It can be noted

that this analysis is delicate since it needs a good evaluation of the stress field pattern because

the effective volume and the corresponding failure stresses are dependent upon these

quantities.  Contrary to the previous analysis, the only knowledge of the Weibull stress is not

sufficient to analyze the occurrence of the two regimes.  A simplified path will be followed.

By assuming a representative effective volume (e.g., the average effective volume observed

in the experiments prior to first cracking, that is such that 12/ 0 =VVeff ), Eqn. (18) can be

rewritten as
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Figure 11 shows the prediction of the critical volume fraction as a function of the first

cracking probability.  It allows one to conclude that for a volume fraction f = 0.005, about

75% of the samples are likely to experience multiple cracking. In practice a value of 85% was

found.  By remembering that the present analysis is only a first order evaluation, it can be

concluded that the predictions are in reasonable agreement with the experimental

observations, provided the corrected Weibull parameters are considered.  If the Weibull

parameters identified with the flexure data had been used, it would have been possible to state

that multiple cracking was even likelier than observed.

CONCLUSIONS

The aim of the work reported herein was to analyze cracking in lightly reinforced

microconcrete panels by using a Weibull model.  To perform this type of analysis, 160

experiments were carried out on microconcrete alone.  It was shown that a classical Weibull

approach could be used to model single cracking of unreinforced beams.  In particular, the

effect of volume change and load pattern (i.e., stress heterogeneity) could be accounted for in

a reasonable manner.  More importantly, it was shown that all experimental data could be

plotted in a unique modified Weibull diagram in which the relevant stress to consider is the

so-called Weibull stress.  This is the first important result of the paper.  Furthermore, the

aggregate distribution was controlled in this work.  It followed that the typical aggregate size

was of the order of 2.8 mm (i.e., 11 % of the smallest characteristic size of the samples) so

that it is assumed that a macroscopic stress analysis was sufficient to capture the main fracture

features on unreinforced microconcrete.  Additional investigations may be undertaken to

analyze large volumes of material to check the validity of the Weibull model.  The ultimate

strength of the reinforcements was considered as deterministic.
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From these data, it was assumed for the 33 tested panels that the behavior of each

constituent is linear elastic.  Based on a probabilistic perspective, an a priori analysis

predicted that a multiple cracking regime was expected and it was confirmed a posteriori by

the experiments.  The present analysis accounts for the scatter of failure stresses of the

microconcrete matrix.  Even though the matrix underwent multiple cracking, its behavior was

assumed to be linear elastic and described, locally, by a weakest link approximation

associated to a Weibull model with different effective volumes.  Moreover, one had to resort to

a modified Weibull diagram.  In the present case, this was the only way to analyze all

successive cracking events in a single diagram since each experiment was unique in terms of

stress heterogeneity.  Consequently, a conventional Weibull analysis could not be used.  The

use of the Weibull stress is therefore unavoidable in the present case.  Otherwise the different

test results cannot be compared with each other.  This constitutes a further validation of the

approach proposed herein.

The levels of cracking stresses could be predicted in a good way by assuming that the

mechanical properties of the matrix were 20% higher than those of microconcrete alone.

Consequently, the use of the data of microconcrete alone would have resulted in conservative

estimates of the cracking levels of the reinforced panels.  When the first cracking event is

used as a design parameter, a lower bound can be expected.  Additional investigations may be

undertaken to analyze larger panels to confirm this trend.

Since the reinforcement was obtained by a grid of wires, it is believed that the role of

the interface between longitudinal reinforcements and the surrounding matrix is minimal

compared with the role played by the transverse reinforcements prescribing the longitudinal

strains.  As a consequence, the mechanical analysis was simple: each cracking event leads to

the loss of a height at least equal to one reinforcement spacing, depending on the location of

the crack.  There was no need to identify the properties of the interface, other than checking



23

that the reinforcements were able to sustain the load carried by the matrix prior to cracking.

In the present analysis, a discrete description of cracking was proposed since the maximum

number of events was small (i.e., at most 3).  There was therefore no need to use a continuum

description based upon a damage parameter modeling matrix-cracking (Hild et al. 1996).
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APPENDIX. CALCULATION OF STRESS HETEROGENEITY

FACTORS

Let us consider a beam loaded in four-point flexure (Fig. 12).  By using a beam theory

solution (Gere and Timoshenko 1997), the stress field is unidimensional in the y-direction

),( yxyyσ , linear with the x and y coordinates and independent of the z coordinate
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Since the stress field is unidirectional and normal, the equivalent stress eσ  is equal to yyσ .

One only considers the positive part of the equivalent stress [Eqn. (3)], the integration along

the x direction is only carried out when x is negative.  The stress heterogeneity factor

[Eqn. (3)] can be calculated as

dxdydz
ah

ycax

dxdydz
h

x

dxdydz
ah

xyhwHca

mw

w

ca

cah

mw

w

ca

ah

mw

w

a

h
m







 −+−+







 −+







 −=+

∫∫∫

∫∫∫

∫∫∫

−

+

+−

−

+

−

−−

])2[(2

2

2)2(

2/

2/

20

2/

2/

2/

0

2/

2/

2/0

0

2/

, (32)

so that for any span ratio ca /
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The case 0/ →ca  corresponds to pure flexure
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When 1/ =ca , Eqn. (10) is found.  Finally when 0/ →ac , it corresponds to three-point

flexure and Eqn. (11) is obtained.

When the strain field )(xyyε is given by Eqn. (19), the corresponding uniaxial stress

field )(xyyσ  becomes
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When 0≥α , the integration over x is carried out for any value of x
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whereas, when 0≤α , the integration over x is carried out for any value of x greater than or

equal to )1(2/)1( αα −+− h  so that the equivalent stress is positive
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and Eqn. (23) is obtained.
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APPENDIX. NOMENCLATURE

a = inner span;

b = distance from one side of the specimen;

2c+a = outer span;

d = wire diameter;

E = Young’s modulus of composite;

cE , sE  = elastic moduli of concrete and steel, respectively;

hE  = equivalent Young’s modulus;

f = volume fraction of reinforcements;

crf  = critical volume fraction of reinforcements;

hf  = apparent surface fraction of reinforcements;

F  = applied load;

h = thickness of the sample;

mH  = stress heterogeneity factor (Hild et al. 1992);

i = index;

L = length of the panel;

m = Weibull modulus;

N = number of samples;

FP  = cumulative failure probability;

crP  = cracking probability;

S = spacing between wires;

0S  = scale parameter (relative to a reference volume 0V );
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0Ŝ = corrected scale parameter (relative to a reference volume 0V );

V  = loaded volume;

0V  = reference volume;

cV  = volume of concrete;

effV  = effective volume;

LU  = displacement measured on the left side of the specimen;

RU  = displacement measured on the right side of the specimen;

w = width of the sample;

x = normal direction (see Fig. 4);

y = loading direction and first wire direction (see Fig. 4);

z = second wire direction;

α = coefficient of flexure (i.e., if α = 1, then no flexure is observed and if α = −1, then pure

flexure is obtained);

aα  = apparent coefficient of flexure;

β = flexure parameter in the longitudinal plane;

Γ = Euler function of the second kind (Abramowitz and Stegun 1965);

δ = eccentricity parameter (see Fig. 4);

yyε  = normal strain in the loading direction (y);

maxε  = maximum normal strain in the loading direction (y);

mε  = average strain in the matrix;

cσ , sσ  = stress in concrete and in steel, respectively;

cuσ , suσ  = failure stress of concrete and steel, respectively;

cuσ = average failure stress of concrete;
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)(xeσ  = equivalent failure stress at location x  (e.g., the local maximum principal stress);

Fσ  = failure stress;

Fσ = average failure stress;

Fiσ  = ordered failure stress;

wσ = Weibull stress;

1σ  = maximum tensile stress in the matrix;

Σ  = applied stress;

1Σ  = average tensile stress;

crΣ = stress level at which matrix-cracking occurs;

Ω = domain;

θ = angle with respect to the axis of symmetry of the panel;

. = Macauley brackets.
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FIGURE CAPTIONS

Figure 1: Cumulative failure probability vs. failure stress of four test series performed at

different ages in 3-point flexure (loaded volume: 150 x 25 x 25 mm3).  No

conclusive correlation can be found between age and failure stress level.

Figure 2: Experimental data for the four sets of experiments. For each set, the line

corresponds to the best Weibull fit.

Figure 3: Modified Weibull plot (i.e., cumulative failure probability FP  versus Weibull

stress wσ ) of all the test results obtained for two different sample sizes and two

different loading types.  The solid line corresponds to the Weibull model

( MPa,40 =S  3.7=m ).

Figure 4: Panel geometry (400 x 400 x 25 mm3, S = 100 mm), section along one

longitudinal wire axis and 300 mm long beam model, which is homogeneous in

the z-direction, used to account for the eccentricity δ.

Figure 5: Elementary cell used in the analysis of single and multiple cracking regimes.

Figure 6: Single and multiple matrix-cracking regimes of a reinforced brittle matrix

( GPa,215=fE  GPa,19=mE  MPa,870=fuσ  MPa,40 =S  3.7=m ) for three

different values (namely, 1, 10, 100) of dimensionless effective volumes 0/VVeff .
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When crff > , a multiple cracking regime can be expected.  Conversely, when

crff ≤ , single cracking occurs.

Figure 7: Flexure parameter α vs. eccentricity δ.  The crosses are experimental data.  The

experimental average =α  0.33 corresponds to an eccentricity δ = 2 mm.

Figure 8: Location of the six displacement transducers used in the tests on the panels.

Figure 9: -a- Raw displacement measurements of the six transducers.

-b- Average of the three measurements on each surface of the panels.  An apparent

flexure parameter 24.0−≈aα  is obtained.  The circles correspond to the first,

second and third cracking events.

-c- Corrected strain on the surfaces of the panel.  The actual flexure parameters

being derived as 44.0≈α  and 75.0≈β  for the first cracking stress.

Figure 10: Modified Weibull plot (i.e., cumulative failure probability FP  versus Weibull

stress wσ ) corresponding to the first, second and third cracking stresses.  The

solid line corresponds to the Weibull parameters determined from the flexure data.

The dashed line corresponds to the Weibull scale parameter determined by using

the present data.

Figure 11: Single and multiple matrix-cracking regimes of the lightly reinforced panels

( GPa,210=fE  GPa,19=mE  MPa,870=fuσ  MPa,8.4ˆ
0 =S  3.7=m ) when
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12/ 0 =VVeff .  When crff > , a multiple cracking regime can be expected.

Conversely, when crff ≤ , single cracking occurs.

Figure 12: Beam geometry used to calculate stress heterogeneity factors in four-point flexure

for different span ratios ca / .
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Figure 1: Silva et al.
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Figure 2: Silva et al.
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Figure 3: Silva et al.
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Figure 4: Silva et al.
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Figure 5: Silva et al.
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Figure 6: Silva et al.
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Figure 7: Silva et al.
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Figure 8: Silva et al.
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Figure 9: Silva et al.
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Figure 10: Silva et al.
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Figure 11: Silva et al.
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Figure 12: Silva et al.
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TABLE CAPTION

Table 1: Distribution of sand size for the constituents used to make microconcrete.

Table 2: Distribution of aggregate size for the constituents used to make microconcrete.

Table 3: Weibull parameters of the four sets of flexural experiments on micro-concrete

samples ( 3
0 cm20=V ).  For the average failure stress, the value in parentheses

corresponds to the prediction by the Weibull model ( 3.7=m , MPa40 =S  and

3
0 cm20=V )

Table 4: Failure stress (average ± standard deviation) for the two different test series on steel

wires.
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Table 1: Silva et al.

Sieve size (mm) Kept mass (g) Mass distribution Cumulative mass

1.2 23.4 2.3 % 2.3 %

0.6 277.3 27.8 % 30.1 %

0.3 484.6 48.5 % 78.6 %

0.15 202.0 20.2 % 98.8 %

Balance 11.9 1.2 % 100 %

Table 2: Silva et al.

Sieve size (mm) Kept mass (g) Mass distribution Cumulative mass

4.8 1.2 0.1 % 0.1 %

2.4 640.9 64.1 % 64.2 %

1.2 289.4 29.0 % 93.2 %

0.6 44.0 4.4 % 97.6 %

0.3 14.0 1.4 % 99 %

0.15 6.2 0.6 % 99.6 %

Balance 3.7 0.4 % 100 %
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Table 3: Silva et al.

Sample size
(mm3)

Type of test Mean failure stress
Fσ  (MPa)

Weibull modulus
m

Scale parameter
0S  (MPa)

25 x 25 x 170 4-point flexure 5.0 (5.1) 6.6 3.9

3-point flexure 5.8 (6.0) 7.7 3.9

25 x 25 x 320 4-point flexure 4.6 (4.6) 5.5 4.0

3-point flexure 5.8 (5.4) 9.4 4.4

Table 4: Silva et al.

Sample length
(mm)

Failure stress
(MPa)

Young’s modulus
(GPa)

100 878 ± 11 212 ± 13

200 866 ± 31 222 ± 32


