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A new method is introduced to evaluate displacement �elds from the analysis

of a deformed image as compared to a reference one� In contrast to standard

methods� which determine a piecewise constant displacement �eld� the present

method gives a direct access to a spectral decomposition of the displacement

�eld� A minimization procedure is derived and used twice� �rst� to determine

an a�ne displacement �eld� then the spectral components of the residual

displacement� Although the method is applicable to any space dimension�

only cases dealing with one dimensional signals are reported� �rst� a purely

synthetic example is discussed to estimate the intrinsic performance of the

method� while a second case deals with a pro�le extracted from a compressed

glass wool sample� c����
 Optical Society of America

OCIS codes� ��������� ��������� ��������� ����	�
�� ��������� �
�������

�� Introduction

More and more experiments in Solid Mechanics require non�contact strain measurements�

In many instances� the possibility to resolve strain inhomogeneities� and thus to determine

complete displacement maps becomes highly desirable �e�g�� multiphase materials� detection

of crack initiation� analysis of singularities �
� �� ���� Examples of this may be found in

tests being carried out at high temperatures where non contact displacement measurements

are necessary� Other applications concern soft solids where strain gages can be di�cult to

position or may disturb the material�s response because of sti�ness variations �e�g�� glass

�



wool ���� polymers ��� ��� paper and wood ����� Let us also mention solids in which strain

localization may take place and where inhomogeneous deformation has to be detected to

extract reliable information for the identi�cation of a constitutive equation �
��

In recent years� the development of e�cient tools for �eld velocimetry� designed espe�

cially in the context of �uid �ow visualization ���� has been quite important� and the fast

evolving capabilities of digital image acquisition and software for image analysis led us to

use such techniques for full��eld displacement analysis� Particle Imaging Velocimetry �PIV�

�
�� 

�� Digital Image Correlation �DIC� ��� or more generally Correlation Imaging Velocime�

try �CIV� has proven to be an e�cient and robust tool whose precision can be extended much

below the pixel accuracy �
��� pixel precision and sensitivity is common �
�� 
�� and in some

favorable cases a 
��� precision can be reached �
���� The spirit of the method is to look for

the maximum correlation between small zones extracted from the �deformed� and reference

images recorded under di�erent exposures �
��� The translation which corresponds to the

maximum correlation can be obtained for di�erent positions of the zone of interest� This

allows for the determination of a displacement �eld which is piecewise constant� The corre�

lations are studied either in the reference space �
�� 
�� 
�� or in Fourier space �
�� 

� 
��

and the extensive use of Fast Fourier Transforms �FFT� is very e�ective in reducing the

computation cost�

It is tempting to go one step further� and to introduce continuous displacement �elds

���� �
�� There is no theoretical problem related to the formulation of such an approach by

using �nite element discretizations� However� the computation cost increases dramatically

since an FFT cannot be used directly� Moreover� the functional to minimize displays many

secondary minima� and thus algorithms such as simulated annealing are to be used ����� This
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impacts strongly on the computation cost and convergence may be problematic in practical

cases� However� the method clearly provides a much more accurate displacement �eld �����

The purpose of the present study is to propose a novel approach based on continuous

displacement �elds �in Fourier space� which is robust and computationally e�cient� The

displacement �eld is obtained from a fast converging iterative procedure where each step

requires only two FFTs� After a presentation of the method� two examples of one�dimensional

applications are discussed� The �rst one is a synthetic case where the method can be tested

in ideal conditions �no noise nor digitization artefacts�� This case shows that the method

can deal with strains varying within the range ���� along the same pro�le� The second one

is based on a real sample �glass wool� uniaxially compressed� where a signi�cant degree of

heterogeneity may be present� and where still a one dimensional displacement �eld is suited�

�� Problem De�nition

The surface of a solid has a random heterogeneous texture which is characterized by a grey�

level signal �or �image�� called f�x� in its reference state� The �deformed� image of the same

surface is called g�x�� The corresponding displacement u�x� is such that X � x�u�x�� where

X identi�es the position in the deformed image of a point x in the reference one� The texture

of the surface is assumed not to be a�ected by the strain� and thus the relation between f

and g is postulated to be

g�X� � g�x� u�x�� � f�x� �
�

Let us note that this kind of hypothesis may be valid for an image obtained from a textured

surface observed by re�ection� In other instances� such as an image obtained in transmission�

the change of the grey level may depend on the local strain� and thus the basic hypothesis �
�
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will be violated� However� it will be shown on a practical example that this limitationmay still

be overcome by the method proposed herein� There may be some additional noise induced

by the experimental conditions and the acquisition devices �e�g�� readout noise� digitization��

The problem to solve is the determination of the unknown displacement �eld u�x� from the

analysis of two signals f and g�

�� Proposed Approach

The Fourier transform  g of g can be written as

 g�k� � F �g��k� �
Z
g�X� exp��i�kX�dX �

Z
f�x� exp��i�k�x� u�x����
 � u��x��dx ���

where F ��� is the Fourier transform of any function ��� �the dot ��� denotes any dummy pa�

rameter or function�� Under the hypothesis of small perturbations in the range of considered

wavenumbers� i�e�� ku�x�� 
 and u��x�� 
� the exponential can be Taylor�expanded up to

the �rst order in ku�x� and u��x�

 g�k� �  f�k� �
Z

exp��i�kx�f�x��u��x� � �i�ku�x��dx ���

Integration by parts of Eq� ��� yields

 g�k� �  f �k��
Z

exp��i�kx�f ��x�u�x�dx� �exp��i�kx�f�x�u�x��L� ���

where the coordinate x ranges from � to L� The condition ku� 
� for a given displacement

u� implies that this equation is only valid for small k values� An upper limit k� in k space is

introduced so that the above expansion is valid� For convenience� a low�pass �lter in Fourier

space  H��k� is used

 H��k� �

��
�

 if k � k�

� if k � k�

���
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that will be applied to Eq� ���

�  f �  g��k�  H��k� �
Z

exp��i�kx�  H��k�f
��x�u�x�dx�  H��k��exp��i�kx�f�x�u�x��

L
� ���

Equation ��� is the starting point of the present approach�

A� Periodic Case

Let us �rst consider a case where both the texture f and the displacement u are periodic so

that the bracket in Eqs� ��� and ��� disappears� The treatment of edge e�ects is discussed in

a subsequent section� A simple case is found and it allows us to outline the most important

steps of the method� A Fourier decomposition of the trial displacement �eld U is introduced

U�x� �



��

Z
K�K�

 U�K� exp���i�Kx�dK ���

This decomposition de�nes the space of displacement �eld in which u will be approximated

by U whenK is arbitrarily chosen� The rangeK� ofK values to be used was not yet speci�ed�

but it has to be much smaller than the number of pixels of the original �image� L� Moreover�

since Fourier expressions will be used� the range of k values which can be used will naturally

limit the maximum range of K� K � K� � k�� Equation ��� can be rewritten as

�  f �  g��k�  H��k� �
Z
K�K�

 U�K� ef ��k �K�  H��k�dK �
�

If the power spectrum of f �U is small in the high frequency domain �i�e�� high values of

k�� and if k� � K�� the integration domain of Eq� �
� can be slightly modi�ed and an

approximate solution to the right hand side is

�  f �  g��k�  H��k� �
Z
K�K�

 U�K� ef ��k �K�  H��k �K�dK ���

�



and the Fourier transform of the image di�erence between f and g is simply the convolution

of the Fourier transform of the displacement by the signal gradient� An inverse Fourier

transformation shows that Eq� �
� can be seen as a Taylor expansion of Eq� �
�

g�x� � f�x� U�x�� � f�x� � f ��x�U�x� �
��

However� this expansion is generally of little use� The texture is a random function with

rapidly varying grey levels� so that the above expression would only be valid for extremely

small displacements� Otherwise� trying to use this direct expression will lead to inaccurate

results� because of the existence of spurious local solutions� To consider this kind of approach�

a low pass �ltering �i�e�� convolution by H�� has to be performed to ensure that the Taylor

expansion up to the �rst order may be of any use� Therefore� the advantage of working

directly in Fourier space appears naturally�

There are now di�erent strategies one could follow to use Eq� ���� The �rst one is to

derive a weak formulation in such a way that as many equations as unknowns are obtained�

The second one� which gives less freedom in the choice of the weak formulation� is to write

the problem in terms of the minimization of a functional of the unknown displacement�

B� Weak Formulation

Let us consider the convolution of Eq� ��� by  f �  H�� For any value K �� one can write

Z
k
�  f �  g��k�  H��k�  f

��K � � k�  H��K
� � k�dk �

�
Z
K�K�

 U �K�
Z
k

 f ��k �K�  H��k �K�  f ��K � � k�  H��K
� � k�dkdK �

�
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Convolution in Fourier space being Fourier transforms of direct product in real space� the

above equation can be rewritten as

d�f � g��x� bf ��x� � U�x� bf ���x� �
��

where �b�� is the �ltering of ��� obtained by convolution with H�� Equation �
�� is formally

identical to Eq� �
��� A direct expression for the trial displacement �eld U�x� is

U�x� �
d�f � g��x� bf ��x�
bf ���x� �
��

Even though Eq� �
�� could be simpli�ed and would be identical to Eq� �
��� it is more

convenient to keep the present formulation that can be generalized to �D situations �����

The above formula again appears very attractive� because of the direct expression of the

displacement �eld� Yet some care has to be exercised in the precise implementation of this

equation in a code� In regions where ef � vanishes� the above ratio becomes ill�behaved� This

phenomenon is to be expected since a displacement cannot be determined for a signal of

constant level�

The range of K values to be used was not speci�ed� Intrinsically� the minimum wave�

length of u to be determined has to be greater than the correlation length of the initial

texture� This is an unavoidable constraint that cannot be overcome� There is a secondary

limitation due to the followed derivation� i�e�� the hypothesis that ku be small� This means

in practice that only small k � k� values are to be used� and therefore only long wavelength

displacements K � k� � k� can be resolved� However� this constraint can be overcome since

one can proceed recursively� First� only the long wavelength modes should be determined

by using a small number of Fourier modes for u� Once this �rst low band displacement

�eld has been determined� one can reconstruct a modi�ed g image corrected by this �rst






displacement� Then� the amplitude of the residual displacement is expected to be reduced

signi�cantly� This means that the same procedure can be used again with a somewhat larger

range of wavenumbers in this second stage to determine a more accurate displacement �eld�

Recursive use of this technique is thus expected to be able to provide accurate displacement

�elds�

C� Minimization

An alternative route is to formulate the problem in terms of a minimization of a functional of

trial displacement �elds� U � For convenience� the adjoint U is preferred and de�ned such that

if X � x� U�x�� then x � X � U�X�� For small displacements� a �rst order approximation

is U�x� � U�x�� Let us introduce the functional A

A�U � �
Z
�g�X�� f�X � U�X����dX �
��

or in Fourier space� by using Parseval�s theorem

A�U � �
Z ���� g�k��F �f��� U������k�

�����dk �
��

If the unknown displacement �eld is assumed to be constant� i�e�� U �X� � V � minimizing

the functional A�V � is strictly equivalent to maximizing the functional H�V �

H�V � �
Z
g�X�f�X � V � dX �
��

where H is the cross�correlation product of the two signals� The use of an FFT speeds up

the computations of the cross correlation product� Equation �
�� constitutes the basis of all

CIV techniques �
��� When some noise is added between the two signals� it can be shown

that the previous estimate is optimum for a white noise�
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Moreover� since the high frequency part of the above signal is expected to contain more

noise than information� the functional A is restricted to a limited range of k values and is

denoted by bA
bA�U � �

Z ���� g�k��F �f��� U������k�

�����  H��k�dk �
��

The trial displacement �eld U is written in a spectral form over a limited range of wavenum�

bers� U � �

��

R
K�K�

 U�K� exp���i�Kx�dK� By assuming a periodic case and proceeding

along the same lines as in Eq� ���� the following estimate is obtained for low values of k

F �f��� U������k� �  f�k��
Z
K�K�

 U �K� ef ��k �K�  H��k �K�dK �

�

Thus the functional bA reads

bA�U � �
Z ����� g �  f��k��

Z
K�K�

 U�K� ef ��k �K�  H��k �K�dK
����
�

 H��k�dk �
��

where bA is a quadratic form in the unknowns  U�K�� and thus expressing the condition to be

ful�lled at the minimum is straightforward� By neglecting the power corresponding to high

frequencies of fU � the following linear system has to be solved

Z
K��K�

 U �K ��
Z
k

ef ��K � k�  H��K � k� ef ��k �K ��  H��k �K ��dkdK � �

�
Z
k
�  f �  g��k�  H��k� ef ��K � k�  H��K � k�dk ����

One can recognize the same system as in the previous section �Eq� �

��� This legitimates the

choice of the weak formulation� The present approach is thus expected to be well�behaved

since it relies on the existence of a well�de�ned minimum� the quality of which can be further

estimated by computing bA�
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�� Edge E�ects

The proposed method relies heavily on the properties of Fourier transforms� and the interplay

between convolution in direct and reciprocal spaces leads to convenient numerical implemen�

tation� However� the drawback is that all functions are implicitly assumed to be periodic�

This may cause some problems on the edges� In particular� a non zero average strain implies

that the physical length is di�erent in the reference and deformed images� This point cannot

be accounted for in the basis of selected functions�

A natural way to circumvent this problem is �rst to adjust the correct physical scales in

both images in such a way that the mean strain is zero in the rescaled coordinates� To comply

with the approach presented so far� the displacement �eld is de�ned by W �x� � a�x � a��

The functional to minimize becomes

A�W � �
Z

��g � f��x��W �x�f ��x��
�
dx ��
�

where g�f and f � have to be conveniently �ltered before such a formula may be applicable�

In practice� a very severe initial �ltering is �rst performed� and progressively more and more

Fourier modes are incorporated �see Section ���

The simple form chosen for W yields a very simple minimization condition that can be

written in matrix form

MA � B ����

where

A �

�
BBB�
a�

a�

�
CCCA ����







and similarly for the components of the matrix M and B� whose explicit components are

Mij �
Z bf ���x�xi�j��dx ����

and

Bi �
Z
� df � g��x� bf ��x�xi��dx ����

where i and j indices range from 
 to �� As previously mentioned� in these expressions� f �

and f � g are to be �ltered prior to the computation of the integrals�

�� Test of the Method on an Arti�cial Case

The proposed method is �rst applied on an arti�cially generated example� The texture itself

is �rst generated by using a random walk� Periodic boundary conditions are prescribed by

subtracting the end�to�end linear drift� so that the two end points of the pro�le correspond

to the same �grey level�� f��� � f�L�� A random displacement �eld is chosen arbitrarily

in Fourier space so that a periodic boundary condition is automatically set� The number of

modes is chosen to be equal to ��� with a Gaussian distributed random amplitude and phase�

An overall translation �mode k � �� is also prescribed� From the reference texture and the

displacement �eld� the deformed image� g� is generated by using a linear interpolation of

f � The typical amplitude of the di�erence between maximum and minimum displacement

could reach values as high as �� pixels� The maximum local strain is equal to ��� in this

particular example� Figure 
 shows a typical example of the reference and deformed texture�

The number of pixels used in the de�nition of the texture is 
���� The program that generates

such arti�cial cases is designed to be totally independent of the analysis program�

The analysis is divided into di�erent steps� The �rst one consists in determining an
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a�ne displacement �eld� which is a �rst coarse estimate of the actual displacement �eld� It

is based on the procedure outlined in Section �� For each iteration i� more and more Fourier

modes of the two signals are added� It is found that k��i� � ��
�	 i is a good choice� This

�rst step stops when Root Mean Square �RMS� of the signal di�erence no longer decreases�

In the present example� 
 iterations are used� Due to the periodicity of the pro�le and of

the displacement �eld� there is no need to compute the mean strain since the latter should

vanish� If one turns o� this part of the computation� the convergence is faster� However�

since typical cases are not periodic� the treatment was not specialized to such cases�

The second part consists in determining Fourier modes of the displacement �eld� The

procedure is now based on the direct application of the method discussed in Section �� This

time� two parameters are important� namely the values k� and K� of the �lters� For each

iteration j 
 
� k��j� � ��
 � 
� 	 �j � 
� and K��j� � 
� � � 	 �j � 
�� The convergence

criterion consists in looking for the minimumRMS error of the signal di�erence f � g where

g is computed as a function of the transformed coordinates so that if the displacement were

exactly determined� f and g would fall on top of each other� It is important to stress that the

iterative calls to the main procedure with an increasing number of Fourier modes is the best

way to achieve a good accuracy of the method since the previously determined displacement

�eld is used to modify the reference pro�le in the rescaled coordinates� Therefore the residual

displacement becomes smaller and smaller in amplitude and leads to a good convergence� A

direct call to the main procedure asking for� say� �� Fourier modes would not give such a

faithful determination of the displacement �eld� Figure � shows this e�ect� The �rst iterations

are used to evaluate the a�ne part of the displacement� Due to periodicity of the prescribed

displacement� no signi�cant decrease can be seen� The subsequent iterations correspond to
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the computation of the spectral decomposition� A gradual decrease of the error is found� The

last iteration is that for which the RMS error reaches its minimum value� �
 iterations are

required in the present case�

The �nal displacement �eld is compared to the prescribed one� A quasi�perfect agreement

is found apart from some remaining edge e�ects �Fig� ��� The latter e�ect is due to the initial

determination of the mean translation and strain �Section �� which does not assume implicitly

the periodicity of the �elds� The di�erence in terms of a Root Mean Square �RMS� measure

of the displacement di�erence is equal to � 	 
��� pixel when the �rst and last 
� pixels

of the signal are not considered �average displacement� 
��
 pixels and standard deviation

���� pixels�� By omitting the �rst step of the analysis gives better �quasi�perfect� results in

the particular case of a periodic signal� with a periodic displacement �eld� The conclusion

derived from this observation is that edge e�ects still constitute a weak point of the method

�as for all other methods�� and some more e�ort should be devoted to their analysis�

	� Test on a Real Case

The above test is quite satisfactory� however� by construction there is no noise in the signal�

and more importantly� the basic hypothesis �
� is met� However� in real cases� this assump�

tion is only roughly satis�ed� in particular when the images are obtained in transmission

mode� There is always a slight shift in contrast and in light intensity which may a�ect the

overall e�ciency� Furthermore� by construction� CCD cameras produce noise �e�g�� photon

noise� readout noise� dark current noise�� Lastly� the signal is digitized thereby limiting the

minimum detectable displacement �
��� Therefore it is important to test the method by us�

ing realistic signals� The real displacement �eld is unknown� and a direct evaluation of the
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method is impossible� To get some insight into the accuracy of the proposed approach� a

comparison with another tool developed for the same goal is chosen� i�e�� an independent

code based on the maximization of the cross�correlation of two zones is developped� by as�

suming a single translation of each zone �see Eq� �
���� This method� usually referred to as

Correlation Imaging Velocimetry� or CIV� is very widespread in the �eld of Fluid Mechan�

ics for �eld determination of velocities ���� and has become popular in Solid Mechanics to

evaluate displacement and strain �elds ���� In practice� an implementation of this method

�CORRELI�D� is developed in MatlabTM ���� 
���

The case used to test the method is a 
�� 	 ��� 	 �� mm� sample of glass wool� which in

its deformed state is uniaxially compressed by about ��� The advantage of this system is that

it has a rather heterogeneous natural texture for which images are obtained in transmission

with no special preparation �Fig� ��� Out�of�plane displacements remain vanishingly small�

therefore no correction is made in the present study ��
�� Moreover� due to the structure of

the medium� the displacement �eld is essentially along the main contraction axis� and hence

it is well�suited to the one�dimensional analysis proposed in this study� The rather loose

structure also induces large strains while still preserving an elastic �although non�linear�

behavior �����

Figure � gives an example of the two pro�les f and g obtained from the glass wool

sample� The program used in this section is the same as in the previous one� Figure � shows

the result of the analysis� through the direct comparison of the pro�les �deformed versus

reference one in rescaled coordinates�� and the resulting di�erence� As judged from this plot�

the method allows one to erase most of the di�erence in the two images� The di�erence

expressed as a Root Mean Square �RMS� measure is equal to ��� in terms of grey level for
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a texture with a standard deviation of ���� and an average of 
��� It can be noted that this

value is only an indication �i�e�� an upper bound� of the error of the method since it also

incorporates other sources related to the CCD camera as well as the experiment itself� which

induces a variation of grey level due to the contraction of the specimen and the fact that the

images are obtained in transmission�

Figure � shows the displacement pro�le obtained with the present technique and com�

pared to the result of a DIC method� In the latter case� the size of the Zone of Interest

�ZOI�� for which each correlation estimate is performed� was chosen to be �� pixels� To have

a more extensive determination of the displacement �eld� the estimate of the displacement

�eld is computed by placing the center of the ZOI successively at every point of the image

after omitting �� pixels at each end� This gives a rather continuous curve� although it is not

representative of the true resolution since the ZOI size is still quite large� A smaller ZOI

�i�e�� �� pixels� resulted in a much noisier displacement �eld� and was discarded� The short

wavelength �uctuation in the determined displacement �eld is most probably due to intrinsic

limitations of the method rather than real �uctuations� To obtain such a result� the �rst step

of the procedure �i�e�� determination of an a�ne displacement �eld� is required� otherwise

the optimum displacement is trapped in spurious very remote local minima� and the result

is di�cult to analyze� One can note that such a �rst correction is naturally implemented

in the proposed spectral method without having to carry out by hand such determination�

The comparison of the two methods is quite good� although the exact displacement �eld is

unknown� Both results are subjected to their own �ltering and sensitivity� The fact that they

both agree on most of the available range of data is however� to our opinion� a convincing

evidence of the practical interest of both methods and their ability to deal with real images�
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As a direct probe of the �rst determination of the a�ne displacement �eld as discussed in

Section �� Fig� 
 shows the result of a few �i�e�� 
� iterations for the determination of a

constant strain �eld equal to ���

The method is a priori not tolerant to di�erences in grey levels such that the basic

hypothesis �
� is violated� To make it more robust� an additional procedure is added to allow

for grey level corrections� Once the displacement is determined by using K� Fourier modes�

the di�erence f � g is �ltered by using at most K� Fourier modes and the reference pro�le

f is corrected by the resulting �ltered di�erence� Note that it is important not to use more

modes in this correction than in the displacement determination� This same step was also

implemented in the program used in the previous section� In the latter case� this procedure

should not be relevant� but it was important to test that it does not prevent convergence

toward the actual solution�


� Conclusion

A novel procedure is introduced to determine displacement �elds from the comparison of

two �images� in one dimension� It is based on a general minimization scheme that is applied

twice� �rst to estimate an a�ne displacement �eld� second to evaluate a truncated spectral

decomposition of the residual displacement �eld� The method has been tested on two cases�

A �rst arti�cial example where a random texture has been deformed by using a random

displacement �eld� and a second based on real pro�les extracted from a compressed glass

wool sample� Both cases give accurate estimates of the displacement �eld when compared

either to a known displacement ��rst example� or to a classical analysis based on DIC �second

example��


�



Extensions of the present method to two dimensional images should be straightforward

although it has not been implemented yet� It can be noted that special care should be taken

to properly account for edge e�ects� Furthermore� the �ltering process needs to be optimized

to treat these new cases� Even though some attention was paid in the present examples� an

optimum procedure was not sought and may depend on the spectral content of the texture

of the analyzed images as well as that of the displacement �elds�

The present method was also used to measure velocities in a turbulent �ow by recording

of tracer concentrations along one line �by using a laser beam�� This method turned out to be

quite successful ���� in that case� which underlines the potential interest of the method �even

in one dimension�� to a wide variety of applications� both in Solid and Fluid Mechanics�
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