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Modular representations of cyclotomic Hecke

algebras of type G(r, p, n)

Gwenaëlle Genet∗and Nicolas Jacon†

Abstract

We give a classification of the simple modules for the cyclotomic Hecke

algebras over C in the modular case. We use the unitriangular shape of

the decomposition matrices of Ariki-Koike algebras and Clifford theory.

1 Introduction

Let r, p and n be integers such that p divides r. The complex reflection group
of type G(r, p, n) is defined to be the groups of n×n permutation matrices such
that the entries are either 0 or rth roots of unity and the product of the nonzero
entries is a r

p
-root of unity.

In [2] and [5], Ariki and Broué-Malle have defined a Hecke algebra associated
to each complex reflection group G(r, p, n). It can be seen as a deformation of
the algebra of the group G(r, p, n). According to a conjecture of Broué and
Malle, such algebras, called cyclotomic Hecke algebras, should occur as endo-
morphism algebras of the Lusztig induced character. The representation theory
of cyclotomic Hecke algebras of type G(r, 1, n) (also known as Ariki-Koike alge-
bras) is beginning to be well understood. They are cellular algebras, the simple
modules have been classified in both semi-simple and modular cases and the
decomposition matrices are known in characteristic 0 (see [21] for a survey of
these results).

In [2], Ariki has shown that a Hecke algebra of type G(r, p, n) can be consid-
ered as the 0-component of a graded system for a Hecke algebra of type G(r, 1, n)
with a special choice of parameters. As a consequence, in the semi-simple case,
he has given a complete set of non isomorphic simple modules by using Clifford
theory. In the modular case, partial results have been obtained by Hu in [17]
(see also [16] and [18] where the case r = p = 2 which corresponds to Hecke
algebras of type Dn is studied). The main problem is that the restrictions of
the simple modules for non semi-simple Ariki-Koike algebras are much more
complicated to describe than for semi-simple ones.

The purpose of this paper is precisely to give a parametrization of the simple
modules for the non semi-simple cyclotomic Hecke algebras of type G(r, p, n)
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over C. It comes from the “canonical basic set” introduced by Geck and
Rouquier in [13] and extended by the second author in [20]. This set induces
a parametrization of the simple modules of non semi-simple Ariki-Koike alge-
bras by some FLOTW multipartitions (this kind of multipartitions has been
defined by Foda, Leclerc, Okado, Thibon and Welsh in [9]). We proceed in an
analogous way than in [14, Theorem 2.1], using the unitriangular shape of the
decomposition matrices of Ariki-Koike algebras and Clifford theory.

2 Cyclotomic Hecke algebras, Clifford theory

2.A Cyclotomic Hecke algebras

Let r, p and n be integers such that p divides r. We denote d :=
r

p
. Let R be

an integral ring, q a unit of R and a sequence x = (x1, . . . , xd) of elements in R.
Denote Hq,x

r,p,n(R), the Hecke R-algebra associated to the complex reflection
group G(r, p, n), for the parameters q, x, defined by the following presenta-
tion:
generators : a0, . . . , an,
relations : (a0 − x1) . . . (a0 − xd) = 0

(ai − q)(ai + 1) = 0, 1 ≤ i ≤ n,
a1a3a1 = a3a1a3,
aiai+1ai = ai+1aiai+1, 2 ≤ i ≤ n − 1,
(a1a2a3)

2 = (a3a1a2)
2,

a1ai = aia1, 4 ≤ i ≤ n,
aiaj = ajai, 2 ≤ i < j ≤ n, j ≥ i + 2,

a0a1a2 = (q−1a1a2)
2−ra2a0a1 + (q − 1)

r−2
∑

i=1

(q−1a1a2)
1−ka0a1,

= a1a2a0,
a0ai = aia0, 3 ≤ i ≤ n.

We have the following special cases:

• if r = p = 1, Hq,x
r,p,n(R) is the Hecke algebra of type An−1,

• if r = 2 and p = 1, Hq,x
r,p,n(R) is the Hecke algebra of type Bn,

• if r = p = 2, Hq,x
r,p,n(R) is the Hecke algebra of type Dn,

• if p = 1, Hq,x
r,p,n(R) is the Ariki-Koike algebra defined in [4].

Suppose the ring R contains a pth root of unity ηp and a pth root yi of xi,
for each i ∈ [1, d]. We define a sequence Q = (Q1, . . . , Qr) of elements in
R from the sequence x: for j ∈ [1, r], j = sp + t with s ∈ [0, d − 1] and

t ∈ [1, p], let Qj := ys+1η
t−1
p . Then, H

q,Q
r,1,n(R) is the R-algebra defined by

generators : T1, . . . , Tn,
relations : (T p

1 − x1) . . . (T p
1 − xd) = 0,

(Ti − q)(Ti + 1) = 0, 2 ≤ i ≤ n,
T1T2T1T2 = T2T1T2T1,
TiTi+1Ti = Ti+1TiTi+1, 2 ≤ i ≤ n − 1,
TiTj = TjTi, 1 ≤ i < j ≤ n, j ≥ i + 2.
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We use [2, Proposition 1.6] and identify a0 with T p
1 , a1 with T−1

1 T2T1 and
ai with Ti, for i ∈ [2, n], such that Hq,x

r,p,n(R) is considered as a subalgebra of

H
q,Q
r,1,n(R). Then by [15, §4.1], the Ariki-Koike algebra H

q,Q
r,1,n(R) is graded over

the cyclotomic Hecke algebra Hq,x
r,p,n(R) by a cyclic group of order p:

H
q,Q
r,1,n(R) =

p−1
⊕

i=0

T i
1 Hq,x

r,p,n(R).

Put H := H
q,Q
r,1,n(R) and H′ := Hq,x

r,p,n(R). We can define an automorphism

gH
H′ of H′ by

gH
H′(h) := T−1

1 hT1, for all h ∈ H′.

We also have an automorphism fH
H′ of H which is defined on the grading by

fH
H′(T1

jh) = ηj
p T j

1 h, for j ∈ [0, p− 1], h ∈ H′.

The next theorem of Dipper and Mathas will be very useful in the following
of this paper.

Theorem 2.1 ([8]) With the previous notations, assume that we have a parti-
tion of Q:

Q = Q1
∐

Q2
∐

. . .
∐

Qs

such that
fΓ(q, Q) =

∏

1≤α<β≤s

∏

Qi∈Qα

Qj∈Qβ

∏

−n<a<n

(qaQi − Qj)

is a unit of R. Then, H
q,Q
r,1,n(R) is Morita-equivalent to the following algebra:

⊕

n1,...,ns>0
n1+...+ns=n

H
q,Q1

r1,1,n1
(R) ⊗ . . . ⊗ H

q,Qs

rs,1,ns
(R)

where for i ∈ [1, s], ri = |Qi|.

2.B Clifford theory

Let y1, y2,...,yd and v be indeterminates over C. For i ∈ [1, d], put

xi := yp
i

and for i ∈ [1, r], i = sp + t with s ∈ [0, d − 1], t ∈ [1, p], ηp := exp(2iπ
p

),

Qi := ηt−1
p ys+1.

Form the sequences x := (x1, . . . ,xd) and Q := (Q1, . . . ,Qr).
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Let A := C[x1,x
−1
1 , . . . ,xd,x

−1
d ,v,v−1], K := C(x1, . . . ,xd,v) its field of

fractions.
Let θ : A → C be a ring homomorphism such that C is the field of fractions

of θ(A).
We put for i ∈ [1, d],

xi := θ(xi),

for i ∈ [1, r],
Qi := θ(Qi)

and
v := θ(v).

Note that for i ∈ [1, r], i = sp + t with s ∈ [0, d − 1], t ∈ [1, p], then
Qi := ηt−1

p ys+1, for a complex number ys+1 such that yp
s+1 = xs+1.

We also form the sequences x := (x1, . . . , xd) and Q := (Q1, . . . , Qr).

We will note for short H, resp. H , for the Ariki-Koike algebras H
v,Q
r,1,n(K),

resp. H
v,Q
r,1,n(C) and H′, resp. H ′, for the cyclotomic Hecke algebras Hv,x

r,p,n(K),
resp. Hv,x

r,p,n(C).

Since H, resp. H , is graded over H′, resp. H ′, we will give some results
which comes from Clifford theory.

Let H be the Ariki-Koike algebra H, resp. H , and H′ be the cyclotomic
Hecke algebra H′, resp. H ′. In both cases, we will denote by Res the functor
of restriction from the category of the H-modules to the category of the H′-
modules and by Ind the functor H ⊗H′ − from the category of the H′-modules
to the category of the H-modules.

Let V be a H-simple module and U be a simple submodule of Res V . Put

of,V := min {k ∈ N>0 | fk

V ≃ V }

where f := fH
H′ and for i ∈ [0, of,V − 1], fi

V is the H-module with the same
underlying space as V and the structure of module is given by composing the
original action of H with f i.
In the same way, let

og,U := min {k ∈ N>0 | gk

U ≃ U}

where g := gH
H′ and for i ∈ [0, og,U − 1], gi

U is the H′-module with the same
underlying space as U with the action of H′ twisted by gi.
Denote [X : Y ] the multiplicity of a simple module Y in the semi-simple mod-
ule X .

Lemma 2.2 Denote for short g := gH
H′ and f := fH

H′ . Every simple H′-module U
appears as a direct summand of the restriction ResV of a simple H-module V
with multiplicity-free. With such modules U and V , a conjugate gi

U of U ,
i ∈ [0, og,U − 1], occurs in the restriction of the conjugate fj

V of V , for all

4



j ∈ [0, of,V − 1] and the conjugates of V are the only simple H-modules whose

restrictions contain such a gi

U . Besides

ResV ≃

of,V −1
⊕

i=0

fi

V, (1)

IndU ≃

og,U−1
⊕

i=0

gi

U, (2)

p = og,Uof,V . (3)

Proof : It is easy to see that

Res V ≃ [Res V : U ]

og,U−1
⊕

i=0

gi

U, (4)

(see [6, Theorem 11.1]). Using [14, Proposition 2.2], we get

IndU ≃ [IndU : V ]

of,V −1
⊕

i=0

fi

V

as well as
p

of,V og,U

= [Res V : U ][IndU : V ]. (5)

As ResV is g-stable, [6, Proposition 11.14] implies that EndH(Ind Res V ) is
graded over EndH′(Res V ) by a cyclic group of order p. By (4) and (5), the di-

mension of EndH(Ind Res V ) over C is p2

of,V
and by the grading over EndH′(Res V ),

this dimension is equal to p[Res V : U ]2og,U . By comparison with (5), it follows
that

[Res V : U ] = [Ind U : V ]. (6)

Now, by definition of of,V , for short o, there exists an H-automorphism

t : V → fo

V.

So, t
p
o is an H-isomorphism. By Schur’s lemma, t

p
o is a scalar. There exists a

complex number c such that ( t
c
)

p
o = IdV . Then

Res V ≃

p
o
−1

⊕

i=0

Ker(
t

c
− ηoi

p IdV ).

It is easy to see that for each i ∈ [0, p
o
− 1], Ker( t

c
− ηoi

p IdV ) is an H′-module

isomorphic to gi

Ker( t
c
− IdV ). So the semi-simple module ResV decomposes

into more than p
o

simple modules and by (5) by less than p
o

simple modules.
Therefore Res V decomposes into exactly p

o
simple modules and [IndU : V ] = 1

so [Res V : U ] = 1 by (6).
As the module induced from a simple H′-module to H is semi-simple, the asser-
tions of the Lemma are proved.
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2.C The semi-simple case

We keep the notations of the previous subsection.

We study the representation theory of the algebras H := H
v,Q
r,1,n(K) and

H′ := Hv,x
r,p,n(K). By [1, Main Theorem], H is a split semi-simple algebra. This

implies that H′ is also split semi-simple.

A complete set of non isomorphic modules for H has been given in [4] and [7].
Let Πr

n be the set of r-partitions of n. We say that λ =
(

λ(i)
)

i∈[1,r]
is a r-

partition of size n if for every i, λ(i) is a partition and Σr
i=1|λ(i)| = n.

For each r-partition λ ∈ Πr
n, we can associate an H

v,Q
r,1,n(A)-module Sv,Q(λ)

called a “Specht module” that is free over A. Here, we use the definition of
“classical” Specht module contrary to [7] where the dual Specht modules are
defined. We have the following theorem.

Theorem 2.3 ([4],[7]) The following set is a complete set of non isomorphic

absolutely irreducible H
v,Q
r,1,n(K)-modules:

{

Sv,Q
K (λ) := K ⊗A Sv,Q(λ) | λ ∈ Πr

n

}

.

For each λ ∈ Πr
n, the set of standard tableaux of shape λ is a basis of the

underlying C-vector space of Sv,Q
K (λ) (see [4]). Using [4, Propositions 3.16, 3.17]

and some combinatorial properties, it is easy to get the

Proposition 2.4 Let λ ∈ Πr
n. The map

hv,Q
λ : fH

H′Sv,Q
K (λ) → Sv,Q

K

(

̟(λ)
)

(7)

that sends a standard λ-tableau T = (Ti)i∈[1,r] to the standard ̟(λ)-tableau
̟(T) := (T̟−1(i))i∈[1,r] is an H-isomorphism where ̟ is the permutation of Sr

defined by Q̟(i) := ηpQi, for all i ∈ [1, r] and ̟(λ) = (λ(̟−1(1)), . . . , λ(̟−1(r))).

Define
oλ := min {k ∈ N>0 | ̟k(λ) = λ}.

It is clear that oλ = o
f,S

v,Q
K

(λ) and

Res Sv,Q
K (λ) ≃

p
oλ

−1
⊕

i=0

Ker(hoλ

λ − ηoλi
p Id

S
v,Q
K

(λ)),

where hoλ

λ : foλSv,Q
K (λ) → Sv,Q

K

(

λ
)

sends a standard λ-tableau T to the standard
λ-tableau ̟oλ(T). For i ∈ [0, p

oλ
− 1], put

Sv,Q
K (λ, i) := Ker(hoλ

λ − ηoλi
p Id

S
v,Q
K

(λ)). (8)
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Let L be a set of representatives of r-partitions for the action of the cyclic
group generated by ̟ over Πr

n. It follows from Lemma 2.2, the

Proposition 2.5 The set

{Sv,Q
K (λ, i) ; i ∈ [0,

p

oλ

− 1], λ ∈ L}

is a complete set of non isomorphic simple H′-modules.

If T is a standard λ-tableau, then for j ∈ [0, p
oλ

− 1], the element

(T, j) :=

p
oλ

−1
∑

i=0

η−oλij
p ̟oλi(T)

belongs to the eigenspace Ker(hoλ

λ − ηoλj
p Id

S
v,Q
K

(λ)). It comes from the fact that

T =
oλ

p

p
oλ

−1
∑

j=0

(T, j), that for every j ∈ [0, p
oλ

− 1], the eigenspace Ker(hoλ

λ −

ηoλj
p Id

S
v,Q
K (λ)) is generated by the (T, j), T a standard λ-tableau. So we have

just described the simple H′-modules, see also [2].

The following part is now concerned with the non semi-simple case: simple
H

q,Q
r,1,n(C)-modules and Hq,x

r,p,n(C)-modules.

2.D The non semi-simple case

We keep the notations of §2.B.

2.D.1 Decomposition maps

The aim of this part is to define the decomposition maps for H := H
q,Q
r,1,n(C)

and H ′ := Hq,x
r,p,n(C). Recall that A := C[x1,x

−1
1 , . . . ,xd,x

−1
d ,v,v−1], K :=

C(x1, . . . ,xd,v) and that θ : A → C is a ring homomorphism.
Using [10], there exists a discrete valuation ring O with maximal ideal I(O)

such that A ⊂ O and I(O) ∩ A = ker(θ). Let k0 := O/I(O) be the residue
field of O. Denote by : O → k0 the canonical map. We obtain the algebras

H
q,Q
r,1,n(k0) and Hq,x

r,p,n(k0). The field k0 can be considered as an extension of C

that is the quotient field of θ(A). By [12, Lemma 7.3.4], there is an isomor-
phism between the Grothendieck groups of finitely generated H-modules and

H
q,Q
r,1,n(k0)-modules (resp. H ′-modules and Hq,x

r,p,n(k0)-modules):

R0(H) ≃ R0(H
q,Q
r,1,n(k0)) and R0(H

′) ≃ R0(H
q,x
r,p,n(k0)).

As a consequence, we obtain well-defined decomposition maps by choosing O-
forms for the simple H

q,Q
r,1,n(K)-modules (resp. Hq,x

r,p,n(K)-modules) and reducing
them modulo I(O):

dr,1,n : R0(H) → R0(H),

7



dr,p,n : R0(H
′) → R0(H

′).

For a simple H-module V and W a simple H′-module, there exist non neg-

ative integers d
(1)
V,M with M a simple H-module and d

(p)
W,N with N a simple

H ′-module such that:

dr,1,n([V ]) =
∑

M∈Irr(H)

d
(1)
V,M [M ]

and dr,p,n([W ]) =
∑

N∈Irr(H′)

d
(p)
W,N [N ].

By using the same argument as in [11, Lemma 5.2] (see also [12, Theorem
7.4.3.c]), we obtain the following result.

Proposition 2.6 The following diagram commutes:

R0(H)
Res

−−−−→ R0(H
′)

dr,1,n





y





ydr,p,n

R0(H)
Res

−−−−→ R0(H
′)

Moreover, for any simple H-module V and any simple H-module M , we have

d
(1)
V,M = d

(1)
fH
H′V,

fH
H′M

,

and for any simple H′-module W and any simple H ′-module N , we have:

d
(p)
W,N = d

(p)
gH
H′W,

gH
H′N

.

In the following, we will see that under some additionnal hypotheses, the
above property leads to some interesting results about the decomposition map
of cyclotomic Hecke algebras of type G(r, p, n) and about the simple H ′-modules.

2.D.2 Simple modules of non semi-simple Ariki-Koike algebras

We will work under the following hypothesis. We assume that v is a primitive
root of unity,

v := ηe = exp(
2iπ

e
),

for a positive integer e > 1. Let

f := gcd(e, p), e = fe′, p = fp′,

then ηf = ηp′

p = ηe′

e .
By the definition of Q and Theorem 2.1, without lost of generality, we can
suppose that there exist integers v1 ≤ . . . ≤ vδ that belong to [0, e′ − 1] such
that Q consists of the complex numbers ηvi

e ηj
p, where i ranges over [1, δ] and j

ranges over [0, p− 1]. Then r = δfp′ and we can split Q into p′ sets:

Q = Q1
∐

. . .
∐

Qp′

,

8



with Qj formed by the ηvi
e ηlp′+j

p , i ∈ [1, δ] and l ∈ [0, f − 1]. We consider Qj as
an ordered sequence

Qj = (ηj−1
p ηv1

e , . . . , ηj−1
p ηvδ

e , ηp′+j−1
p ηv1

e , . . . , ηp′+j−1
p ηvδ

e , . . .

η(f−1)p′+j−1
p ηv1

e , . . . , η(f−1)p′+j−1
p ηvδ

e ). (9)

Remark : First note that, for j ∈ [1, p′], Qj = ηj−1
p Q1 and

Q1 = (ηv1
e , . . . , ηvδ

e , ηv1+e′

e , . . . , ηvδ+e′

e , . . . , ηv1+(f−1)e′

e , . . . , ηvδ+(f−1)e′

e ),

with v1 ≤ . . . ≤ vδ ≤ v1 + e′ ≤ . . . ≤ vδ + (f − 1)e′.
Note also that the quotient of two elements that belong to Qj , for j ∈ [1, p′],

is a power of v = ηe while the quotient of an element of Qj by an element of Ql,
l ∈ [1, p′], l 6= j is not such a power, by definition of f .

If we order the elements of Q by the ordered elements of Q1, then the
ordered elements of Q2, etc, Theorem 2.1 implies that the Ariki-Koike algebra
H is Morita equivalent to the algebra

⊕

n1,...,n
p′≥0

n1+...+n
p′=n

H
q,Q1

fδ,1,n1
(C) ⊗ . . . ⊗ H

q,Qp′

fδ,1,np′
(C).

So it is clear that H is also Morita equivalent to the algebra

⊕

n1,...,n
p′≥0

n1+...+n
p′=n

H
q,Q1

fδ,1,n1
(C) ⊗ . . . ⊗ H

q,Q1

fδ,1,np′
(C).

We order Q and we split it into p′ sets following what we have done for Q:

Q = Q1
∐

. . .
∐

Qp′

.

2.D.3 Parametrization of simple H-modules

We can now give a parametrization for the simple H-modules. By [3, Theo-

rem 2.5], the simple modules of the Ariki-Koike algebra H
q,Q1

fδ,1,ni
(C), i ∈ [1, p′],

are the quotient modules Dv,Q1

C
(λ) := Sv,Q1

C
(λ)/J(Sv,Q1

C
(λ)) of the specialisa-

tions of the Specht modules Sv,Q1

C
(λ) := C ⊗ Sv,Q1

(λ) by their radical of Ja-
cobson, with λ a Kleshchev fδ-partition (for the parameters Q1) of size ni. So
the simple modules of H are labelled by the p′-tuples of Kleshchev fδ-partitions

(associated to Q1) (λ1, . . . , λp′

) with

p′

∑

i=1

|λi| = n. We will denote this set by Λ0

and for λ ∈ Λ0, Dv,Q
C

(λ) the corresponding simple H-module.

9



In [20], another parametrization for the simple H
q,Q1

fδ,1,ni
(C)-modules has been

found by using Lusztig’s a-function (see Theorem 2.7 below). Following this
paper, we will associate to each r-partition an a-value. To do this, we first
describe the a-value of a fδ-partition µ = (µ(1), µ(2), ..., µ(fδ)).

For k = 1, ..., δ, s = 1, ..., f and j = (s− 1)δ + k we put wj := vk + (s− 1)e′

so that wj is the power of the jth-component of Q1.
Then, for j := 1, ..., fδ, we define:

m(j) := wj −
je

fδ
+ e

and for s = 1, ..., n, we put:

B′(j)
s := µ(j)s − s + n + m(j)

where we use the convention that µ(j)p := 0 if p is greater than the height of

µ(j). For j = 1, ..., fδ, let B′(j) = (B
′(j)
1 , ..., B

′(j)
n ). Then, we define:

a
(1)
fδ (µ) :=

∑

0≤i≤j<fδ

(a,b)∈B′(i)×B′(j)

a>b if i=j

min {a, b} −
∑

1≤i,j≤fδ

a∈B′(i)

1≤k≤a

min {k, m(j)} + g(n).

where g(n) is a rational number which only depends on the m(j) and on n (the
expression of g is given in [20]).

Let λ ∈ Πr
n, write λ = (λ(1), . . . , λ(r)) as λ = (λ1, . . . , λp′

) where, for
i ∈ [1, p′], λi =

(

λ(fδ(i − 1) + 1), . . . , λ(fδ(i − 1) + fδ)
)

.
Finally, we define

a(1)
r (λ) :=

p′

∑

i=1

a
(1)
fδ (λi).

To each Specht module Sv,Q1

K (λ) of H
q,Q1

fδ,1,n′(K), n′ ∈ [0, n] and λ an fδ-
partition, we also associate an a-value

a
(1)
fδ

(

Sv,Q1

K (λ)
)

:= a
(1)
fδ (λ).

To each simple H
q,Q1

fδ,1,n′(C)-module Dv,Q1

C
(λ), n′ ∈ [0, n] and λ a Kleshchev

fδ-partition of size n′, we again associate an a-value

a
(1)
fδ (Dv,Q1

C
(λ)) := min{a

(1)
fδ (µ) | µ ∈ Πfδ

n′ , d
(1)

S
v,Q1

K (µ),Dv,Q1

C
(λ)

6= 0}.

Theorem 2.7 ([19, Theorem 2.3.8]) Let λ be a Kleshchev fδ-partition of
n′ for a non-negative integer n′. There exists a unique µ := κ(λ) such that

a
(1)
fδ (Dv,Q1

C
(λ)) = a

(1)
fδ (µ) and d

(1)

S
v,Q1

K
(µ),Dv,Q1

C
(λ)

6= 0. The function κ is a bijec-

tion between the set of the Kleshchev fδ-partitions of size n′ and the set of the
FLOTW fδ-partitions of size n′.

10



Recall what is a FLOTW fδ-partition λ =
(

λ(1), . . . , λ(fδ)
)

of size n′ associ-
ated to the parameters v and Q1, see [9]. Denote each partition λ(i), i ∈ [1, fδ],
as (λ(i)1, λ(i)2, . . .). The multipartition λ satisfies

1. for i ∈ [1, f ], j ∈ [1, δ − 1], k positive integer,

λ
(

(i − 1)δ + j
)

k
≥ λ

(

(i − 1)m + j + 1
)

k+vj+1−vj
,

2. for i ∈ [1, f − 1], k positive integer,

λ(iδ)k ≥ λ(iδ + 1)k+v1+e′−vδ
,

3. for k positive integer,

λ(fδ)k ≥ λ(1)k+v1+e′−vδ
,

as well as

4. to each node of the diagram of λ which is located in the ath row and the
bth column of the cth partition of λ (for two poditive integers a and b and
1 ≤ c ≤ fδ), we associate its residue ηb−a+vc

e . Then, for any positive
integer k, the cardinality of the set of the residues associated to the nodes
in both the kth columns and the right rims of the Young diagrams of λ is
not e.

In the same way, to each Specht module Sv,Q
K (λ) of H, λ ∈ Πr

n, λ =

(λ1, . . . , λp′

), we can define a
(1)
r (Sv,Q

K (λ)) := a
(1)
r (λ) that is the sum

p′

∑

i=1

a
(1)
fδ (λi).

To each simple H-module Dv,Q
C

(λ), λ ∈ Λ0, we associate the a-value

a(1)
r (Dv,Q

C
(λ)) := min{a(1)

r (µ) | µ ∈ Πr
n, d

(1)

S
v,Q
K (µ),Dv,Q

C
(λ)

6= 0}. (10)

With Theorem 2.1, it is clear that there exists a unique µ := κ′(λ) such that

a
(1)
r (Dv,Q

C
(λ)) = a

(1)
r (µ) and d

(1)

S
v,Q
K (µ),Dv,Q

C
(λ)

6= 0. In fact,

κ′(λ) = (κ(λ1), . . . , κ(λp′

))

if λ = (λ1, . . . , λp′

).
The function κ′ is a bijection between Λ0 and Λ1 the set of the p′-tuples of

FLOTW fδ-partitions (λ1, . . . , λp′

) of size

p′

∑

i=1

|λi| = n.

2.D.4 Preliminary results

In order to prove the main Theorem, we will need some preliminary results.
First, recall that we have ordered Q by the ordered elements of Q1, then by
the ordered elements of Q2 etc as in §2.D.2. Let ̟ be the permutation of Sr

defined in Proposition 2.4 and let

λ := (λ1[1], ..., λ1[fδ], λ2[1], ..., λ2[fδ], ..., λp′

[1], ..., λp′

[fδ])

be an r-partition. Hence, following the notations of the previous paragraph, we
have λj [i] = λ(fδ(j − 1) + i). Then, it is easy to verify that

11



• for i ∈ [1, (p′ − 1)fδ], then ̟(i) = i + fδ,

• for i ∈ [r − fδ + 1, r − δ], then ̟(i) = i − r + (f + 1)δ,

• for i ∈ [r − δ + 1, r], then ̟(i) = i − r + δ.

Then, by Proposition 2.4, we have:

Sv,Q
K (λ) ≃ Sv,Q

K

(

̟(λ)
)

where ̟(λ) = (λp′

[fδ − δ + 1] , . . . , λp′

[fδ],λp′

[1] , . . . , λp′

[fδ − δ], λ1[1] , . . . ,
λ1[fδ], . . . , λp′−1[1] , . . . , λp′−1[fδ]).

Proposition 2.8 Let λ ∈ Πr
n, then a

(1)
r (Sv,Q

K (λ)) = a
(1)
r (fH

H′Sv,Q
K (λ)). Besides,

if λ ∈ Λ0, then a
(1)
r (Dv,Q

C
(λ)) = a

(1)
r (fH

H′Dv,Q
C

(λ)).

Proof : By the definition of the a-value (see §2.D.3), we have:

a(1)
r (Sv,Q

K (λ)) :=

p′

∑

i=1

a
(1)
fδ (λi[1], ..., λi[fδ])

Thus, by using the above properties, it is sufficient to show that a
(1)
fδ (λp′

[1] , . . .

, λp′

[fδ])= a
(1)
fδ (λp′

[fδ − δ + 1], . . . , λp′

[fδ], λp′

[1], . . . , λp′

[fδ − δ]).
Using the notations of §2.D.3, for i = 1, ..., δ and j = 1, ..., f we write

m(i)[j] := m((j−1)δ+i). Then, all we have to do is to prove that m(i)[j] doesn’t

depend on j. We have m(i)[j] = vi−
((j − 1)δ + i)e

fδ
+(j−1)e′ = vi−

ie

f
because

e′f = e. Hence, we obtain the desired result.

With the definition (10), it is trivial that the previous result about Specht

modules implies that, for any λ ∈ Λ0, a
(1)
r (Dv,Q

C
(λ)) = a

(1)
r (fH

H′Dv,Q
C

(λ)).

With Proposition 2.8 and Lemma 2.2, we can associate an a-value to each
simple H′-module U . If U appears in the restriction ResSv,Q

K (λ), for λ ∈ Πr
n,

put
a(p)

r (U) := a(1)
r

(

Sv,Q
K (λ)

)

.

In the same way, we can associate an a-value to each simple H ′-module W .
If W appears in the restriction Res Dv,Q

C
(λ), for λ ∈ Λ0, then

a(p)
r (W ) := a(1)

r (Dv,Q
C

(λ)).

Another useful proposition is the following one.

12



Proposition 2.9 Let λ ∈ Λ1, then ̟(λ) ∈ Λ1, where ̟ is defined in the
Proposition 2.4.

Proof : Write λ ∈ Λ1 as λ = (λ1, . . . , λp′

) where λi = (λi[1], . . . , λi[fδ]) is a
FLOTW fδ-partition for Q1. We will see that ̟(λ) ∈ Λ1 so the result will be
proved. The r-partition ̟(λ) is equals to (λp′

[fδ − δ + 1] , . . . , λp′

[fδ],λp′

[1]
, . . . , λp′

[fδ − δ], λ1[1] , . . . , λ1[fδ], . . . λp′−1[1] , . . . , λp′−1[fδ]). It belongs to
Λ1 if and only if (λp′

[fδ − δ + 1] , . . . , λp′

[fδ], λp′

[1] , . . . , λp′

[fδ − δ]) is a
FLOTW fδ-partition. It is easy to verify that the three first conditions hold.
Now, the set of the residues associated to the nodes in both the kth columns and
the right rims of the Young diagrams of this last multipartition consists of the
residues of λp′

but multiplied by ηe′

e . So the fourth condition about FLOTW
multipartitions hold as well as the Proposition.

3 A parametrization of the simple H ′-modules

We keep the above notations. The aim of this section is to describe a parametriza-
tion of the simple H ′-modules, with H ′ = Hv,Q

r,p,n(C). The proof is highly inspired
by [14, Theorem 2.1].

Theorem 3.1 For all simple H ′-module N , there exists a simple H′-module
WN such that

dr,p,n([WN ]) = [N ] +
∑

a
(p)
r (L)<a

(p)
r (N)

dWN ,L[L],

and a
(p)
r (N) = a

(p)
r (WN ).

Let Λ1′ := {WN | N ∈ Irr(H ′)}. Then Λ1′ consists in the Sv,Q
K (λ, i), with

λ ∈ Λ1∩L, i ∈ [0, p
oλ

−1] with the notations of the Proposition 2.5 and the map

N ∈ Irr(H ′) 7→ WN ∈ Λ1′ is bijective. So Λ1′ is a parametrization of the simple
H ′-modules.

Proof : Fix a simple H ′-module N . By Lemma 2.2, there exists λ ∈ Λ0 such
that N appears in the restriction ResDv,Q

C
(λ). We have

dr,1,n([Sv,Q
C

(

κ(λ)
)

]) = [Dv,Q
C

(λ)] +
∑

a
(p)
r (D

v,Q
C

(µ))<

a
(p)
r (D

v,Q
C

(λ))

d
(1)

S
v,Q
K (κ(λ)),Dv,Q

C
(µ)

[Dv,Q
C

(µ)],

(11)

and a
(1)
r

(

Sv,Q
C

(κ(λ))
)

= a
(1)
r (Dv,Q

C
(λ)). With the notations of (8) and Proposi-

tion 2.6, this equality implies that

p
oκ(λ)

−1
∑

i=0

dr,p,n([Sv,Q
C

(κ(λ), i)]) =

p
o

fH
H′ ,D

v,Q
C

(λ)

−1

∑

i=0

[(g
H
H′ )

i

N ] + [N ′], (12)
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where N ′ is a sum of H ′-modules, D, with a-value a
(p)
r (D) < a

(p)
r (Dv,Q

C
(λ)) and,

for all i, j, a
(p)
r (Sv,Q

C
(κ(λ), i)) = a

(p)
r ((g

H
H′ )

i

N).

Denote by τ(λ) ∈ Λ0, the multipartition defined by Dv,Q
C

(τ(λ)) := fH
H′Dv,Q

C
(λ).

If we twist the action of H by fH
H′ , the equality (11) gives that κ(τ(λ)) = ̟(κ(λ))

by Proposition 2.9 and by definition of κ. As this map is bijective, it is clear
that

o
fH

H′ ,S
v,Q
K

(κ(λ)) = o
fH

H′ ,D
v,Q
C

(λ)

and therefore for all i ∈ [0, p
oκ(λ)

− 1],

o
gH
H′ ,S

v,Q
K (κ(λ),i) = ogH

H′ ,N

with the last equality of Lemma 2.2.
Recall that for i ∈ [0, p

oκ(λ)
− 1], Sv,Q

K (κ(λ), i) is conjugate to Sv,Q
K (κ(λ), 0) by

(gH
H′)i. The equality (12) implies that there exists an unique i ∈ [0, p

oκ(λ)
− 1]

such that
dr,p,n([Sv,Q

C
(κ(λ), i)]) = [N ] + [N ′′], (13)

where N ′′ is a sum of H ′-modules, D, with a-value a
(p)
r (D) < a

(p)
r (N). This

construction makes clear all the statements of the Theorem.

Remark : The above theorem is only concerns with the case where v is a primitive
eth-root of unity. If v isn’t a root of unity, it is readily checked that an analogue
of this theorem holds by replacing Λ1 by the set of Kleshchev multipartitions Λ0

at e = ∞. The proof of this result can be easily obtained following the outline
of [14].
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