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The roots of any polynomial equation

G.A.Uytdewilligen,
Bergen op Zoomstraat 76, 5652 KE Eindhoven. g.a.uytdewilligen @ zonnet.nl

Abstract
We provide a method for solving the roots of the general polynomial equation

n n—
a-x +a X + .+a-x+s=C(
n n—1 1 (1)
To do so, we express x as a powerseries of s, and calculate the first n-2 coefficients. We turn the
polynomial equation into a differential equation that has the roots as solutions. Then we express the
powerseries’ coefficients in the first n-2 coefficients. Then the variable s is set to a0. A free parameter is
added to make the series convergent. © 2004 G.A.Uytdewilligen. All rights reserved.
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The method

The method is based on [1]. Let’s take the first n-1 derivatives of (1) to s. Equate these derivatives to zero.

Then find ; x(s) in terms of x(s) for i from 1 to n-1. Now make a new differential equation

S
n—1 n—-2
ml- Il_lx(s) + m2 n—ZX(S) + .+ mn~x(s) + m. .= C
ds ds (2)

and fill in our dsl’ X(s) in (2). Multiply by the denominator of the expression. Now we have a

polynomial in x(s) of degree higher then n. Using (1) as property, we simplify this polynomial to the
degree of n. Set it equal to (1) and solve m; .. my,; in terms of s and a, .. a, Substituting these in (2) gives a
differential equation that has the zeros of (1) among its solutions. We then insert

an— 1

X(s) = y(s) -
n-a

3)
in (2). Multiplying by the denominator we get a differential equation of the linear form:
dn—l dn—2
Pl—7¥(8) + p2—=y(s) + .+ p y(s)=(
ds ds
4

With pi(s)..pa(s) polynomials in s. If we substitute our powerseries, all the coefficients are determined by
the first n-1 coefficients. The first coefficients are calculated as follows: A powerseries is filled in in (1).
a

n

n—2 )
X(s) = Z b.s —
1 n-a
i=0

and it should be zero for all s. From this, we calculate b; for i from 0 to n-2.by Is a root af an n-1 degree
polynomial and the other b; are expressed in by Now a powerseries is inserted in (4):

n—1

)




y(s) = Z bi-s]
i=0

and we get an equation of the form:

q;(0)-¢p-by + qy(D-cyby

+ .+ qn(i)«cn«b.

0

i+n-1"

where gy, (i) are polynomials in i of degree n-1. c,, Are constants.
We define b, ; as the determinant of a matrix A

e a0 c,:q)0 c-q,00 ]
n—1 "n-1 ) 272 171 0 0 0 0
Cn'qn(o) Cn-qn(o) Cn-qn(O)
0 . 0 0 1 1 0 0 0
0 . 0 0 0 1 1 0 0
A= 0 . 0 0 0O 0 O 1 1
0 . 0 1 bO 0 O 0 0
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0 . 0 0 0 0 b2 0 0
1 0 0 0 0 0 0 0 1"
and for the rest of the coefficients
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The series (6) can be proven to be convergent [2] if for a constant E
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©)

(10)

and if all the absolute values of the coefficients of (1) are chosen smaller then 1. This is done by dividing a
polynomial by (more than) the maximum of the absolute values of the coefficients.



To make the series convergent, we transform s to e-s. That is, if we insert the powerseries it is not in s but
in e-s. Writing out the terms of the sum, we find that each term d; has a factor s' ¢"™" Setting

(12)
We still need s<1, which is why we set s to ay and ap<1.
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