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A %-DUAL APPROXIMATION ALGORITHM FOR SCHEDULING
INDEPENDENT MONOTONIC MALLEABLE TASKS

GREGORY MOUNIE*, CHRISTOPHE RAPINE!, AND DENIS TRYSTRAM*

Abstract. A malleable task is a computational unit that may be executed on any arbitrary
number of processors, whose execution time depends on the amount of resources allotted to it. This
paper presents a new approach for scheduling a set of independent malleable tasks which leads to
a worst case guarantee of % + ¢ for the minimization of the parallel execution time, for any fixed
€ > 0. The main idea of this approach is to focus on the determination of a good allotment, then, to
solve the resulting problem with a fixed number of processors by a simple scheduling algorithm. The
first phase is based on a dual approximation technique where the allotment problem is expressed as
a knapsack problem for partitioning the set of tasks into two shelves of respective height 1 and %
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1. Introduction. The implementations of large actual applications on parallel
and distributed systems are based on algorithmic studies where scheduling and load-
balancing issues are the central points to be considered. There exists a very large
literature addressing the problem of scheduling efficiently the tasks of a parallel pro-
gram. This problem corresponds to find for each task a date to start its execution
together with a processor location. Tasks in this model correspond to indivisible
pieces of the application to be executed sequentially on a processor. The standard
communication model for scheduling the tasks of a parallel program is the delay model
introduced by Rayward-Smith [21] for UET-UCT task graphs (unit execution times
and unit communication times) and extended by Papadimitriou and Yannakakis [18].
In this model, the communications between tasks allocated to different processors
are considered explicitly by the transmission time of a message between them. The
communication times between tasks within the same processor are neglected. The
scheduling UET-UCT problem is known to be N"P-hard in the strong sense [21], and
not approximable within a factor of 5/4 of the optimum by any polynomial algorith-
m [10], unless P = N'P. The best known approximation result is due to Hanen &
Munie [8], whose algorithm is within a factor of 7/3 of the optimum for small com-
munication delays. Among the various possible approaches, the most commonly used
is to consider the tasks of the program at the finest level of granularity and apply
some adequate clustering heuristics to reduce the relative communication overhead
[22, 6, 17]. The main drawback of such an approach is that communications are taken
into account explicitly: they are expressed assuming a model of the underlying ar-
chitecture of the system. A good alternative is to consider the malleable tasks model
(denoted MT) where the communication times are considered implicitly by a function
representing the parallel execution time with the penalty due to the management of
the parallelism. A malleable task is a computational unit which may be executed
on several processors with a running time that depends on the number of processors
allotted to it.

In this paper, we are interested in scheduling a set of n independent malleable
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tasks on a multiprocessor system composed by m identical processors. An instance
of the problem is a set T = {T4,...,T,} of tasks, together with a set of n functions
t; - p = t;p which indicates the processing time of task 7; when executed on p
processors. A solution (scheduling) consists in finding for each task 7; a starting time
st; and a subset P; of the processors to execute it, under the constraints that:
e Task T; starts simultaneously its execution on all the processors of P;, and
occupy them without interruption till its completion time C; = st; + t; p,-
e A processor executes at most one task at a time.
The objective is to minimize the makespan defined as the maximum completion time
over all the tasks. Our main contribution is to propose a new method for scheduling
independent malleable tasks, which leads to a performance guarantee of % + ¢ for any
€ > 0, in time O(nmlog(n/e)). This bound improves all existing practical results for
solving this problem.

The organization of this paper is the following: we first present a brief survey on
related works and recall the model of MT and its main properties. Then we discuss the
principle of our approach, and we present the algorithm and analyze its performance
guarantee. Some experimental results are reported at the end of the paper to assert
the average behavior of our algorithm compared to the other existing approaches.

2. Preliminaries on Malleable Tasks.

2.1. Related works. The problem of scheduling independent malleable tasks
has been extensively studied in the last decade. This interest was motivated among
others by the problem of scheduling jobs in batch processing. Classical scheduling
problems (i.e. with sequential tasks) are a particular case of the MT scheduling, and
hence their complexity results apply directly to MT problems. It implies that schedul-
ing independent MT is a NP-hard problem [5], in the ordinary sense if m is fixed.
Du and Leung [4] studied more precisely the complexity for MT scheduling prob-
lems, establishing that the problem with arbitrary precedence constraints is strongly
NP-hard for 2 processors, and scheduling independent MT is strongly NP-hard for
5 processors.

Prasanna et al. [20] developed an approach based on optimal control theory for a
continuous version of malleable tasks, leading to optimal solution assuming the same
particular parallel time function for all the tasks.

Jansen and Porkolab [11] proposed a polynomial approximable scheme based on
a Linear Programming formulation for scheduling independent malleable tasks. The
complexity of the scheme, although linear in the number of tasks, is high independent-
ly of the accuracy of the approximation due to an exponential factor in the number
of processors. Thus, even if the result has an important theoretical interest, this
algorithm can not be considered for a practical use.

We are interested in efficient, low complexity, heuristics with good performance
guarantee. Most existing works are based on a two-phases approach proposed by
Turek, Wolf and Yu [24]. The basic idea is to select in a first step an allotment
(the number of processors allotted to each task), and in a second step to solve the
resulting non-malleable scheduling problem, which is a classical scheduling problem of
multiprocessor tasks. As far as the makespan criterion is concerned, this problem is
identical to a 2-dimensional strip-packing problem [1, 3, 12] for independent tasks. It is
clear that applying an approximation of guarantee A for the non-malleable problem on
the allotment of an optimal solution provides the same guarantee A for the malleable
problem, if ever an optimal allotment can be found. Two complementary ways for
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solving the problem have been proposed, focusing either on the allotment (first phase)
or on the scheduling (second phase).

e Turek, Wolf and Yu proposed a polynomial selection algorithm for the al-
lotment problem such that any A-approximation algorithm of complexity
O(f(n,m)) for the non-malleable (multiprocessor) problem can be adapt-
ed into a A-approximation algorithm of complexity O(mnf(n,m)) for the
malleable problem. Ludwig [13, 14] improved the complexity of the allot-
ment selection in the special case of monotonic tasks. Based on this result
and on the 2-dimensional strip-packing algorithm of guarantee 2 proposed by
Steinberg [23], he presented a 2-approximation algorithm for scheduling in-
dependent MT. The powerfulness of this approach is also its main limitation:
any improvement in the approximation of the strip-packing problem directly
applies to the MT problem, but the performance guarantee of the approach
is limited by the best known result for strip-packing.

e The other way corresponds to choose an allotment such that the resulting
non-malleable problem is not a general instance of strip-packing, and hence
better specific approximation algorithms can be applied. Using Knapsack as
an auxiliary problem for the selection of the allotment, this technique leads
to a (v/3 + €)-approximation for monotonic tasks [16].

We focus in this paper on the second approach and show how a (%+6)—approximationl
algorithm can be obtained for any € > 0. The basic idea is to determine an allotment
such that the tasks can be partitioned into two shelves, of respective heights d and
d/2 for some deadline d to explicit.

2.2. Notations and basic properties. The aim of this work is to construct a
MT-schedule for a set of n independent malleable tasks that minimizes the maximum
completion time over all the m processors. Recall that we assume that a processor can
compute only one task at a time (no time sharing) and that the number of processors
allocated to a task remains constant during all its execution. In addition we are
looking for non-preemptive schedules with contiguous allocation, which means that
for each task the set of the subscripts of the processors alloted to it is an interval of
[1,m]. Their performance guarantee are established in respect to an optimal solution,
which may be contiguous or not.

2.2.1. Monotonic assumptions. We define the work function w; of a task T3,
which corresponds to its computational area in the Gantt chart representation of a
schedule, as w; : p = w;p = pt;p for p < m. According to the usual behavior
of parallel programs, we will assume that the tasks are monotonic: allocating more
processors to a task decreases its execution time and increases its work.

DEFINITION 2.1 (Monotony).

o The time monotony is achieved by a set of tasks T when t; is a decreasing
function for any task Tj;.
e The work monotony is achieved by set of tasks T when w; is an increasing
function for any task Tj;.
A set of task is monotonic if the two previous conditions are fulfilled.

Notice that an instance of the MT problem can always be transformed to fulfill the
time monotony property, replacing the functions ¢; by t; : p — min{t; 4l¢=1,...,p}.
This transformation does not affect the optimal solution of the scheduling.

From the parallel computing point of view, this monotonic assumptions may
be interpreted by the well-known Brent’s lemma [2], which states that the parallel
execution of a task achieves some speedup if it is large enough, but does not lead
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to super-linear speedups. Due to cache effects or scheduling anomalies described by
Graham [7], this behavior can not be asserted for all the applications. However,
it is a quite reasonable hypothesis, that is expected for most large actual parallel
applications, mainly due to the communication overhead. We give below one useful
definition for the presentation of our algorithm, together with two basic properties
implied by the monotonic behavior of the tasks.

DEFINITION 2.2 (Canonical Number of Processors). Given a real number h,
we define for each task T; its canonical number of processors v(i,h) as the minimal
number of processors needed to execute task T; in time at most h. If T; can not be
executed in time less than h on m processors, we set by convention v(i, h) = +00.

Notice that if the set of tasks is monotonic, the canonical number of processors
can be found in time O(logm) by dichotomic search. In addition w; ,(; ) is also the
minimal work area needed to execute T; in time less than h.

PROPERTY 1. Given a real number h, if v(i,h) < +00, the execution time of task
T; on its canonical number of processors satisfies the inequality:

7(7& h') -1

v(i, h) h

h > tinn >

Proof. For short let us denote by p the canonical number of processors of a task
T; for the given deadline h. If p = 1, the inequality is clearly satisfied. Otherwise the
monotonic behavior of the tasks implies that w; , > w; p—1, i.e. p X t;p > (p—1) X
t; p—1. By definition of the canonical number of processors, t; ,—1 > h, which proves
property 1. O As a corollary, if the canonical number of processors is at least 2 for a
task, we have the simplified following property:

PROPERTY 2. Given a real number h, if y(i, h) € [2,m], we have:

inGin) = tigim—1 > b > by > 5 h

3. Description of the scheduling algorithm.

3.1. Principle. The principle of the algorithm is to use the dual approximation
technique [9]. A A-dual approximation algorithm for the MT-scheduling problem takes
a real number d as an entry and:

e cither delivers a schedule of length at most Ad,
e or answers, correctly, that there exists no schedule of length lower than d.

Ludwig and Tiwari [14] proposed a lower bound w that can be computed in time
O(mnlogn), such that the optimal makespan d* verifies w < d* < 2w. Hence a A-dual
approximation running in time f(n,m) can be converted, by dichotomic search, in a
A(1 + e)-approximation running in time O(mnlogn +log(1/€) f (n,m)) for any € > 0.

We are interested in this article in finding a 3/2-dual approximation. Let d be the
current real number entry for our dual approximation. In the following we assert that
a MT-schedule of length lower than d exists: thus we have to show how it is possible
to build a schedule of length at most 3/2d. The idea of the algorithm is to partition
the set of tasks into two shelves, one of height d and the other of height d/2. As the
tasks are independent in both shelves, the scheduling strategy is straightforward after
the allotment of the tasks has been determined, and yields directly to a solution of
length at most 3/2d. The main problem to face with is to choose the tasks in each
shelf in order to obtain a feasible solution. The way to determine the partition will
be described in detail later.
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3.2. Structure of an optimal schedule. To take advantage of the dual ap-
proximation paradigm, we have to explicit the consequences of our assumption that
a schedule of length lower than d exists. We state below some straightforward prop-
erties of such a schedule. They should give the insight for the construction of our
solution.

REMARK 1. In an optimal solution, the execution time of each task is lower than
d and the total work is lower than md.

REMARK 2. In an optimal solution, if there exists two successive tasks (i.e.
tasks allocated successively to a common processor), at least one of these tasks has an
execution time lower than d/2.

The basic idea of the solution that we propose comes from the analysis of the shape
of an optimal schedule. From remark 2 the tasks whose execution times are strictly
greater than d/2 do not use more than m processors, and hence can be executed
concurrently. The other tasks can be executed in time lower than d/2. Thus, we are
looking for a schedule in two shelves: Sy of height d and Sy of height d/2.

3.3. Algorithm. Starting from the idea of constructing a schedule in two shelves i
let us detail the successive steps of the algorithm.

1. Remove the set Ts of tasks whose execution times on one processor are lower
than d/2.

2. Find for the remaining tasks a processor allotment such that any task has
an execution time lower than d. From this allotment, we can partition the
tasks into two sets 7; and T3, composed respectively of the tasks having an
execution time strictly greater than, respectively lower or equal to d/2 in the
allotment. The crucial point of the algorithm is the choice of this allotment in
order that it fulfills some properties to be a good candidate for the 2-Shelves
schedule. This choice is done using a Knapsack formulation of the problem.

3. Apply some basic transformations to build a feasible 2-Shelves schedule. The
allotment may be modified, but a task can only get less processors than in
the initial allotment.

4. Finally insert the set of tasks Ts, determined in the first step, in the schedule.

3.4. Forgetting about the small tasks. Recall that we are looking for a MT-
schedule of length at most 3/2d, assuming that there exists a schedule of length lower
than d. As usual in many approximation schemes, since we are interested in a solution
at a factor of 3/2 of the optimal solution, we can “forget” about some small tasks
which do not affect the final performance of our algorithm. This small tasks are in our
case the set Ts constituted by the tasks whose sequential execution time is lower than
or equal to d/2. Let denote by Ws the sum of the execution times of 7s. Remark
that Ws is a lower bound of the work area of execution of Ts in any feasible schedule.

LEMMA 1. If a 2-Shelves schedule of length 3/2d exists for T\Ts with a work
area lower than md — Ws, then a MT-schedule of length at most 3/2d can be derived
for T in time O(nm).

Proof. Consider a 2-Shelves schedule composed of shelves S; and S;. We can
modify the starting time of the tasks of S;, which is currently d, to impose that they
all finish exactly at time 3/2d. It creates on each processor an idle time interval
between the completion of the task of S; and the starting of the one of S;. We define
the load of a processor as the sum of the execution time of the tasks allocated to it.
By definition the load is equal to 3/2d minus the length of the idle time interval on
the processor. Now consider the following algorithm to schedule the tasks of Ts:

— Consider the tasks in an arbitrary order 7s = {T1,...,Tx}.
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— Allocate task T; to the less loaded processor, at the earliest possible date.
Update its load.
The only problem that may occur is that a task T; can not be scheduled before the
tasks of S;. But at each step, the less loaded processor necessary has a load lower
than d, otherwise it would contradict the fact that the total work area of the tasks is
bounded by md. Hence the idle time interval on this processor has a length at least
d/2, and can contain the task T;. O

3.5. Partitioning the tasks into two Shelves. In this section, we detail how
to fill both shelves S; and Sy by expliciting a first processors allotment for the tasks.
Accordind to lemma 1, we can assume that only tasks with sequential execution time
strictly greater than d/2 remain in 7. In order to obtain by the end a 2-Shelves
schedule, we look for an allotment satisfying the 3 following constraints:

(C1) The total work area of the allotment is lower than W = md — Ws.

(C2) The set 71 of tasks with an execution time strictly greater than d/2 in the
allotment uses at most m processors. These tasks are intended to be scheduled
in Sl.

(C3) The set T3 of tasks with an execution time lower than d/2 in the allotment
uses at most m processors. These tasks are intended to be scheduled in Ss.

Such an allotment clearly defines a 2-Shelves schedule of length at most 3/2d which
would allow us to build a solution to the MT-problem according to lemma 1. Unfor-
tunately we have no certitude on the existence of such an allotment. To tackle with
this point, we relax the allotment problem looking for a solution which verifies only
constraints (C1) and (C2), maybe violating (C3).

We use a well-known knapsack algorithm to find such a relaxed allotment. Let us
recall briefly this problem: given a set of n items, each one associated to an integral
weight w; and a profit v;, and a knapsack with a total weight capacity W, find a subset
of the tasks which can be contained by the knapsack with the maximal profit. This
problem is AN'P-hard [5], however, it admits [15, 19] a pseudo-polynomial algorithm,
using dynamic programming, that solves it exactly in time complexity in O(nW).

The idea is to solve a knapsack problem where the profit of an item-task will be
its work. The weight of an item-task will correspond to the number of processors
alloted to it. The subset 77 of tasks solution of the knapsack corresponds to the tasks
executed in time strictly greater than d/2. Finally, the capacity constraint is that the
total number of processors that execute tasks in 77 is limited by m. The objective is
to minimize the total work area W*. Due to the monotonic assumption, we have only
2 allotments to consider for a task. If it is selected to belong to Ty, clearly 7(i,d) is
a dominant allotment, otherwise (4, d/2) is. Notice that, due to remark 1, v(4,d) is
lower than m for all the tasks. The problem can be formulated as:

find W* = min | > wigd + D WinGias2)
=1 \ien i¢Th

under the constraint Z v(i,d) <m
€T

If the work area W* is greater than W = md — Ws then there exists no solution
with a makespan lower than d and the algorithm answers '"NO’ to the dual approxima-
tion. Otherwise, we will detail in the next section how to construct a feasible solution
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with a makespan lower than 3/2d. The lemma below establishes the correctness of
this dual approximation:

LEMMA 3.1. Assuming that there exists a schedule of length lower than d, the
Knapsack formulation of the problem delivers in time O(nm) an allotment satisfying
constraints (C1) — (C2).

Proof. Consider an optimal schedule. As it was already noticed, the total work of
tasks of Ts in this schedule is at least Ws, hence the remaining tasks occupy an area
bounded by W = md — Ws. The allotment of the optimal solution partitions these
tasks into two sets 7{ and T3, where 7{ groups the tasks with execution time strictly
greater than d/2. By definition any task T; is alloted to at least (i, d) processors if
it belongs to T/, and ~y(i,d/2) processors if it belongs to 7,. Finally, as a corollary of
remark 2, tasks of T/ use less than m processors. It follows that set 77 is a feasible
solution for the knapsack procedure, with a resulting work area lower than W. By
definition it implies that the optimum W* of the Knapsack procedure is lower than
or equal to W. O

3.6. Satisfying constraint (C3). Starting from the allotment found by the
Knapsack procedure, we can construct a solution with the tasks of 77 in S; and the
others, 73 = T\71, in S2. No more than m processors are used to schedule the tasks
in S, but it may happen that more than m processors are needed in S;. We then
apply 3 possible transformations that will reduce this number to less than m. These
transformations are applied until the resulting schedule is a feasible solution on m
processors. These transformations modify the shape of the 2-Shelves solution we are
looking for, creating a new area Sy whose processors are continuously busy in the
time interval [0, d], see figure 3.1. The 3 transformations are the following (note that
these transformations can be applied in any order):

1. if a task T in S; has an execution time lower than 3/4d and is alloted to p > 1
processors, allocate T' to p — 1 processors in Sp.

2. if T and T' in S have an execution time lower than 3/4d and are each alloted
to 1 processor, allocate T and T to the same processor in Sy. A special case
happens if T is the only remaining sequential task of execution time lower
than 3/4d. It is then allocated on top of a task of Sy, if exists, of duration
greater than 3/4d, such that the completion time of T' does not exceed 3/2d.

3. Let ¢ denotes the number of idle processors in S;. If it exists a task T; in
Sz such that its execution time on ¢ processors is bounded by 3/2d, allocate
T; on v(i,3/2d) processors. According to the resulting execution time, T; is
either scheduled in Sy or in S;.

The algorithm to build a feasible solution of length lower than 3/2d is then the
following;:

Algorithm BuildFeasible
e Start from the solution delivers by the Knapsack
formulation, So =0, S; =71, So="Ts.
e While the solution is not feasible
apply one of the transformation (1), (2) or (3).

The end of this section is devoted to prove the lemma 3.2:
LEMMA 3.2. The algorithm BuildFeasible delivers a feasible schedule of length
at most 3/2d in time complezity O(nm).
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3/2d - 3/2d.
52 ] 52
d d
So L
S1 S1
m mo m’

F1G. 3.1. The 2-Shelves schedule obtained from the allotment phase (left) and the final schedule
given by BuildFeasible (right) with the new area So.

Notice that the transformations ensure by construction that the makespan re-
mains bounded by 3/2d at each step of the algorithm (for transformation (1), this is
a direct consequence of property 2). In addition a transformation can only decrease
the number of processors alloted to a tasks, which asserts due to monotony that the
total work area of the schedule remains bounded by W = md — Wgs at any step of
BuildFeasible.

Let mg be the number of processors used to schedule the tasks of set Sy in the
final solution. We denote by m' = m —myg the remaining processors for the 2-Shelves
schedule composed of S; and S>. By construction any processor in Sy completes after
deadline d, which implies a work area greater than mgd. Since the total work area is
bounded by W, it is straightforward to remark that the total work area of tasks in Sy
and S5 is bounded by m'd — Ws. In addition set S; requires less than m' processors
for the concurrent execution of its tasks. Hence to prove lemma 3.2, we are going to
show that while the second shelf Sy requires more than m' processors, one of the 3
transformations can be applied. It is clear that the schedule restricted to S; and Ss
on m' processors, if feasible, verifies the conditions of application of lemma, 1, which
makes us able to conclude that the algorithm is a 3/2-dual approximation.

3.6.1. Algorithm BuildFeasible delivers a feasible schedule. Consider
that none of the transformations can be applied to the current schedule. We have
to prove that this solution is feasible, i.e. requires less than m processors, which is
equivalent by construction to prove that Sy requires less than m' processors.

Let ¢ be the number of idle processors in the first shelf S;. Assume for sake of
contradiction that the second shelf Sy requires ms > m' processors. We have the
following structure for the current schedule:

1. The total work area of tasks in S; U S5 is bounded by W' = m'd — Ws.
2. Any task in S; has a duration strictly greater than 3/4d, except possibly one
sequential task whose execution time can be in the range ]d/2,3/4d].
3. Any task in Sy has a duration strictly greater than d/4.
4. Any task in S has a work area greater than 3/2¢d, and hence is alloted to
at least 3¢ + 1 processors.
The second point is a direct consequence of the fact that neither transformation (1)
nor (2) can be applied. The third point is a corollary of property 2: since any task
of T\7s has a sequential execution time strictly greater than d/2, all the tasks in
S are alloted to 7(i,d/2) > 2 processors. The last point comes from the fact that,
due to transformation (3), any task in S» has a duration greater than 3/2d when
alloted to ¢ processors. Due to the monotonic behavior its current work is at least its
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work on ¢ processors, which is strictly greater than ¢.(3/2d). In particular, we have
3q.tizg > wig > q.(3/2d), which implies that the time duration on 3¢ processor is
strictly greater than d/2. Thus by definition v(i,d/2) > 3q.

To obtain a contradiction to the assumption that the current schedule is not a
feasible solution, we will explicit some lower bounds of the work area in S; and S»
which will contradict the fact that their sum is bounded by m'd. We start by giving
the lower bound used for the tasks in S7, together with a very simple first lower bound
for Sy:

LEMMA 3.3. If the schedule is not feasible, the overall work area W1 of S1 is at
least 3/4d(m' — q), while the overall work area Wa of Ss is at least 1/4d(m’ + 1).

Proof. The lower bound on W, is straightforward, since any task in Sy has an
execution time strictly greater than d/4, and tasks of Sy use at least m'+1 processors.
The same argument holds for W is no sequential task of duration lower than 3/4d
exists in the shelf. Otherwise let T be this unique task, with a sequential time ¢ in
the range d/2,3/4d].

Let us first establish that 7' can not be the only task scheduled in S;. Indeed
assume for sake of the contradiction that it is the case. If there is no idle processor
in S; (¢ = 0), we have simply m' = 1. Hence at least W; > d/2 while the lower
bound on Sy can be rewritten as Wa > d/2. It contradicts the fact that Wi + W is
bounded by m'd = d. If some idle processors exists, we then have ¢ = m' —1 > 0.
As S, contains at least one task, Wo > 3/2¢d = 3/2(m' — 1)d. We obtain m'd >
d/2+3/2(m' —1)d = (3m' — 2)d/2, which implies 2 > m/, contradicting ¢ > 0.

Hence, at least another task 7" is partially scheduled in S; together with T'. Since
transformation (2) can not be applied, task 7" has an execution time ¢’ strictly greater
than 3/2d — ¢t. Thus considering one processor allocated to T and the processor
executing T, their average load is strictly greater than 3/4d. Since any non idle
processor is occupied by a task in S; with an execution time greater than 3/4d, we
obtain Wy > 3/4(m’ —¢q). O

To conclude that a non-feasible schedule leads to a contradiction, we distinguish
between two cases, depending if there exists or not some idle processors in Sj.
case 1. Assume ¢ = 0. In this case lemma 3.3 leads directly to a contradiction.

Indeed we have: m'd > Wi + Ws > 3/4m'd + 1/4(m' + 1)d > m'd
case 2. Assume ¢ > 0. We need a more accurate lower bound on W> to conclude.
Let k£ be the number of tasks in S2. By construction we have

Wo = Wiy
1€Ss

We can express the work of each task in two different ways. First using the
fact that this work is at least 3/2¢d we obtain:

(3.1) W > quk

Second, due to monotony, the work of each task T; when alloted to one less
processors can only increase: w; (i,d/2) = Win(i,d/2)—1- By definition, the
execution time on «y(i,d/2) — 1 processors is strictly greater than d/2, which
implies that w; ,(;,a/2)-1 > (v(4,d/2) — 1)d/2. We have:

(3.2) W > (Y 7(i,d/2)—k)g > %(m'-&-l—k)d
1€Sa
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Using the lower bound established in lemma 3.3 on W; we can rewrite the upper
bound m'd on the total work area as Wy < m'/d/4 + 3/4q¢d. Using equation (3.1), we
obtain:

6gk <m' +3q & 3q2k—1) <m’
Using in its turn equation (3.2), we have:
2(m'+1—-k)<m' +3¢ & m' <3¢+ (2k —2)
By transitivity we obtain the following strict inequality:
3g(2k—1) <3¢+ (2k—2) & 3q(2k-2)<(2k—-2) & (3¢g—1)(k—1)<0

But both k and g are greater than 1, which makes impossible the previous inequality.
This concludes the proof of lemma 3.2 by contradiction.

3.6.2. Time Complexity of BuildFeasible. We finally establish the time
complexity of the algorithm. Each of the 3 transformations either moves a task from
S2 to S1 or Sy, or from S7 to So. Hence at most 2 transformations can be applied
to any task. Let N be the number of tasks to deal with in our problem, after the
elimination of the “small” tasks of 7s. If we look at the time complexity of each of
the 3 transformations at a step of the algorithm, we have:

e The first two transformations can be implemented in time complexity O(N)
by a simple scan of the tasks in Sj.

e Transformation (3) can be implemented also in time O(N) scanning the tasks
of Sy. The determination of v(¢, 3/2d) for the elected task T; can be computed
in time O(logm) by dichotomic search.

Since at most 2N transformations can be applied, and in particular transformation (3)
can be applied at most N times, algorithm BuildFeasible has an overall complexity
in O(N2 + Nlogm). To obtain a time complexity in O(nm), simply notice that N is
bounded both by n and 2m: indeed any of the N tasks has a sequential execution time
greater than d/2, for a total work bounded by md. Monotony implies that N < 2m.

4. Experiments. We have presented a 3/2-dual approximation for scheduling
a set of monotonic independent malleable tasks. The guarantee of 3/2 corresponds
to an upper bound of the worst case ratio compared to an optimal solution. In this
section we report some experiments to study the average behavior of the algorithm.
We compare its performances with three other existing algorithms, namely:
e To serve as a reference, the well-known LPT scheduling algorithm. Recall that
LPT (Largest Processing Time first) is a single processor algorithm where
the tasks are allocated to the available processors according to the decreasing
order of their length [7]. This comparison is done to show the gain obtained
in the parallelization of the tasks.
e Our new algorithm with a worst case performance ratio of 3/2, denoted by
3/2-ALG.
e The algorithm from [16] with a worst case ratio of v/3, denoted by v/3-ALG.
o The version from Ludwig [13] of the algorithm from Turek, Wolf and Yu [24],
which uses Steinberg’s strip packing algorithm [23].
Experiments report the performance ratio of these algorithms compared to the
lower bound of the optimum proposed by Ludwig [13]. Hence the results are over-
estimations of real performance ratios.



SCHEDULING INDEPENDENT MONOTONIC MALLEABLE TASKS 11

4.1. Description of the random instances. For the experiments, the time
functions of the tasks have been determined randomly. To preserve the monotonic
behavior we define the execution time ¢; 41 of task T; on p + 1 processors as:

P+ Xjo1 .

tivp"l‘l = p+ 1 P

where X is a random variable and Xjg,y) its restriction to the real interval [0, 1]. For
experiments we have generated X both from a Gaussian distribution A'(m, o) centered
on m and with a standard deviation o, and from a uniform distribution U[a, b] on a
real interval [a, b]. The sequential times of the tasks are chosen according to the same
distribution. To shorten the presentation of the results, we will report only the case
of 32 parallel processors, which is quite representative of the general behavior of the
algorithms.

4.2. Distribution of the solutions. Let us first study the distribution of the
solutions in order to validate the average measures. From the experiments, it appeared
that the ratios of performance of the algorithms hardly vary with the distribution of
the time functions. Thus, we decided to present the results for an “average” dis-
tribution X following the Gaussian distribution A (0.5,0.5). Figure 4.1 presents the
distribution of the performance ratios for 3/2-ALG and Ludwig’s over 50000 experi-
ments and for 20 tasks.

density distribution (%)
density distribution (%)
w

1 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 2
Performance ratio Performance ratio

Fi1G. 4.1. Distribution of the algorithm performance ratio (left) compared to Ludwig’s (right)
for a Gaussian distribution N'(0.5,0.5) on 32 processors with 20 tasks.

The first remark is that Ludwig’s algorithm performance ratio follows a Gaussian-
like distribution, with an expected value quite closed to its theoretical upper bound
of 2. On the other hand the 3/2-ALG has a small mean value but with a less regular
distribution: the range of values is narrower than Ludwig’s one, but with at least
2 distinct peaks of probability, emphasing two different behaviors of the algorithms.
We interpret these peaks as the use or not of the transformation phases to build a
feasible solution after the knapsack allotment procedure.

One interesting behavior of the algorithm occurs for what we can call perfect
parallel tasks, i.e. tasks with a linear speedup. This is in fact the less favorable case
for the algorithm, and figure 4.2 shows that its ratio distribution becomes then a
Gaussian-like distribution. We have also reported the distribution of the v/3-ALG in
this situation, which differs in this case from the 3/2-ALG.
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FIG. 4.2. Distribution of the algorithm (left) compared to v/3-ALG (right) for perfect parallel
tasks on 32 processors with 20 tasks.

4.3. Average Behavior. We report here the average behavior of the 4 algorith-
m on 32 processors. Figure 4.3 shows the average performance ratios for a number of
tasks from 1 to 150, and time functions using the Gaussian distribution N (0.5,0.5).
Each points in the following figures represents the mean value over 500 experiments.

2

199 pp e LudWIgS
1.8 .
17 \
16 . LPT
15 \

144 N

Average performance ratio

1.2 4 =
LoSan@) 3/2-Alg K
114

0 25 50 75 100 125 150
Number of tasks

Fic. 4.3. Average performance ratios of the 4 algorithms on 32 processors with a Gaussian
distribution N'(0.5,0.5) for time functions.

These results are quite similar for other distributions (normal or uniform) we have
tested. In all these experiments, we observe that the use of the Steinberg’s algorithm
for the strip-packing leads to an average guarantee close to the worst case 2 for Lud-
wig’s algorithm. On the contrary, both other algorithms 3/2 and V3-ALG are very
close to optimality (beneath 10%). This means that in average, the guarantee is much
better than their respective worst cases 3/2 and v/3. Finally sequential scheduling
(LPT) is competitive with parallel scheduling only for more than one hundred mal-
leable tasks. In practise, the use of MT is interesting when the number of tasks is not
too large.
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Fi1G. 4.4. Awerage performance ratios of the of 2 dual algorithms on 32 processors with a
Gaussian distribution N (0.5,0.5) (left) and perfect parallel tasks (right).

Figure 4.4 focuses on the average performance on the 3/2 and /3 algorithms for
the previous N(0.5,0.5) distributions and for perfect parallel tasks, which appeared
in our experiments to be the worst situation for both algorithms: 3/2-ALG can be
around 20% over the optimal value, while v/3-ALG can be around 30%. It appears
that these algorithms have quite comparable average performances.

4.4. Worst case behavior. Finally we report in figure 4.5 the worst case ratios
encountered over the 500 experiments for the 3/2 and V/3-ALG for the two previous
distributions to compare them to their theoretical guarantees. Off course these re-
sults are only indicative: looking back at the performance ratio distributions of the
algorithms, the worst cases have a small probability of appearance, which make the re-
ported results quite sensitive. Surprisingly for the “average” distribution N (0.5,0.5)
of the time functions, the worst ratio of the latter algorithm does not exceed 1.3,
which is quite far from its theoretical bound of v/3, while the 3/2-algorithm performs
worse, getting up to 1.4.

16 16

15 15 Sart(3)
i) =}
S 14 3/2-Alg S 14
@ @
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5 13 5 13
€ =
3 @
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g 12 212
= 2

11 Sart(3) 11
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0 25 50 75 100 0 25 50 75 100
Number of tasks Number of tasks

FIG. 4.5. Worst case performance ratio of the algorithm compared to \/3-Alg for a gaussian
distribution N'(0.5,0.5) (left) and for perfect parallel tasks (right) on 32 processors with 20 tasks.

In contrast for perfect parallel tasks the worst case ratio of the 3/2-ALG is only
slightly modified, while for the v/3-ALG it becomes greater than 1.5 for instances
around 20 tasks. Again, this range of number of tasks is the most important in
practise.
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5. Conclusion. We have presented in this paper a new algorithm for scheduling
a set of independent malleable tasks. It improves significantly the best bound known

at this time, with a performance guarantee of % + &. The basic idea was to focus on

the first phase of allotment using a knapsack formulation of the problem.

The natural continuation of this work is to study the scheduling of other structures
of precedence graphs with malleable tasks. We believe that a similar analysis in two
phases with a sophisticated allotment algorithm should lead to good approximation
algorithms.

Another promising feature of MT is their intrinsic hierarchical behavior which
should help in developing good scheduling algorithms for cluster computing. This
issue is under investigation.
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