Surfaces elliptiques réelles et inégalité de Ragsdale-Viro

Abstract : On a real regular elliptic surface without multiple fiber, the Betti number h1 and the Hodge number h1,1 are related by h1<=h1,1. We prove that it's always possible to deform such algebraic surface to obtain h1=h1,1. Furthermore, we can impose that each homology class can be represented by a real algebraic curve. We use a real version of the modular construction of elliptic surfaces.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00001384
Contributor : Frédéric Mangolte <>
Submitted on : Tuesday, March 30, 2004 - 4:52:51 PM
Last modification on : Monday, October 29, 2018 - 3:30:04 PM

Links full text

Identifiers

Collections

Citation

Frédéric Mangolte. Surfaces elliptiques réelles et inégalité de Ragsdale-Viro. Mathematische Zeitschrift, Springer, 2000, 235, pp.213-226. ⟨hal-00001384⟩

Share

Metrics

Record views

161