Skip to Main content Skip to Navigation
Journal articles

Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety

Abstract : We show that any orientable Seifert 3-manifold is diffeomorphic to a connected component of the set of real points of a uniruled real algebraic variety, and prove a conjecture of Jànos Kollàr.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-00001369
Contributor : Frédéric Mangolte <>
Submitted on : Sunday, March 28, 2004 - 1:08:51 PM
Last modification on : Wednesday, April 1, 2020 - 1:57:22 AM

Links full text

Identifiers

Collections

Citation

Johannes Huisman, Frédéric Mangolte. Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety. Topology, Elsevier, 2005, 44, pp.63-71. ⟨hal-00001369⟩

Share

Metrics

Record views

185